博碩士論文 962203045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.144.123.172
姓名 蕭裕謙(Yu-chien Hsiao)  查詢紙本館藏   畢業系所 化學學系
論文名稱 抗菌胜肽資料庫分析及利用分子動態模擬法探討抗菌胜肽Indolicidin於生物膜上的行為
(Analysis of Antimicrobial Peptide Database and Molecular Dynamics Simulation of Antimicrobial Peptide, indolicidin in a water-membrane environment)
相關論文
★ 嗜甲烷菌內甲烷單氧化酵素中催化反應中心三核銅模擬分子之合成與光譜分析★ 烷烴氧化菌及氧化酵素之純化與功能性探討
★ 以電腦模擬研究香蕉型液晶元的分子交互作用力★ 利用時間相關的電子密度泛函理論研究反式-二苯乙烯胺的光化學行為
★ 以生物資訊法研究穩定Asparagine在左手螺旋形下的交互作用力★ 葛蘭氏陰性菌脂質A之結構研究
★ 五苯荑衍生之苯乙炔寡聚物之合成與光物理性質研究★ 紫質三元件系統的金屬化作用對遠端氫鍵調控的影響
★ 非鍵結作用力的理論研究: (1)質子化與氧化三元件系統遠端調控氫鍵的比較 (2)π- π與CH- π作用力的取代基效應★ 利用時間相關的密度泛涵理論研究HBI分子及其衍生物在第一激發態的位能曲線
★ Replica-Exchange分子動態模擬法研究類澱粉胜肽25-35 嵌入膜與折疊的行為★ 網頁圖形界面在分子模擬上的應用
★ 類澱粉胜肽Abeta(25-35) 序列影響該類胜肽在水-膜環境下的組態: 強調多樣性的神經毒性★ 以分子動態模擬法研究陽離子-負電磷脂質雙層的配位網絡結構:延伸應用於膜融合機制
★ 染料敏化太陽能電池吸光性質的計算研究★ Free Energy Landscape of Ca2+ Induced Lipid Micelle Fusion : Observation of a Dewetting Transition
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 摘要
為了研究抗菌胜肽 (antimicrobial peptide) 的抗菌作用機制,我們的研究分別從三個不同方式進行: 抗菌蛋白資料庫的分析、全原子分子動態模擬Indolicidin (IL) 和膜的交互作用及利用平行淬煉分子動態法 (replica-exchange molecular dynamics, REMD)搭配implicit membrane model (GBSW model) 模擬Indolicidin及其類似物折疊及穿膜的機制。
從抗菌蛋白資料庫的分析中顯示,自然界中鹼性抗菌蛋白大都具有高密度淨正電荷的特性。分析的結果顯示,鹼性抗菌蛋白演化非完全增加帶正電荷胺基酸(Arg、Lys)的propensity,相反地是降低帶負電荷胺基酸(Asp、Glu)的propensity。此外,Trp的propensity也相當的高,這也暗示著Trp可能在抗菌胜肽的功能上扮演重要的角色。我們也依抗菌胜肽的二級結構,分析20種胺基酸的propensity,可供改善抗菌胜肽的研究作為參考。
利用全原子分子動態模擬法,我們探討IL-F89和POPC膜的交互作用,發現IL-F89對膜擾亂的程度較IL輕微,其中包括對膜厚的干擾以及秩序參數的改變,這些結果暗示為何IL-F89溶血性較IL的低; 溶血實驗顯示相同的趨勢。
利用REMD/GBSW的演算法,進行IL-A與IL-analogs (IL、IL-F89、IL-K7F89)單體系統的模擬,發現所有的系統皆無法單獨穿入膜內,都以吸附在膜上的形態存在,然而二級結構的生成(IL-A)也無助於穿膜。根據IL-analogs模擬的結果,我們也排除了幾種抗菌胜肽穿膜的可能路徑,例如:抗菌胜肽會直接穿入膜內而於膜內進行聚集。
摘要(英) Abstract
To understand the action mechanism of antimicrobial peptides (AMP), our study employed three different means: (i). database analysis of antimicrobial peptides, (ii). all-atom molecular dynamics (MD) simulation of the interaction between Indolicidin (IL) and membrane and (iii). folding and membrane insertion of IL and its analogues by replica-exchange molecular dynamics (REMD) simulation using implicit membrane model (GBSW model).
Database analysis reveals that most naturally-occurring AMPs are cationic and own high density of net positive charges. However, the propensities of positively charged residues (Arg & Lys) are not particularly high; in contrast, the propensities of negatively charged residues (Asp & Glu) are significantly reduced. Moreover, the propensity of Trp is particularly high implying for the critical role of Trp in the antimicrobial action. In addition, we also analyzed the propensities of 20 amino acids in terms of available secondary structures giving the reference of AMP engineering research.
In all-atom MD simulation, we studied the interaction of IL-F89 peptide and POPC membrane. The result showed that IL-F89 has less impact on disordering the POPC membrane (e.g. membrane thickness and order parameter). This result hints for the lower hemolytic activity of IL-F89 than Il which is consistent with the trend of experimental observations.
Using REDM/GBSW, we simulated the folding and membrane insertion of IL, IL-A, IL-F89 & IL-K7F89 monomers. Simulation results showed that these peptides mainly stay at water-lipid interfaces. Moreover, the formation of ?-helix (IL-A) does not enhance its membrane insertion. These results exclude one possible pathway of IL-membrane insertion: IL is not able to insert into membrane alone and aggregates inside the membrane.
關鍵字(中) ★ 抗菌胜肽
★ 分子動態模擬
關鍵字(英) ★ molecular dynamics simulation
★ antimicrobial peptide
論文目次 總目錄
摘要 I
Abstract II
誌謝 III
總目錄 IV
圖目錄 VII
表目錄 IX
第一章 緒論 1
1-1 抗菌胜肽簡述 1
1-1-1 抗菌胜肽的發展 1
1-1-2 抗菌胜肽的特色 2
1-1-3 抗菌胜肽的作用機制 3
1-2 Indolicidin的生物活性與作用機制 6
1-2-1 Indolicidin簡述 6
1-2-2 Indolicidin結構特性 7
1-2-3 Indolicidin抗菌與溶血的機制 7
1-2-4 Indolicidin的類似物對於抗菌與溶血的影響 8
1-2-5 結構(structure)的改變 9
1-2-6 疏水性(hydrophobicity)的改變 11
1-2-7 IL及IL-F89的生物活性 13
1-3 蛋白質結構與序列分析背景簡述 16
1-3-1 蛋白質結構特性 16
1-3-1-1 二級結構-螺旋狀結構 17
1-3-1-2 二級結構-平板狀結構 17
1-3-2 胺基酸序列特性 18
1-3-3 蛋白質結構與胺基酸序列來源 19
1-4 抗菌胜肽資料庫 20
1-5 研究動機 20
第二章 計算方法 22
2-1 分子動態模擬 22
2-1-1 分子動態模擬的簡介與應用 22
2-1-2 分子力場 23
2-1-3 分子動態模擬原理 27
2-1-4 模擬系統初始設定 29
2-1-4-1 Periodic Boundary Conditions 29
2-1-4-2 Generalized Born Solvent Model ( GB model ) 30
2-1-4-3 Replica-exchange Molecular dynamics method 32
2-1-4-4 模擬系統概述 33
2-3 方向秩序參數(Order parameter) 36
2-4 Define Secondary Structure of Proteins (DSSP) 36
第三章 結果與討論:抗菌胜肽資料庫的序列分析 40
3-1 抗菌胜肽資料庫的建立 40
3-2 抗菌胜肽長度及電荷分佈 42
3.3 胺基酸Propensity的計算 44
第四章 結果與討論: 53
利用分子動態模擬探討IL衍生物於生物膜上的行為機制 53
4-1 IL-F89與生物膜交互作用行為的探討 55
4-1-1 IL-F89與生物膜的吸附行為 55
4-1-2 IL-F89與生物膜的穿膜行為 57
4-1-4 生物膜頭基分佈 61
4-1-4 膜排列整齊度探討 63
4-2 IL-A單體行為的探討 65
4-2-1 IL-A各種胺基酸於膜上的位置分佈 65
4-2-2 IL-A於膜環境的二級結構 67
4-2-3 IL-A於模擬與實驗環境中結構差異度 69
4-2-4 IL-A於水相與膜環境的位向 71
4-2-5 IL-A穿膜機制探討 72
4-2-6 IL-analogs與IL-A系統穿膜行為的差異 74
第五章 總結 79
參考文獻 81
附錄:抗菌資料庫總覽(結構部分) 85
附錄:抗菌資料庫總覽(序列部分) 88
參考文獻 參考文獻
1. Hsu, C.H., et al., Structural and DNA-binding studies on the bovine antimicrobial
peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Research, 2005, 33, 4053-4064.
2. Boman, H. G.. "Antibacterial peptides: basic facts and emerging concepts." Journal of Internal Medicine, 2003, 254, 197-215.
3. Michl, H. and A. Csordas, Isolation and structure of a haemolytic polypeptide from the defensive secretion of European Bombina species. Chemical Monthly, 1970, 101, 182-189.
4. Habermann, E., Bee and Wasp Venoms Science, 1972, 177, 314-322
5. Boman, H.G., Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature, 1981, 292, 246-248.
6. Lehrer, R., Microbicidal Cationic Proteins in Rabbit Alveolar Macrophages: a Potential Host Defense Mechanism. Infection and Immunity, 1980, 30, 180-192.
7. Lehrer, R., Defensins:Natural Peptide Antibiotics of Human Neutrophils. J. Clin. Invest., 1985, 76,1427-1435.
8. Hancock,R.E.W. and Patrzykat,A. Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Curr. Drug Targets Infect. Disord., 2002,
2, 79-83.
9. Scott, M.G. and Hancock, R.E.W.Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit. Rev. Immunol., 2000, 407-431.
10. Bradshaw,J.P. Cationic antimicrobial peptides: issues for potential clinical use. BioDrugs, 2003, 17, 233-240.
11. Matanic, V.C.A. and V. Castilla, Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. International Journal of Antimicrobial Agents, 2004, 23, 382-389.
12. Zhe,W and Wang, G., APD: the Antimicrobial Peptide Database. Nucleic Acid Res. 2004, 32, D590-D592.
13. Zhe,W and Wang, G. APD2:the updated antimicrobial peptid database and its application in peptide design. Nucleic Acid Res. 2008,1-5.
14. Zasloff, M., Magainins, a class of antimicrobial peptides from Xenopus skin:Isolation, characterization of two active forms, and partial cDNA sequence of a precursor. PNAS, 1987, 84, 5449-5453.
15. Morikawa, N., K. Hagiwaraa, and T. Nakajima, Brevinin-1 and -2, unique antimicrobial peptides from the skin of the frog , Rana brevipoda porsa. 1992, 189, 184-90.
16. Lawyer, C., et al., Antimicrobial activity of a 13 amino acid tryptophan-rich peptide derived from a putative porcine precursor protein of a novel family of antibacterial peptides. Febs Letters, 1996, 390, 95-98.
17. Cabiaux, v., et al., Secondary structure and membrane interaction of PR-39,a
Pro+Arg-rich antibacterial peptide. Eur. J. Biochem., 1994, 224, 1019-1027.
18. Radermacher, S., V. Schoop, and H. Schluesener, Bactenecin, a leukocytic antimicrobial
peptide, is cytotoxic to neuronal and glial cells. J Neurosci Res, 1993, 15, 657-662.
19. Ding, B., et al., Correlation of the antibacterial activities of cationic peptide antibiotics and cationic steroid antibiotics. Journal of Medicinal Chemistry, 2002, 45, 663-669.
20. Yang, L., et al., Barrel-stave model or toroidal model? A case study on melittin pores. Biophysical Journal, 2001, 81, 1475-1485.
21. Selsted, M.E., et al., Indolicidin, a Novel Bactericidal Tridecapeptide Amide from Neutrophils. Journal of Biological Chemistry, 1992, 267, 4292-4295.
22. Rozek, A., C.L. Friedrich, and R.E.W. Hancock, Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry, 2000, 39, 15765-15774.
23. Lee, D.G., et al., Fungicidal effect of indolicidin and its interaction with phospholipid membranes. Biochemical and Biophysical Research Communications, 2003. 305, 305-310.
24. Robinson, W.E., et al., Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils. Journal of Leukocyte Biology, 1998, 63, 94-100.
25. Schluesener, H.J., et al., Leukocytic Antimicrobial Peptides Kill Autoimmune T-Cells. Journal of Neuroimmunology, 1993, 47, 199-202.
26. Ahmad, I., et al., Liposomal Entrapment of the Neutrophil-Derived Peptide Indolicidin Endows It with in-Vivo Antifungal Activity. Biochimica Et Biophysica Acta-Biomembranes, 1995, 1237, 109-114.
27. Halevy, R., et al., Membrane binding and permeation by indolicidin analogs studied by a biomimetic lipid/polydiacetylene vesicle assay. Peptides, 2003, 24, 1753-1761.
28. Yang, L., et al., Barrel-stave model or toroidal model? A case study on melittin pores. Biophysical Journal, 2001, 81, 1475-1485.
29. Biggin, P.C. and M.S.P. Sansom, Interactions of alpha-helices with lipid bilayers: a review of simulation studies. Biophysical Chemistry, 1999, 76, 161-183.
30. Subbalakshmi, C. and N. Sitaram, Mechanism of antimicrobial action of indolicidin. Fems Microbiology Letters, 1998, 160, 91-96.
31. Kendrew, J. C., R. E. Dickerson, et al.. "Structure of Myoglobin: A Three-Dimensional Fourier Synthesis at 2 [angst]. Resolution." Nature 1960, 185, 422-427.
32. Pauling, L. and R. B. Corey . "Atomic Coordinates and Structure Factors for Two Helical Configurations of Polypeptide Chains." Proceedings of the National Academy of Sciences of the United States of America 1951, 37, 235-240.
33. Pauling, L. and R. B. Corey. "Configurations of Polypeptide Chains With Favored Orientations Around Single Bonds." Proceedings of the National Academy of Sciences of the United States of America , 1951, 37, 729-740.
34. Whitmore, L. and B. A. Wallace. "The Peptaibol Database: a database for sequences and structures of naturally occurring peptaibols." Nucleic Acids Research, 2004, 32, D593-D594.
35. Fjell, C. D., R. E. W. Hancock, et al. "AMPer: a database and an automated discovery tool for antimicrobial peptides." Bioinformatics, 2007, 23, 1148-1155.
36. Brahmachary, M., S. P. T. Krishnan, et al. "ANTIMIC: a database of antimicrobial sequences." Nucleic Acids Research. 2004, 32, D586-D589.
37. Falla, T.J., D.N. Karunaratne, and R.E.W. Hancock, Mode of action of the antimicrobial peptide indolicidin. Journal of Biological Chemistry, 1996, 271, 19298-19303.
38. Yang, S.T., et al., Conformation-dependent antibiotic activity of tritrpticin, a cathelicidin-derived antimicrobial peptide. Biochemical and Biophysical Research Communications, 2002, 296, 1044-1050.
39. Im, W., M. Feig, et al. "An implicit membrane generalized born theory for the study of structure, stability, and interactions of membrane proteins." Biophysical Journal. 2003, 85, 2900-2918.
40. Falla, T.J. and R.E.W. Hancock, Improved activity of a synthetic indolicidin analog. Antimicrobial Agents and Chemotherapy, 1997, 41, 771-775.
41. Wu, M.H., et al., Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry, 1999, 38, 7235-7242.
42. Rozek, A., et al., Structure-based design of an indolicidin peptide analogue with increased protease stability. Biochemistry, 2003, 42, 14130-14138.
43. Friedrich, C.L., et al., Structure and mechanism of action of an indolicidin peptide derivative with improved activity against gram-positive bacteria. Journal of Biological Chemistry, 2001, 276, 24015-24022.
44. Subbalakshmi, C., et al., Requirements for antibacterial and hemolytic activities in the bovine neutrophil derived 13-residue peptide indolicidin. Febs Letters, 1996. 395, 48-52.
45. Staubitz, P., et al., Structure-function relationships in the tryptophan-rich, antimicrobial peptide indolicidin. Journal of Peptide Science, 2001, 7, 552-564.
46. Friedrich, C.L., et al., Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrobial Agents and Chemotherapy, 2000, 44, 2086-2092.
47. Jordan, I. K., Kondrashov, F. A., Adzhubei, I. A., Wolf, Y. I., Koonin, E. V., Kondrashov, A. S. & Sunyaev, S. A universal trend of amino acid gain and loss in protein evolution. Nature. 2005, 433, 633-638.
48 Costantini, S., Colonna, G. & Facchiano, A. M.. Amino acid propensities for secondary structures are influenced by the protein structural class. Biochem. Biophys. Res. Commun. 2006, 342, 441-451.
指導教授 蔡惠旭(Hui-Hsu Tsai) 審核日期 2009-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明