博碩士論文 962204018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.149.255.162
姓名 徐國軒(Kuo-hsuan Hsu)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 受熱與ABA調控水稻基因-OsRZFP1之生理功能分析
(Physiological function assay of a heat- and abscisic acid-regulated gene, OsRZFP1)
相關論文
★ 第三群LEA蛋白質表現與功能分析★ 水稻小分子量熱休克蛋白質Oshsp16.9A之N端區域功能性分析
★ 植物逆境蛋白質基因啟動子與功能分析★ 植物受溫度調控之基因的功能與機制分析
★ 錯誤褶疊蛋白質誘導之擬熱休克反應機制之探討★ 受熱與ABA調控基因AtRZFP33之生理功能分析
★ 水稻第一族小分子量熱休克蛋白質OsHSP16.9A及OsHSP18.0之生理功能分析★ 植化物紫草素在小鼠皮膚上增加血管通透性之研究
★ 蝴蝶蘭開花相關基因PaCOL2啟動子之特性分析★ 利用水稻HSP17.3啟動子探討阿拉伯芥熱休克因子在逆境下對細胞內蛋白質反應之角色分析
★ 蝴蝶蘭開花相關基因PaCOL1 啟動子之特性分析★ 分析水稻 RING 鋅手指蛋白質 OsRZFP34 與其正向調控蛋白質之交互作用
★ 水稻小分子量熱休克蛋白質- OsHSP16.9A在水稻種子耐熱性之功能分析★ Oryzasin 1 在水稻種子耐熱性之功能分析
★ 水稻熱休克蛋白質OsHSP16.9A與OsHSP101之交互作用分析★ 水稻小分子量熱休克蛋白質—OsHSP16.9A關鍵胺基酸分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 水稻是全球主要的糧食作物之一,供應一半以上的人口食用。但隨著近年來全球人口激增與氣候變遷等各種不利因素影響,導致稻米產量逐漸不足,其中環境逆境更是影響糧食作物生長與收成的主要因素。高溫逆境主要影響水稻產量,研究顯示環境溫度高於最適生長溫度1℃稻米產量將減少10%。植物荷爾蒙ABA不僅調控種子成熟,其亦與逆境反應有關,可在遭遇低溫、缺水、高鹽等逆境時大量合成。為提升水稻逆境抗性與維持逆境環境下稻米的產量與品質,我們由oligo microarray結果鑑定出水稻葉片中受高溫與ABA共同調控的基因- OsRZFP1 (cDNA編號AK068005)。胺基酸序列分析發現OsRZFP1在N端具有一CHY鋅指結構,C端則有另一RING-H2鋅指結構。利用反轉錄酶連鎖反應 (reverse transcripts polymerase chain reaction, RT-PCR) 分析OsRZFP1在水稻中的組織特異性及表現情形,發現OsRZFP1主要表現於水稻地上部,在幼苗時期受高溫與ABA誘導後表現量分別提升三倍和兩倍。鋅指蛋白質常被認為執行轉錄因子的功能,但OsRZFP1-GFP結合蛋白質在阿拉伯芥質體細胞和洋蔥表皮細胞中卻表現在細胞核與細胞質當中。為研究OsRZFP1在高溫與ABA逆境抗性中所扮演的角色,我們將OsRZFP1全長及部分互補序列轉殖到水稻及阿拉伯芥中,使OsRZFP1過量或抑制表現;結果發現過量表現OsRZFP1的轉殖水稻可提升高溫與低溫抗性,相反地抑制OsRZFP1表現則使轉殖株對高溫與低溫逆境更加敏感。此外也發現過量表現OsRZFP1的阿拉伯芥轉殖株氣孔關閉比例提高,另亦發現其具低溫及高鹽逆境的抵抗能力。總結來說,這些結果指出OsRZFP1的確作用在高溫與ABA逆境反應之中,同時提供了一個藉由基因改良提升糧食作物逆境抵抗能力的方法。
摘要(英) Rice is one of the important crops supplying food for more than half of the global population. However, yield of rice is not enough because of climatic changes and more and more population on the world recently. Environmental stresses are also a major source of problems for crop growth. High temperature is a major environmental stress affecting yield of crop. Grain yield declined by 10% for each 1℃ increase in the most suitable temperature for rice. Abscisic acid (ABA), a phytohormone, functions in seed maturation and accumulates in response to chilling, drought, and salt stresses. To improve stresses tolerance and preserve yield of rice, we identified a both heat- and ABA-responsive gene, OsRZFP1 (cDNA accession number is AK068005), from oligo microarray expression profiling of rice leaves. The deduced amino acid sequence of OsRZFP1 contains an N-terminal Pfam:zf-CHY domain and a C-terminal RING-H2 zinc finger signature. Using reverse transcripts polymerase chain reaction (RT-PCR) to analyze tissue specificity and expression pattern of OsRZFP1, we found that OsRZFP1 specifically expressed in rice shoot but not in root. Furthermore, the results also indicated that OsRZFP1 showed three-fold heat- and two-fold ABA-inducibility in rice seedling, separately. Although zinc finger protein is usually characterized as transcription factor, subcellular localization of OsRZFP1-GFP in Arabidopsis protoplasts and onion epidermal cells showed OsRZFP1 localized not only in the nucleus but cytoplasm. To study the role of OsRZFP1 for resistance to heat and ABA stresses, we transformed sense strands and antisense fragments of OsRZFP1 into rice and Arabidopsis to overexpress and knock down the transcripts. Temperature tolerance was increased in rice overexpression OsRZFP1 and decreased in OsRZFP1 knock down plants. Moreover, gain of OsRZFP1 function increased not only stomatal closure rate but cold and salt tolerance in transgenic Arabidopsis. Collectively, these results indicated that OsRZFP1 functions in both heat and ABA stresses response. It may provide a genetic engineering approach for improving stresses tolerance in crops.
關鍵字(中) ★ 水稻
★ 熱逆境
★ 離層酸
★ 環境逆境
★ RING鋅指蛋白質
關鍵字(英) ★ RING zinc finger protein
★ environmental stresses
★ rice
★ heat stress
★ abscisic acid
論文目次 中文摘要 …………………………………………………………… Ⅰ
英文摘要 …………………………………………………………… Ⅱ
圖表目錄 …………………………………………………………… Ⅲ
縮寫對照表 ………………………………………………………… Ⅴ
壹、緒論 …………………………………………………………… 1
貳、文獻探討 ……………………………………………………… 3
參、材料與方法
一.基因表現分析 ………………………………………………… 10
二.轉殖基因的選殖 ……………………………………………… 12
三.轉殖質體DNA的建構 ………………………………………… 15
四.蛋白質在細胞中的表現位置 ………………………………… 17
五.水稻農桿菌轉殖 ……………………………………………… 20
六.阿拉伯芥農桿菌轉殖 ………………………………………… 22
七.轉殖株生理功能分析 ………………………………………… 24
肆、結果 …………………………………………………………… 26
伍、討論 …………………………………………………………… 33
陸、參考文獻 ……………………………………………………… 40
柒、圖表 …………………………………………………………… 47
捌、附錄 …………………………………………………………… 77
參考文獻 Agarwal, P. K., Agarwal, P., Reddy, M. K., Sopory, S. K. (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep, 25: 1263-1274
Almoguera, C., Prieto-Dapena, P., Díaz-Martín, J., Espinosa, J. M., Carranco, R., Jordano, J. (2009) The HaDREB2 transcription factor enhances basal thermotolerance and longevity of seeds through functional interaction with HaHSFA9. BMC Plant Biol, 9: 75-86
Asthir, B., Kaur, S., Mann, S. K. (2009) Effect of salicylic and abscisic acid administered through detached tillers on antioxidant system in developing wheat grains under heat stress. Acta Physiol Plant, 31: 1091-1096
Balachandran, S., Hurry, V. M., Kelley, S. E., Osmond, C. B., Robinson, S. A., Rohozinski, J., Seaton, G. G. R., Sims, D. A. (1997) Concepts of plant biotic stress. Some insights into the stress physiology of virus-infected plants, from the perspective of photosynthesis. Physiol Plant, 100: 203-213
Blumwald, E. (2000) Sodium transport and salt tolerance in plant. Curr Opin Cell Biol, 12: 431-434
Boscariol-Camargo, R. L., Berger, I. J., Souza, A. A., do Amaral, A. M., Carlos, E. F., Freitas-Astúa, J., Takita, M. A., Targon, M. L. P. N., Medina, C. L., Reis, M. S., Machado, M. A. (2007) In silico analysis of ESTs from roots of Rangpur lime (Citrus limonia Osbeck) under water stress. Genet Mol Biol, 30: 906-916
Bu, Q., Li, H., Zhao, Q., Jiang, H., Zhai, Q., Zhang, J., Wu, X., Sun, J., Xie, Q., Wang, D., Li, C. (2009) The Arabidopsis RING Finger E3 Ligase RHA2a Is a Novel Positive Regulator of Abscisic Acid Signaling during Seed Germination and Early Seedling Development. Plant Physiol, 150: 463-481
Camejo, D., Rodriguez, P., Morales, M. A., Dell’Amico, J. M., Torrecillas, A., Alarcon, J. J. (2005) High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J Plant Physiol, 162: 281-289
Chang, S., Puryear, J., Cairney, J. (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep, 11: 113-116
Choi, H., Hong, J., Ha, J., Kang, J., Kim, S. Y. (2000) ABFs, a family of ABA responsive element binding factors. J Biol Chem, 275: 1723-1730
Dong, C. H., Agarwal, M., Zhang, Y., Xie, Q., Zhu, J. K. (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA, 103: 8281-8286
Du, Q. L., Cui, W. Z., Zhang, C. H., Yu, D. Y. (2009) GmRFP1 encodes a previously unknown RING-type E3 ubiquitin ligase in Soybean (Glycine max). Mol Biol Rep, published online: 17 April 2009
Epple, P., Mack, A. A., Morris, V. R., Dangl, J. L. (2003) Antagonistic control of oxidative stress-induced cell death in Arabidopsis by two related, plant-specific zinc finger proteins. Proc Natl Acad Sci USA, 100: 6831-6836.
Freemont, P. S., Hanson, I. M., Trowsdale, J. (1991) A novel cysteine-rich sequence motif. Cell, 64: 2
Fu, B. Y., Xiong, J. H., Zhu, L. H., Zhao, X. Q., Xu, H. X., Gao, Y. M., Li, Y. S., Xu, J. L., Li, Z. K. (2007) Identification of functional candidate genes for drought tolerance in rice. Mol Genet Genomics, 278: 599-609
Gong, M., Li, Y. J., Chen, S. Z. (1998) Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems. J Plant Physiol, 153: 488-496
Gutha, L. R., Reddy, A. R. (2008) Rice DREB1B promoter shows distinct stress-specific responses, and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance. Plant Mol Biol, 68: 533-555
Guyon, V. N., Astwood, J. D., Garner, E. C., Dunker, A. K., Taylor, L. P. (2000) Isolation and characterization of cDNAs expressed in the early stages of flavonol-induced pollen germination in Petunia. Plant Physiol, 123: 699-710
Heikkila, J. J., Papp, J. E. T., Schultz, G. A., Bewley, J. D. (1984) Induction of heat-shock protein messenger-RNA in maize mesocotyls by water-stress, abscisicacid, and wounding. Plant Physiol, 76: 270-274.
Hong, B., Ma, C., Yang, Y., Wang, T., Yamaguchi-Shinozaki, K., Gao, J. (2009) Over-expression of AtDREB1A in chrysanthemum enhances tolerance to heat stress. Plant Mol Biol, 70: 231-240
Hong, J. K., Choi, H. W., Hwang, I. S., Hwang, B. K. (2007) Role of a novel pathogen-induced pepper C3–H–C4 type RING-finger protein gene, CaRFP1, in disease susceptibility and osmotic stress tolerance. Plant Mol Biol, 63: 571-588
Huang, X. Y., Chao, D. Y., Gao, J. P., Zhu, M. Z., Shi, M., Lin, H. X. (2009) A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Gene development, 23: 1805-1817
Imin, N., Kerim, T., Weinman, J. J., Rolfe, B. G. (2006) Low Temperature Treatment at the Young Microspore Stage Induces Protein Changes in Rice Anthers. Mol Cell Proteomics, 5: 274-292
Jacobs, B. C., Pearson, C. J. (1999) Growth, development and yield of rice in response to cold temperature. J Agron Crop Sci, 71: 68-77
Karim, M. A., Fracheboud, Y., Stamp, P. (2000) Effect of high temperature on seedling growth and photosynthesis of tropical maize genotypes. J Agron Crop Sci, 184: 217-223
Kim, J. C., Lee, S. H., Cheong, Y. H., Yoo, C. M., Lee, S. I., Chun, H. J., Yun, D. J., Hong, J. C., Lee, S. Y., Lim, C. O., Cho, M. J. (2001) A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J, 25: 247-259
Kim, M. J., Shin, R., Schachtman, D. P. (2009) A nuclear factor regulates abscisic acid responses in Arabidopsis. Plant Physiol, 151: 1433-1445
Kizis, D., Lumbreras, V., Pages, M. (2001) Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Lett, 498: 187-189
Ko, J. H., Yang, S. H., Han, K. H. (2006) Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J, 47: 343-355
Koornneef, M., Hanhart, C. J., Hilhorst, H. W. M., Karssen, C. M. (1989) In vivo inhibition of seed development and reserve protein accumulation in recombinants of abscisic acid biosynthesis and responsiveness in Arabidopsis thaliana. Plant Physiol, 90: 463-469
Kotak, S., Larkindale, J., Lee, U., Koskull-Doring, P., Vierling, E., Scharf, K. (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol, 10:310–316
Khush, G. S. (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol, 35: 25-34
Kurepin, L. V., Qaderi, M. M., Back, T. G., Reid, D. M., Pharis, R. P. (2008) A rapid effect of applied brassinolide on abscisic acid concentrations in Brassica napus leaf tissue subjected to short-term heat stress. Plant Growth Regul, 55: 165-167
Laity, J. H., Lee, B. M., Wright, P. E. (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol, 11: 39-46
Larkindale, J., Knight, M. R. (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic Acid. Plant Physiol, 128: 682-695
Levitt, J. (1980) Water, radiation, salt, and other stresses. Physiol Ecol, 2: 93-128
Li, H., Zhou, S. Y., Zhao, W. S., Su, S. C., Peng, Y. L. (2009) A novel wall-associated receptor-like protein kinase gene, OsWAK1, plays important roles in rice blast disease resistance. Plant Mol Biol, 69: 337-346
Li, S. J., Fu, Q. T., Huang, W. D., Yu, D. Q. (2009) Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Rep, 28: 683-693
Liu, H., Zhang, H., Yang, Y., Li, G., Yang, Y., Wang, X., Basnayake, B. M. V. S., Li, D., Song, F. (2008) Functional analysis reveals pleiotropic effects of rice RING-H2 finger protein gene OsBIRF1 on regulation of growth and defense responses against abiotic and biotic stresses. Plant Mol Biol, 68: 17-30
Liu, H. T., Liu, Y. Y., Pan, Q. H., Yang, H. R., Zhan, J. C., Huang, W. D. (2006) Novel interrelationship between salicylic acid, abscisic acid, and PIP2-specific phospholipase C in heat acclimation-induced thermotolerance in pea leaves. J Expe Bot, 57: 3337-3347
Liu, T. X., Zhang, Z. S., Wamg, J. B., Li, R. Q. (2009) Changes in abscisic acid immunolocalization in heat-stressed pepper seedling. Pak J Bot, 41: 1173-1178
Lu, G. J., Gao, C. X., Zheng, X. N., Han, B. (2009) Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta, 229: 605-615
Mehdy, M. C. (1994) Active oxygen species in plant defense against pathogens. Plant Physiol, 105: 467-472
Meiri, D., Breiman, A. (2009) Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs. Plant J, 59: 387-399
Molnar, G., Bancos, S., Nagy, F., Szekeres, M. (2002) Characterisation of BRH1, a brassinosteroid-responsive RING-H2 gene from Arabidopsis thaliana. Planta, 215: 127-133.
Mukhopadhyay, A., Vij, S., Tyagi, A. K. (2004) Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci USA, 101: 6309-6314
Mustilli, A. C., Merlot, S., Vavasseur, A., Fenzi, F., Giraudat, J. (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell, 14: 3089-3099
Narusaka, Y., Narusaka, M., Park, P., Kubo, Y., Hirayama, T., Seki, M., Shiraishi, T., Ishida, J., Nakashima, M., Enju, A., Sakurai, T., Satou, M., Kobayashi, M., Shinozaki, K. (2004) RCH1, a locus in Arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Colletotrichum higginsianum. Mol Plant-Mico Interact, 17: 749-762
Nobel, P. S. (1988) Environmental biology of agaves and cacti. Cambridge: Cambridge University press.
Oono, Y., Seki, M., Nanjo, T., Narusaka, M., Fujita, M., Satoh, R., Satou, M., Sakurai, T., Ishida, J., Akiyama, K., Iida, K., Maruyama, K., Satoh, S., Yamaguchi-Shinozaki, K., Shinozaki, K. (2003) Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray. Plant J, 34: 868-887
Osmond, C. B., Austin, M. P, Berry, J. A., Billings, W. D., Boyer, J. S., Dacey, J. W. H., Nobel, R S., Smith, S. D., Winner, W. E. (1987) Stress physiology and the distribution of plants. Bioscience, 37: 38-48.
Parsell, D. A., Lindquist, S. (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet, 27: 437-496
Peng, S. B., Huang, J. L., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X., Centeno, G. S., Khush, G. S., Cassman, K. G. (2004) Rice yield decline with higher night temperature from global warming. Proc Natl Acad Sci USA, 101: 9971–9975
Rahman, M. S., Yoshida, S. (1985) Effect of water stress on grain filling in rice. Soil Sci Plant Nutr, 31: 497-511
Raho, G., Lupotto, E., Hartings, H., DellaTorre, A. P., Perrotta, C., Marmiroli, N. (1996) Tissue-specific expression and environmental regulation of the barley Hvhsp17 gene promoter in transgenic tobacco plants. J Exp Bot, 47: 1587-1594.
Sanità di Toppi, L., Pawlik-Skowronska, B. (2003) Abiotic stress in plants. Kluwer Academic Publishers, Dordrecht: pp 133-156
Schutzendubel, A., Polle, A. (2002) Plant response to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot, 53: 1351-1365
Serrano, M., Guzman, P. (2004) Isolation and gene expression analysis of Arabidopsis thaliana mutants with constitutive expression of ATL2, an early elicitor-response RING-H2 zinc-finger gene. Genetics 167: 919-929
Shi, H., Ishitani, M., Kim, C., Zhu, J. K. (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA, 97: 6896-6901
Shi, W. M., Muramoto, Y., Ueda, A., Takabe, T. (2001) Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene, 273: 23-27
Shinozaki, K., Yamaguchi-Shinozaki, K. (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot, 58: 221-227
Shukla, R. K., Raha, S., Tripathi, V., Chattopadhyay, D. (2006) Expression of CAP2, an APETALA2-family transcription factor from chickpea, enhances growth and tolerance to dehydration and salt stress in transgenic tobacco. Plant Physiol, 142: 113-123
Song, L., Ding, W., Shen, J., Zhang, Z., Bi, Y., Zhang, L. (2008) Nitric oxide mediates abscisic acid induced thermotolerance in the calluses from two ecotypes of reed under heat stress. Plant Sci, 175: 826-832
Suzuki, N., Bajad, S., Shuman, J., Shulaev, V., Mittler, R. (2008) The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. J Biol Chem, 283: 9269-9275
Teplova, I. R., Farkhutdinov, R. G., Mitrichenko, A. N., Ivanov, I. I., Veselov, S. Y., Valcke, R. L., Kudoyarova, G. R. (2000) Response of tobacco plants transformed with the ipt gene to elevated temperature. J Plant Physiol, 47: 367-369
Thomas, D. S., Turner, D. W. (2001) Banana leaf gas exchange and chlorophyll fluorescence in response to soil drought, shading and lamina folding. Sci Hort, 90: 93-108
Thomashow, M. F. (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol, 118: 1-7
Toh, S., Imamura, A., Watanabe, A., Nakabayashi, K., Okamoto, M., Jikumaru, Y., Hanada, A., Aso, Y., Ishiyama, K., Tamura, N. (2008) High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol, 146: 1368–1385
Torii, K. U., Stoop-Myer, C. D., Okamoto, H., Coleman, J. E., Matsui, M., Deng, X. W. (1999) The RING finger motif of photomorphogenic repressor COP1 specifically interacts with the RING-H2 motif of a novel Arabidopsis Protein. J Biol Chem, 274: 27674-27681
Tsuda, M., Hiraiea, K. (1996) Genotypic variation in dehydration tolerance under lowland conditions rice. Jpn J Trop Agr, 40: 169-174
Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., Yamaguchi-Shinozaki, K. (2000) Arabidopsis basic leucine zipper transcriptional transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA, 97: 11632-11637
van Montfort, R. L. M., Basha, E., Friedrich, K. L., Slingsby, C., Vierling, E. (2001) Crystal structure and assembly of a eukaryotic small heat shock proterin. Nat Struct Biol, 8: 1025-1030
Wang, C. Y. (1991) Effect of abscisic acid on chilling injury of Zucchini squash. J Plant Grow Regul, 10: 101-105
Xie, Q., Guo, H. S., Dallman, G., Fang, S., Weissman, Chua, N. H. (2002) SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature, 419: 167-170
Xiang, Y., Tang, N., Du, H., Ye, H., Xiong, L. (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol, 148: 1938-1952
Xiong, L. M., Schumaker, K. S., Zhu, J. K. (2002) Cell signaling during cold, drought, and salt stress. Plant Cell, 14: S165-S183
Xu, R., Li, Q. Q. (2003) A RING-H2 zinc-finger protein gene RIE1 is essential for seed development in Arabidopsis. Plant Mol Biol, 53: 37-50
Yamakawa, H., Hirose, T., Kuroda, M., Yamaguchi, T. (2007) Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol, 144: 258-277
Yan, K., Chen, N., Qu, Y. Y., Dong, X. C., Meng, Q. W., Zhao, S. J. (2008) Overexpression of sweet pepper glycerol-3-phosphate acyltransferase gene enhanced thermotolerance of photosynthetic apparatus in transgenic tobacco. J Integra Plant Biol, 50: 613-621
Yang, J., Lin, R., Sullivan, J., Hoecker, U., Liu, B., Xu, L., Deng, X. W., Wang, H. (2005) Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis. Plant Cell, 17: 804-821
Yoo, C. Y., Miura, K., Jin, J. B., Lee, J., Park, H. C., Salt, D. E., Yun, D. J., Bressan, R. A., Hasegawa, P. M. (2006) SIZ1 small ubiquitin-like modifier E3 ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid. Plant Physiol, 142: 1548-1558
Zeba, N., Isbat, M., Kwon, N. J., Lee, M. O., Kim, S. R., Hong, C. B. (2009) Heat-inducible C3HC4 type RING zinc finger protein gene from Capsicum annuum enhances growth of transgenic tobacco. Planta, 229: 861-871
Zhang, W., Zhou, R. G., Gao, Y. J., Zheng, S. Z., Xu, P., Zhang, S. Q., Sun, D. Y. (2009) Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis. Plant Physiol, 149: 1773-1784
Zhang, Y., Yang, C., Li, Y., Zheng, N., Chen, H., Zhao, Q., Gao, T., Guo, H., Xiea, Q. (2007) SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell, 19: 1912-1929
Zhou, S., Zhao, W., Li, H., Guo, Z., Peng, Y. L. (2008) Characterization of a novel RING finger gene OsRFP1, which is induced by ethylene, salicylic acid and blast fungus infection in rice. J Phytopath, 156: 396-402
Zou, M., Guan, Y., Ren, H., Zhang, F., Chen, F. (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol, 66: 675-683
指導教授 葉靖輝(Ching-hui Yeh) 審核日期 2010-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明