博碩士論文 962203048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:54.91.4.56
姓名 許維(Hsu Wei)  查詢紙本館藏   畢業系所 化學學系
論文名稱 親和性質譜術應用在人類血漿檢測與定量氯屈磷酸
(Quantitative Analysis of Dichloromethylene-Bisphosphonic Acid in Human Plasma by Nanoprobe Based Affinity Mass Spectrometry)
相關論文
★ 以質譜技術探討非共價鍵結蛋白質聚合物之結構★ 以蛋白質體學探討在大腸桿菌中甲醇利用代謝途徑
★ 利用具有親合性標籤的穩定同位素試劑針對蛋白質磷酸化反應程度的定量方法★ 奈米粒子結合親和質譜術應用於人體血漿的多樣性免疫分析方法
★ 親和質譜術應用於特定蛋白質之變異結構檢視與定量的研究★ 利用磁性奈米探針與基質輔助雷射脫附/游離飛行時間質譜儀進行人類血液中前列腺特異抗原的定量
★ 人體胚胎幹細胞之次細胞蛋白質體定量分析★ 運用兩性親水作用層析磁性奈米粒子順序性純化醣基化和磷酸化胜?
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氯屈磷酸(Dichloromethylene-bisphosphonic acid, Clodronate),屬於雙磷酸類的一種,這類的化合物常被用於治療許多有關骨頭相關的疾病,例如:惡性病之高鈣血症(hypercalcemia of malignancy)、畸型性骨炎(Paget’s disease)、和溶解性骨轉移(osteolytic bone metastases)、以及骨質疏鬆症(osteoporosis)。目前己經有許多文獻研究氯屈磷酸在人體內的代謝,藉由服藥後的數個時間點內採集尿液與血漿,測量氯屈磷酸的含量並探討其代謝率,作為藥物動力學的依據。但是,在傳統的分析方法中遇到了很大的因難,必須要經過重複性操作固/液相萃取法才能將氯屈磷酸從複雜的生物基質中分離出來,之後還需更進一步將其作衍伸化產物來提高它的偵測極限。
在本篇論文中,我們利用之前發展的磁性奈米結合質譜分析技術(NBAMS)的方法進行快速純化與偵測氯屈磷酸以及定性及定量分析。此技術是利用磁性奈米粒子表面裝載三甘胺酸,然後螯合鈦金屬離子,藉著鈦金屬與氯屈磷酸上面的磷酸根之間的親合性作用力作為純化的工具。在初步的結果,我們己經成功的將氯屈磷酸二鈉從血漿中分離出來,同時結合基質輔助雷射游離脫附質譜法(MALDI-TOF MS)直接偵測氯屈磷酸,不用經過衍伸化產物的處理,偵測極測為0.05 ng。
傳統基質輔助雷射游離脫附質譜法應用上,定量方法的主要限制來自於非均相的結晶所導致訊號的低再現性。為了克服此項限制,我們可藉由外加標準品及提高均勻晶相(seed-layer method)的方式,成功的改進了分子與基質分子在共結晶時的均相性,進而降低了訊號的變異度。經由從人類血漿莘取出來的氯屈磷酸作建立的定量曲線,線性範圍從200-8000 ng/ml,並且具有好的線性 (R2=0.994)。我們展現了磁性奈米結合質譜分析技術的方便性與快速性,並且可以應用在小分子藥物的定量,作為研究藥物動力學的一項有力的工具。
摘要(英) Clodronate, belonging to bisphosphonates, are used in treatment of various bone disease such as hypercalcemia of malignancy, Paget’s disease, osteolytic bone metastases and osteoporosis. In pharmacokinetic studies, many research have been reported for metabolism of clodronate in human biofluid such urine and plasma. However there is still a challenge for direct analysis of clodronate from complex system. Conventional method usually required precipitation and solid/liquid phase extraction for isolation followed by derivatization methods that are tedious and time-consuming.
We implemented our previously developed nanoprobe-based affinity mass spectrometry (NBAMS) assay for rapid extraction, detection and quantification of clodronate. Metal-chelating ligand, nitrilotriacetic acid (NTA), was covalently bonded on the MNPs to give NTA-PEG@MNPs and then immobilized with Ti4+ metal ion which provided high affinity for target molecules containing phosphonate group. Ti4+-NTA-PEG@MNP was demonstrated to serve as a high surface-to-volume ratio nanoprobe and applied to effective isolation of clodronate, a bone disease drug structural-containing phosphonate group, from human plasma. In the preliminary result, we have successfully demonstrated feasibility of NBAMS method for effective isolation of clodronate from human plasma. The detection of clodronate was achieved without any derivatization by using of MALDI-TOF MS with the LOD of 0.05 ng.
The major limitation in quantification by conventional MALDI MS is non-homogeneous crystallization on sample plate that results in poor signal reproducibility. With the introduction of seed-layer surface and spiked internal standard, we successfully reduced signal fluctuation from the improved homogeneous co-crystallization of analyte and matrix molecule. The calibration curve constructed by clodronate from human plasma has dynamic range from 200-8000 ng/ml with correlation coefficients better than 0.99. We demonstrated that a nanoprobe-based affinity mass spectrometry (NBAMS) is a simple, rapid, reproducible and accurate platform for simultaneous enrichment, detection and quantification of small molecular drugs in pharmaceutical metabolism study.
關鍵字(中) ★ 磁性奈米粒子
★ 雙磷酸鹽
★ 基質輔助脫附游離法
★ 氯屈磷酸
關鍵字(英) ★ Magnetic Nanopatricle
★ MALDI-TOF MS
★ Bisphosphonate
論文目次 中文摘要..................................................I
Abstract…………………………………………………………III
Acknowledgment…………………………………………………… V
Table of Contents……………………………………………… VI
List of Figures and Tables…………………………………………X
Abbreviations…………………………………………………… XII
Chapter 1. Introduction……………………………………………1
1-1.1 Clinical Application of Bisphophnate……………………2
1-1.2 Structure of Bisphosphonates Category…………………3
1-2 Traditional Method for Bisphosphonates Analysis………3
1-2.1 Sample Pretreatment Technique…………………………3
1-2.1.1 Precipitation of Bisphosphonates as Calcium Salts…… 3
1-2.1.2 Solid phase Extraction of Bisphosphonates…………… 4
1-2.1.3 Liquid-Liquid Extraction of Bisphosphonates………… 5
1-2.2 Detection Methods for Bisphosphonates…………………… 5
1-2.2.1 Analytical Challenges of Bisphosphonates……………5
1-2.2.2 Liquid Chromatography…………………………………6
1-2.2.3 Capillary Electrophoresis………………………………7
1-2.2.4 Gas Chromatography Mass Spectrometry………………7
1-3 Immobilized Metal Affinity Chromatography for Purification of Phosphopeptide…………………………………………8
1.3.1 Immobilized Metal Affinity Chromatography……………8
1-3.2 Nano-scale Materials for Purification of Phosphopeptides.. 9
1-4 Analyte Quantification by MALDI-TOF MS…………………10
1-4.1 Matrix Assisted Laser Desorption/Ionization…………11
1-4.2 Limitation of MALDI-TOF MS in Analyte Quantification. 11
1-5 Thesis Objectives………………………………………………12
Chapter 2 : Experiment……………………………………………13
2-1 Materials………………………………………………………13
2-1.1 Chemicals and Materials…………………………………13
2-1.2 Preparation of Fe3O4 Superaramagnetic Nanoparticles……14
2-1.3 Preparation of Functional Fe3O4 Superparamagnetic Nanoparticles………….…………………………………14
2-2 MALDI-TOF MS Analysis……………………………………15
2-3 Method…………………………………………………………15
2-3.1 Matrix Selection……………………………………………15
2-3.2 Improvement of Ionization Efficiency with Phosphoric
Acid………………………………………………………16
2-3.3 Selection of Ionization Mode in MALTI-TOF MS……16
2-3.4 Enrichment of Clodronate via Titanium Ion Chelated NTA-PEG@MNPs by Nanoprobe-based Assisted Mass Spectrometry (NBAMS)…………………………………16
2-3.5 Selection of Elution Buffer……………………………18
2-3.6 Specificity of Ti4+-NTA-PEG@MNPs............................ 18
2-3.7 Enrichment Efficiency of Ti4+-NTA-PEG@MNPs in Different Concentration………………………………18
2-3.8 Sensitivity of NBAMS approach………………………19
2-3.9 Adjust pH Value in Affinity Extraction………………19
2-3.10 Standard Calibration Curve of Clodronate using Ti4+-NTA-PEG@MNPs and MALDI-TOF MS………20
2.3.11 Seed-layer Preparation…………………………………20
Chapter 3. Result and Discussion……………………………………21
3-1 Workflow for Clodronate Analysis from Human Plasma by NBAMS Assay……………………………………………21
3-2 Optimization of Detection Efficiency of Clodronate in .MALDI-TOF MS……………………………………22
3-2.1 Selection of Ion Mode of MALTI-TOF MS…………22
3-2.2 Matrix Selection………………………………………… 23
3-2.3 Addition of H3PO4 in Matrix Solution Improves Ionization of Clodronate……………………………….
24
3-2.4 Detection Limit of Clodronate by MALDI-TOF MS…25
3-3 Affinity Extraction of Clodronate by Ti4+-NTA-PEG@MNPs 25
3-3.1 Selection of Eluting Buffer......................26
3-3.2 Enrichment Specificity…………………………………27
3-3.3 Kinetic study of Affinity Extraction…………………28
3-3.4 Concentration Effect……………………………………30
3-3.5 Sensitivity of NBAMS Approach……………………30
3-4 Extraction and Quantification of Clodronate from Human Plasma by NBAMS………………………………………31
3-4.1 The Influence of pH in Affinity Extraction………31
3-4.2 Improvement of Homogeneity by Pre-Crystallization with Seed-Layer Method……………………………32
3-4.3 Quantification Calibration Curve……………………34
3-4.4 Reproducibility of Clodronate Detection by NBAMS Assay.…………………………………………………34
Chapter 4 Conclusion………………………………………………36
Reference 54
Appendix 57
參考文獻 Reference
(1) Muntoni, E.; Canaparo, R.; Della Pepa, C.; Serpe, L.; Casale, F.; Barbera, S.; Romano, P.; Zara, G. P.; Eandi, M. J. Chromatogr. B. Biomed. Appl. 2004, 799, 133-139.
(2) Delmas, P. D.; Meunier, P. J. N. Engl. J. Med. 1997, 336, 558-566.
(3) Plosker, G. L.; Goa, K. L. Drugs 1994, 47, 945-982.
(4) Lauren, L.; Osterman, T.; Karhi, T. Pharmacol. Toxicol. 1991, 69, 365-368.
(5) Endele, R.; Loew, H.; Bauss, F. J. Pharm. Biomed. Anal. 2005, 39, 246-256.
(6) Russell, R. G. G.; Rogers, M. J. Bone 1999, 25, 97-106.
(7) Fleisch, H.; Bisaz, S. Am. J. Physiol. 1962, 203, 671-675.
(8) Fleisch, H.; Russell, R. G.; Straumann, F. Nature 1966, 212, 901-903.
(9) Fleisch, H. Breast Cancer Res. Treat. 2002, 4, 30-34.
(10) Villikka, K.; Perttunen, K.; Rosnell, J.; Ikvalko, H.; Vaho, H.; Pylkknen, L. Bone 2002, 31, 418-421.
(11) Zacharis, C. K.; Tzanavaras, P. D. J. Pharm. Biomed. Anal. 2008, 48, 483-496.
(12) Yun, M.-H.; Kwon, K.-i. J. Pharm. Biomed. Anal. 2006, 40, 168-172.
(13) Jia, H.-J.; Li, W.; Zhao, K. Anal. Chim. Acta 2006, 562, 171-175.
(14) King, L. E.; Vieth, R. J. Chromatogr. B. Biomed. Appl. 1996, 678, 325-330.
(15) Al Deeb, S. K.; Hamdan, I. I.; Al Najjar, S. M. Talanta 2004, 64, 695-702.
(16) Kline, W. F.; Matuszewski, B. K.; Bayne, W. F. J. Chromatogr. B. Biomed. Appl. 1990, 534, 139-149.
(17) Tarcomnicu, I.; Silvestro, L.; Savu, S. R.; Gherase, A.; Dulea, C. J. Chromatogr. A 2007, 1160, 21-33.
(18) Wong, J. A.; Renton, K. W.; Crocker, J. F.; O'Regan, P. A.; Acott, P. D. Biomed. Chromatogr. 2004, 18, 98-101.
(19) Vallano, P. T.; Shugarts, S. B.; Kline, W. F.; Woolf, E. J.; Matuszewski, B. K. J. Chromatogr. B 2003, 794, 23-33.
(20) Auriola, S.; Kostiainen, R.; Ylinen, M.; Monkkonen, J.; Ylitalo, P. J. Pharm. Biomed. Anal. 1989, 7, 1623-1629.
(21) Melwanki, M. B.; Fuh, M.-R. J. Chromatogr. A 2008, 1198-1199, 1-6.
(22) Gorog, S. J. Pharm. Biomed. Anal. 2008, 48, 247-253.
(23) Apostolou, C.; Dotsikas, Y.; Kousoulos, C.; Tsatsou, G.; Colocouri, F.; Soumelas, G. S.; Loukas, Y. L. J. Pharm. Biomed. Anal. 2007, 43, 1151-1155.
(24) Xie, Z.; Jiang, Y.; Zhang, D. Q. J. Chromatogr. A 2006, 1104, 173-178.
(25) Niemi, R.; Taipale, H.; Ahlmark, M.; Vepsalainen, J.; Jarvinen, T. J. Chromatogr. B. Biomed. Appl. 1997, 701, 97-102.
(26) Taylor, G. E. J. Chromatogr. A 1997, 770, 261-271.
(27) Sparidans, R. W.; den Hartigh, J.; Cremers, S.; Beijnen, J. H.; Vermeij, P. J. Chromatogr. B. Biomed. Appl. 2000, 738, 331-341.
(28) Kosonen, J. P. J. Pharm. Biomed. Anal., 10, 881-887.
(29) Virtanen, V.; Lajunen, L. H. J. J. Chromatogr. B. Biomed. Appl. 1993, 617, 291-298.
(30) Flesch, G.; Hauffe, S. A. J. Chromatogr. B. Biomed. Appl. 1989, 489, 446-451.
(31) Zhu, L. S.; Lapko, V. N.; Lee, J. W.; Basir, Y. J.; Kafonek, C.; Olsen, R.; Briscoe, C. Rapid Commun. Mass Spectrom. 2006, 20, 3421-3426.
(32) Tsai, E. W.; Singh, M. M.; Lu, H. H.; Ip, D. P.; Brooks, M. A. J. Chromatogr. A 1992, 626, 245-250.
(33) Perjési, P.; Kim, T.; Zharikova, A. D.; Li, X.; Ramesh, T.; Ramasubbu, J.; Prokai, L. J. Pharm. Biomed. Anal. 2003, 31, 929-935.
(34) Bexheti, D.; Anderson, E. I.; Hutt, A. J.; Hanna-Brown, M. J. Chromatogr. A 2006, 1130, 137-144.
(35) Huikko, K.; Kostiainen, R. J. Chromatogr. A 2000, 872, 289-298.
(36) Swomitra, K. M.; Jay, W.; Jack, G.; David, J. B. Electrophoresis 2009, 30, 1470-1481.
(37) Leis, H. J.; Fauler, G.; Windischhofer, W. Rapid Commun. Mass Spectrom. 2004, 18, 2781-2784.
(38) Porath, J.; Carlsson, J.; Olsson, I.; Belfrage, G. Nature 1975, 258, 598-599.
(39) Andersson, L.; Porath, J. Anal. Biochem. 1986, 154, 250-254.
(40) Neville, D. C.; Rozanas, C. R.; Price, E. M.; Gruis, D. B.; Verkman, A. S.; Townsend, R. R. Protein Sci. 1997, 6, 2436-2445.
(41) Posewitz, M. C.; Tempst, P. Anal. Chem. 1999, 71, 2883-2892.
(42) Nuhse, T. S.; Stensballe, A.; Jensen, O. N.; Peck, S. C. Molecular & Cellular Proteomics 2003, 2, 1234-1243.
(43) Zhou, H.; Ye, M.; Dong, J.; Han, G.; Jiang, X.; Wu, R.; Zou, H. J Proteome Res 2008, 7, 3957-3967.
(44) Li, Y.-C.; Lin, Y.-S.; Tsai, P.-J.; Chen, C.-T.; Chen, W.-Y.; Chen, Y.-C. Anal. Chem. 2007, 79, 7519-7525.
(45) Chang, C.-K.; Wu, C.-C.; Wang, Y.-S.; Chang, H.-C. Anal. Chem. 2008, 80, 3791-3797.
(46) Karas, M.; Hillenkamp, F. Anal. Chem. 1988, 60, 2299-2301.
(47) Koichi, T.; Hiroaki, W.; Yutaka, I.; Satoshi, A.; Yoshikazu, Y.; Tamio, Y.; Matsuo, T. Rapid Commun. Mass Spectrom. 1988, 2, 151-153.
(48) Karas, M.; Gluckmann, M.; Schafer, J. J. Mass Spectrom. 2000, 35, 1-12.
(49) Cohen, L. H.; Gusev, A. I. Anal. Bioanal. Chem. 2002, 373, 571-586.
(50) van Kampen, J. J. A.; Burgers, P. C.; de Groot, R.; Luider, T. M. Anal. Chem. 2006, 78, 5403-5411.
(51) Vorm, O.; Roepstorff, P.; Mann, M. Anal. Chem. 1994, 66, 3281-3287.
(52) Onnerfjord, P.; Ekstrom, S.; Bergquist, J.; Nilsson, J.; Laurell, T.; Marko-Varga, G. Rapid Commun. Mass Spectrom. 1999, 13, 315-322.
(53) Wang, K. Y.; Chuang, S. A.; Lin, P. C.; Huang, L. S.; Chen, S. H.; Ouarda, S.; Pan, W. H.; Lee, P. Y.; Lin, C. C.; Chen, Y. J. Anal. Chem. 2008, 80, 6159-6167.
(54) Wolfender, J. L.; Chu, F.; Ball, H.; Wolfender, F.; Fainzilber, M.; Baldwin, M. A.; Burlingame, A. L. J. Mass Spectrom. 1999, 34, 447-454.
(55) Janek, K.; Wenschuh, H.; Bienert, M.; Krause, E. Rapid Commun. Mass Spectrom. 2001, 15, 1593-1599.
(56) Kjellstrom, S.; Jensen, O. N. Anal. Chem. 2004, 76, 5109-5117.
(57) Horneffer, V.; Dreisewerd, K.; Lüdemann, H. C.; Hillenkamp, F.; Läge, M.; Strupat, K. Int. J. Mass spectrom. 1999, 185-187, 859-870.
(58) MacBeath, G.; Schreiber, S. L. Science 2000, 289, 1760-1763.
(59) Kyono, Y.; Sugiyama, N.; Imami, K.; Tomita, M.; Ishihama, Y. J Proteome Res 2008, 7, 4585-4593.
(60) Yu, Z.; Han, G.; Sun, S.; Jiang, X.; Chen, R.; Wang, F.; Wu, R.; Ye, M.; Zou, H. Anal. Chim. Acta 2009, 636, 34-41.
(61) Knochenmuss, R.; Zenobi, R. Chemical reviews 2003, 103, 441-452.
(62) Chou, P. H.; Chen, S. H.; Liao, H. K.; Lin, P. C.; Her, G. R.; Lai, A. C.; Chen, J. H.; Lin, C. C.; Chen, Y. J. Anal. Chem. 2005, 77, 5990-5997.
(63) Lin, P. C.; Tseng, M. C.; Su, A. K.; Chen, Y. J.; Lin, C. C. Anal. Chem. 2007, 79, 3401-3408.
(64) McClure, J. H.; Brown, D. T.; Wildsmith, J. A. Br. J. Anaesth. 1983, 55, 1089-1093.
(65) Fan, X.; Ronald, C. B.; Werner, E. Rapid Commun. Mass Spectrom. 1994, 8, 199-204.
(66) Cohen, S. L.; Chait, B. T. Anal. Chem. 1996, 68, 31-37.
指導教授 陳玉如(Yu-Ju Chen) 審核日期 2009-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明