博碩士論文 962203050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.226.166.140
姓名 陳前甫(Chian Fu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 含短鏈段聚乙氧烯矽氧烷改質之具尿素官能基高分子電解質結構鑑定與動力學研究
(A New Highly Conductive Organic-Inorganic Hybrid Electrolyte Based on Co-condensation of Di-ureasil and Ethylene Glycol-containing Alkoxysilane)
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
  本論文主要研究添加含短鏈段聚乙氧烯 (polyethylenoxy) 之矽氧烷2-[methoxy(polyethylenoxy)propyl]trimethoxysilane(MPEOPS) 及含 NCO 官能基之矽氧烷 3-(triethoxysilyl)propyl-isocyanate (ICPTES) 與高分子 jeffamine-ED series (ED2000、ED900、ED600) 反應生成有機無機固態高分子電解質,目的是希望在不降低機械強度的情況下增加整體 PEO 的含量,且在矽的區塊中仍有短鏈段 PEO 可以幫助鋰離子的傳遞。接著我們對添加新矽源所造成的物性變化,以及在不同 Lithium perchlorate (LiClO4) 濃度下對導電行為的影響進行研究。
  在儀器部分主要使用X光繞射儀 (XRD)、微差掃描卡(DSC)、熱重分析儀 (TGA)、掃描式電子顯微鏡 (SEM)、紅外吸收光譜儀 (FTIR)、交流阻抗分析儀 (AC-Impedance) 以及固態核磁共振光譜儀 (Solid State NMR) 等儀器。
  在結構鑑定及動力學探討部份,首先利用DSC測量高分子電解質之Tg及Tm點,接著使用XRD、TGA、FTIR、SEM等儀器對其熱穩定性及結構做鑑定,再來用交流阻抗分析儀 (AC-Impedance) 測其導電度,最後利用固態核磁共振光譜儀 (Solid State NMR) 做動力學方面的探討。
  本高分子電解質在30 ?C 時的最佳導電度可達6.77 × 10-5 S/cm。
摘要(英) Abstract
New organic-inorganic hybrid electrolytes based on di-ureasil backbone structures by reacting poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether) (ED2000) with 3-(triethoxysilyl)propyl isocyanate (ICPTES), followed by co-condensation with methoxy(polyethylenoxy)propyl trimethoxysilane (MPEOP) in the presence of LiClO4 were prepared and characterized by a variety of techniques. The hybrid electrolytes showed good resistance to crystallization and excellent conductivity for use in lithium ion batteries, as determined by DSC and impedance measurements, respectively. The temperature dependence of the ionic conductivity exhibited a VTF (Vogel-Tamman-Fulcher)-like behavior for all the compositions studied and a maximum ionic conductivity value of 6.77×10-5 Scm-1, a relatively high value for solid polymer electrolytes, was achieved at 30 ?C for the hybrid electrolyte with a [O]/[Li] ratio of 24. The systematic study showed that a progressive decrease in the mobility of the polymer chains with increasing salt concentrations as confirmed from the glass transition temperature (Tg). A microscopic view of the dynamic behavior of the polymer chains (13C) and the ionic species (7Li) was provided by the 1H and 7Li line widths measured from 2D 1H–13C WISE (Wideline Separation) and variable temperature 7Li static NMR, respectively, to elucidate the influence of the mobility of the polymer chains and the charge carriers on the observed ionic conductivity. The present salt free hybrid electrolyte after plasticization with 1 M LiClO4 in EC/PC solution exhibited a swelling ratio of 275% and reached an ionic conductivity value up to 8.3×10-3 Scm-1 at 30 °C, which make it a good candidate for the further development of advanced rechargeable lithium-ion batteries.
關鍵字(中) ★ 高分子電解質
★ ED2000
★ MPEOPS
關鍵字(英) ★ polymer electrolyte
★ ED2000
★ MPEOPS
論文目次 目錄
第壹章 緒論……………………………………………………………..1
1-1. 簡介………………………………………………………………1
1-2. 文獻回顧…………………………………………………………3
1-2-1. 鋰電池..……………………………………………………..3
1-2-2. 鋰高分子電池……………..………………………………..5
1-2-3. 高分子電解質……………………………………………....8
1-2-4. 固態高分子電解質…………………………………………8
1-2-5. 膠態高分子電解質………………………………………..16
1-2-6. 微孔型高分子電解質……………………………………..18
1-2-7. 異氰酸酯與其相關反應…………………………………..20
1-2-8. 有機矽高分子……………………………………………..22
1-3. 研究目的………………………………………………..……....23
第貳章 研究規劃………………………………………………………25
第叁章 實驗部分與原理………………………………………………26
3-1. 實驗藥品………………………………………………………..26
3-2. 儀器設備………………………………………………………..27
3-3. 固態高分子電解質膜之製備………..……..…………………..28
3-4. 儀器分析原理…………………………………………………..30
3-4-1. X 光繞射儀…………………………………...……….....30
3-4-2. 微差掃瞄熱卡計………………………………………....32
3-4-3. 熱重量分析儀……………………………………...…...34
3-4-4. 掃描式電子顯微鏡………………………………………..34
3-4-5. 傅立葉紅外線吸收光譜儀………………………………..35
3-4-6. 交流阻抗分析儀…………………………………………..36
3-4-7. 固態核磁共振光譜儀……………………………………..38
3-4-7-1. 原理簡介……………………………………………...38
3-4-7-2. 常用固態核磁共振技術……………………………...39
第肆章 結果與討論…………………………………………………..51
4-1. 固態高分子電解質………………………………………………..51
4-2. X-ray 粉末繞射圖譜分析...……………………………...…..…...52
4-3. 微差掃瞄熱卡計分析………………………………………...…...55
4-4. 熱重量分析………………….………………………………..…...60
4-5. 紅外吸收光譜之鑑定……………………………………………..63
4-6. 掃描式電子顯微鏡 (SEM) 對高分子電解質膜表面之分析…...70
4-7. 固態高分子電解質之導電度量測………………………………..74
4-8. 固態核磁共振光譜分析….………………..……………………...86
4-8-1. 13C CP/MAS NMR…………………......………...…..........86
4-8-2. 1H/13C 2D WISE NMR……………………………..………91
4-8-3. 29Si MAS NMR …............………...………...….………..…94
4-8-4. 7Li 譜寬分析……………………………………………….96
4-8-5. 7Li-{1H} MAS NMR………...............................................101
第伍章 結 論…………………………………………………………104
參考文獻………………………………………………………………105
參考文獻 1. 劉世忠. 產經資訊雜誌. 2003, 七月號, 頁45.
2. 費定國、高昀成 “碳材料在鋰電池之發展與應用” 工業材料 121
期,頁80.
3. Fenton, D.E.; Parker, J.M.; Wright, P.V. Polymer 1973, 14, 589.
4. Wright, P.V. Br. Polym. J. 1975, 7, 319.
5. Armand, M.B.; Chabagno, J.M.; Duclot, M.J. In: Fast Ion Transport in
Solids (Eds. P. Vashishta, J.N. Mundy, G.K. Shenoy), Elesevier,
North-Holland, Amsterdam, 1979, p.131.
6. Peled, E.; Golodnitsky, D. and Ardel, G., J. Electrochem. Soc., 1997, 144,L208.
7. 薛立人, 二次電池之回顧與展望, 工業材料, 1999, 146, 70.
8. Peled, E., J. Electrochem. Soc., 1979, 126, 2047.
9. Peled, E.; Golodnitsky, D.; Ardel, G. and Eshkenazy, V., Electrochim. Acta, 1995, 40, 2197.
10. Peled, E.; Golodnitsky, D. and Penciner, J., The anode/electrolyte
interface, in Handbook of Battery Materials, J. O. Besenhard, Editor,
p.419-456, Wiley-VCH, Weinheim, Germany, 1999
11. Ein-Eli, Y., Electrochem. Solid-State Lett., 1999, 2, 212.
12. Scrosati, B., J. Electrochem. Soc., 1992, 139, 2776.
13. Selim, R. and Bro, P., J. Electrochem. Soc., 1974, 121, 1457.
14. Raul, R. D.; Brummer, S. B., Electrochim. Acta, 1977, 22, 75.
15. Aurbach, D.; Ein-Eli, Y.; Markovsky, B.; Zaban, A.; Luski,
S.;Carmeli, Y.; Yamin, H., J. Electrochem. Soc., 1995, 142, 2882.
16. Ein-Eli, Y.; Markovsky, B.; Aurbach, D.; Carmeli, Y.; Yamin, H.;
Luski, S., Electrochim. Acta, 1994, 39, 2559.
17. Chusid, O.; Ein Ely, Y.; Aurbach, D.; Babai, M.; Carmeli, Y., J.
Power Sources, 1993, 43/44, 47.
18. Aurbach, D.; Ein-Eli, Y.; Chusid, O.; Carmeli, Y.; Babai, M.; Yamin,
H., J. Electrochem. Soc., 1994, 141, 603.
19. Ein-Eli, Y., Electrochem. Solid-State Lett., 1999, 2, 212.
20. Besenhard, J. O.; Winter, M.; Yang, J.; Biberacher, W., J. Power
Sources, 1993, 54, 228.
21. Ein-Eli, Y.; Thomas, S. R.; Koch, V. R., J. Electrochem. Soc., 1996,
143, L195.
22. Ein-Eli, Y.; Thomas, S. R.; Koch, V. R., J. Electrochem. Soc., 1997,
144, 1159.
23. Shu, Z. X.; McMillan, R. S.; Murray, J. J., J. Electrochem. Soc., 1993,
140, 922.
24. Wilkinson, D.; Dahn, J. R. U.S. Patent 5, 1992, 130, 211.
25. Shu, Z. X.; McMillan, R. S.; Murray, J. J., J. Electrochem. Soc., 1993,
140, L101.
26. Wang, C.; Nakamura, H.; Komatsu, H.; Yoshio, M.; Yoshitake, H., J.
Power Sources, 1998, 74, 142.
27. Simon, B.; Boeuve, J. P. U.S. Patent 5, 1997, 626, 981.
28. Barker, J.; Gao, F. U.S. Patent 5, 1998, 712, 059.
29. Naruse, Y.; Fujita, S.; Omaru, A. U.S. Patent 5, 1998, 714, 281.
30. Aurbach, D.; Gamolsky, K.; Markovsky, B.; Gofer, Y.; Schmidt, M.;
Heider, U., Electrochim. Acta, 2002, 47, 1423.
31. Wrodnigg, G. H.; Besenhard, J. O.; Winter, M., J. Electrochem. Soc.,
1999, 146, 470.
32. Naji, A.; Ghanbaja, J.; Willmann, P.; Billaud, D., Electrochim. Acta,
2000, 45, 1893.
33. Matsuo, Y.; Fumita, K.; Fukutsuka, T.; Sugie, Y.; Koyama, H.; Inoue,
K., J. Power Sources, 2003, 119/121, 373.
34. Blomgren, G. E., J. Power Sources, 2003, 119/121, 326.
35. Proceedings of 2004 Taipei International Power Forum, The Solid
Electrolyte Interface(SEI)in Lithium Batteries:Understanding and
Misunderstanding, 2004, B-5.
36. Hung, H.Electrochim. Acta. 1992, 37, 1671.
37. Meyer W. H., Adv. Mater., 1998, 10, 439.
38. MacGlashan, G. S.; Andreev, Y. G.; Bruce, P. G. Nature 1999, 398,
792.
39. Gadjourova, Z.; Andreev, Y. G.; Tunstall, D. P.; Bruce, P. G. Nature
2001,412, 520.
40. Wright, P. V.; Zheng, Y.; Bhatt, D.; Richardson, T.; Ungar, G.
Polymer Int. 1998, 47, 34.
41. Chung, S. H.; Wang, Y.; Greenbaum, S. G.; Golodnitsky, D.; Peled,E.
Electrochem. Solid State 1999, 2, 553.
42. Tonge, J. S.; Shriver, D. F., J, Electrochem. Soc., 1987, 134, 269.
43. Fauvarque, J. F., Electrochimica Acta, 2000, 40(13-14), 2295.
44. Gozdz, A.S.; Tarascon, J.M.; Warren, P.C.; Schmutz, C.N., Shokoohi,
F.K., Proceedings of the Fifth International Symposium on Polymer
Electrolyte, Uppsala, Sweden, 11-16 August, 1996, 1.
45. Shriver, D. F., Macromolecules, 1986, 19, 1508.
46. Shibata, M., Kobayash, T., European Polymer Journal, 2000, 36,
485.
47. Fujinami, T.; Tokimune, A.; Mehta, M. A.; Shriver, D. F.; Rawsky,
G.C., Chem. Mater. 1997, 9, 2236.
48. Mandal, B. K.; Walsh, C. J.; Sooksimuang, T.; Behroozi, S. J., Chem.
Mater. 2000, 12, 6.
49. Angell, C. A.; Liu, C.; Sanzhez, E., Naure, 1993, 362(6416), 137.
50. deAzevedo, E. R. ; Reichert, D.; Vidoto, E. L. G.; Dahmouche, K.;
Judeinstein, P., Chem. Mater., 2003, 15, 2070.
51. Judeinstein, P.; Brik, M. E.; Bayle, J. P.; Courtieu, J.; Rault, J., Mater.
Res. Soc. Symp. Proc., 1994, 346, 937.
52. Brik, M. E.; Titman, J. J.; Bayle, J. P.; Judeinstein, P., J. Polym.Sci.,
Part B: Polym. Phys., 1996, 34, 2533.
53. Lesot, P.; Chapuis, S.; Bayle, J. P.; Rault, J.; Lafontaine, E.; Campero, A.; Judeinstein, P., J. Mater. Chem., 1998, 8, 147.
54. Feullade, G. P.J. Perche, Appl. Electrochem., 1975, 63, 5.
55. Kim, Y. T.; Smotkin, E. S., Solid State Ionics, 2002, 149, 29.
56. Ito, Y.; Kanehori, K.; Miyauchi, K.; Kudo, T., J. Mater. Sci., 1987, 22, 1845.
57. Watanabe, M.; Kanba, M.; Matsuda, H.; Mizoguchi, K.; Shinohara, I.;
Tsuchida, E., Chem.-Rapid. Commun., 1981, 2, 741.
58. Gozdz,A. S.; Schmutz, C. N.; Tarascon, J. M. U.S. Patent 5,1995, 418, 91.
59. Gozdz, A. S.; Schmutz, C. N.; Tarascon, J. M. U.S. Patent 5,1994, 296, 318.
60. Gozdz, A. S.; Schmutz, C. N.; Warren, P. C. U.S. Patent 5,1995, 460, 904.
61. Sekhon, S. S.; Singh, H. P., Solid State Ionics, 2002, 152-153, 169.
62. Teeter, D.; Stephan, A. M., Electrochimica Acta, 2003, 48, 2143.
63. Kim, D. W.; Sun, Y. K., J. Power Sources, 2001, 102, 41.
64. Michot, T.; Nishimoto, A.; Watanabe, M., Electrochaimica Acta,
2000, 45, 1347.
65. Boudin, F.; Andrieu X.; Jehoulet, C., J. Power Sources, 1999, 81/82,
804.
68. 岩田敬治,聚胺基甲酸酯 PU 原理與實用,復漢出版社,1979,p.1.
67. Suzwki, I.; Hisamatsu, Y.; and Masuko, N.; J. Electrochem. Soc. 1980, 127, 2210.
68. 朱呂民,聚氨酯合成材料,江蘇科學技術出版社,2002, 375,
p.15.、58.
69. Schheider, N.S. Desper, C.R. Illinger, J.L. and King, A.O.
J. Macromol. Sci-Phys., 1975, B11, 527.
70. Silva, M .M.; Nunes, S. C.; Barbosa, P. C.; Evans, A.; de Zea
Bermudez, V.; Smith, M. J.; Ostrovskii, D. Electrochim. Acta 2006,
52, 1542.
71. Digar, M.; Hung, S.L.; Wang, H.L.; Wen, T.C.; Gopalan, A. Polymer 2002, 43, 681.
72. Vlasoula Bekiari and P. Lianous Chem. Mater. 2000, 12, 3095.
73. Tatyana Brankova, Vlasoula Bekiari, and Panagiotis Lianos, Chem.Mater. 2003, 15, 1855.
74. Vlasoula Bekiari and Panagiotis Lianos, Chem. Mater. 2006, 18, 4142.
75. Miriam Benitez, Debasish Das, Rita Ferreira, Uwe Pischel, and Hermenegildo Garcı´a, Chem. Mater. 2006, 18, 5597.
76. Bloembergen, N.; Purcell, E. M.; Pound, R. V. Phys. ReV. 1948, 73, 679.
77. Chung, S. H.; Jeffrey, K. R.; Stevens, J. R. J. Chem. Phys. 1991, 94, 1803.
78. Abragam, A.; The Principles of Nuclear Magnetism, 1961
79. Nilson C. Mello, Tito J. Bonagamba, Hora´ cio Panepucci, Karim Dahmouche, Patrick Judeinstein, and Michel A. Aegerter|, Macromolecules, 2000, 33, 1280.
80. Bronstein, L. M.; Joo, C.; Karlinsey, R.; Ryder, A. and Zwanziger, J. W. Chem. Mater. 2001, 13, 3678.
81. Paulo H. de Souza, Rodrigo F. Bianchi, Karim Dahmouche, Patrick Judeinstein,| Roberto M. Faria, and Tito J. Bonagamba, Chem. Mater. 2001, 13, 3685.
82. Jae-Deok Jeon and Seung-Yeop Kwak, Macromolecules, 2006, 39, 8027.
83. Andre´ L. B. S. Bathista, Eduardo R. deAzevedo, Antonio C. Bloise, Karim Dahmouche, Patrick Judeinstein, and Tito J. Bonagamba, Chem. Mater. 2007, 19, 1780.
84. Jason Mattia, Paul Painter, Macromolecules, 2007, 40, 1546.
85. Murata, K.; Izuchi, S.; Yoshihisa, Y. Electrochim. Acta. 2000, 45, 1501.
86. Münchow, V.; Noto, V.D.; Tondello, E. Electrochim. Acta. 2000, 45, 1211.
87. van Heumen, J. D.; Steven, J. R. Macromolecules 1995, 28, 4268.
88. Fish, D.; Khan, I. M.; Wu, E.; Smid, J. Br. Polym. J. 1988, 20, 281.
89. Nagaoka, K.; Naruse, H.; Shinohara, I.; Watanabe, M. J. Polym. Sci., Polym. Lett. Ed. 1984, 22, 659.
90. Ogumi, Z.; Uchimoto, Y.; Takehara, Z. Solid State Ionics, 1989, 35, 417.
91.Gray, F.M. Polymer Electrolytes 1997, The Royal Society of Chemistry, UK,Chap. 1.
92. Watanabe, M.; Sanui, K.; Ogata, N.; Kobayashi, T.; Ohtaki, Z. J. Appl. Phys.1985, 57, 123.
93. Chen, W. B.; Feng, H. Q.; He, D. O.; C. H. Ye J. Appl. Polym. Sci. 1998, 67, 139.
94. De Paoli, M.A.; Zanelli, A.; Mastragostino, M.; Rocco, A.M. J. Electroana . Chem. 1997, 435, 217.
95. Hu, S.; Fang, S. Electrochim. Acta. 1999, 44, 2721.
96. Fulcher, G.S. J. Am. Ceram. Soc. 1925, 8, 339.
97. Vogel, H. Phys. Z. 1921, 22, 645.
98. Chintapalli, S.; Frech, R. Solid State Ionics. 1996, 86-88, 341.
99. Albinsson, I.; Mellander, B.-E.; Stevens, J.R. J. Chem. Phys. 1992, 96, 681.
100. Chen-Yang, Y.W.; Hwang, J.J.; Chang, F.H. Macromolecules. 1997, 30, 3825.
101. Qian, X.; Gu, N.; Cheng, Z.; Yang, X.; Wang, E.; Dong, S. Mater. Chem. Phys. 2002, 74, 98.
102. Adam, G.; Gibbs, J.H. J. Chem. Phys. 1965, 43, 139.
103. Bruce, P.G.; Vincent, C.A. J. Chem. Soc., Faraday Trans. 1993, 122, 131.
104. Frech, R.; Manning, J.; Teeters, D.; Black, B.E. Solid State Ionics 1988, 28-30,954.
105. 高憲明, 化工技術, 2003, 11,166.
106. Chu, P.; Jen H. P.; Lo F. R.; Lang, C. L. Macromolecules 1999, 32,4738.
指導教授 高憲明 審核日期 2009-8-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明