博碩士論文 962204020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.145.201.71
姓名 吳欣潔(Shin-jye Wu)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 阿拉伯芥突變種hit2之位址定位
(Genetic Mapping of hit2 Locus in Arabidopsis thaliana)
相關論文
★ 阿拉伯芥突變種(hit1)之位址定位★ 阿拉伯芥之HIT1蛋白質為酵母菌Vps53p之對應物且能影響植物對高溫及水份逆境之耐受性
★ 阿拉伯芥繫鏈同源蛋白質HIT1對頂端生長之影響及熱耐受基因HIT2之遺傳定位★ 阿拉伯芥hit3遺傳位址定位與HIT1啟動子分析
★ 利用基因功能活化法研究阿拉伯芥乙烯生合成之調控機制★ 利用化學遺傳法研究阿拉伯芥 revert to eto1 41 (ret41) 之功能研究
★ 阿拉伯芥hit3和et突變種之生理定性及其基因定位★ 阿拉伯芥囊泡繫鏈因子HIT1在逆境下維持內膜完整性之探討與ret8之基因定位
★ 阿拉伯芥HS29之基因定位及ET參與植物耐熱機轉之探究★ 阿拉伯芥中藉由核運輸接受器HIT2/XPO1A進行核質間運輸以促使植物耐受高溫逆境之專一分子的探索研究
★ 阿拉伯芥hs49與78hs突變株之生理定性及其耐熱基因定位★ 阿拉伯芥HIT4為不同於MOM1的新調節方式調控熱誘導染色質重組並在各個植物生長發育轉換時期表現
★ 阿拉伯芥熱誘導性狀突變株R45之基因定位及HSP40參與植物耐熱機轉之探究★ 阿拉伯芥hit4逆轉株r13及r34之基因定位與r34耐熱機轉之探究
★ 蛋白質法尼脂化修飾參與植株耐熱反應★ 探討ETO1-LIKE1(EOL1)及EOL2參與阿拉伯芥幼苗光形態發育之功能
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 摘要
高溫逆境為主要的環境逆境之一,會抑制植物的生長甚至造成植物死亡。過去對於高溫逆境的研究主要為短暫的高溫逆境,而長時間的高溫逆境較少被人研究,本研究的目的即是以向前式遺傳研究法(forward genetics approach)來找出植物對抗長時間高溫逆境的基因。利用ethylmethane sulfonate為突變劑,我們從阿拉伯芥中篩出一突變株,取名為hit2 (heat intolerance 2)。以37℃熱處理3天後,hit2會呈現白化死亡而野生型則能繼續生長。除此之外,hit2對於heat shock與巴拉刈(paraquat)所造成的逆境也有低耐受的表現型態。我們使用以遺傳圖譜為基礎之基因選殖法(map-based cloning, MBC),將Columbia生態型之hit2突變株與Landsberg erecta生態型之野生種雜交,其自交之F2子代再以基因標記進行基因定位分析。在檢測了2675棵F2植株後,我們發現hit2突變點的位址坐落於阿拉伯芥第五條染色體AGI map 5,570kb與5,620kb之間。在進行核甘酸定序後我們在一個NADPH依賴的氧化還原酶(NADPH-dependent oxidoreductase)基因中找到一個由C變T的點突變。此外,我們也比較了hit2與先前篩選出之另一個對熱耐受性較低的突變株hit1-1對不同逆境之反應。根據胺基酸的序列比對,HIT1與囊泡繫鏈蛋白質(vesicle tethering protein)同源。而實驗的結果則顯示,巴拉刈會影響hit1-1的生長,但以heat shock處理後之hit1-1則與野生型一樣能繼續生長。據此,我們推測HIT1與HIT2以不同的機制來幫助植物對抗高溫逆境。HIT1有可能是以囊泡循環來幫助植物細胞修復受損的細胞膜,而HIT2則是在負責降解熱逆境所產生的過氧化物所造成的有毒物質。接下來,我們會將野生型的HIT2基因轉殖到hit2突變株進行互補試驗,並研究HIT2在植物生理中擔任的功能與角色。
摘要(英) ABSTRACT
Heat stress as a result of elevated temperatures is one of the major agricultural problems that limits crop yield. To understand how plants respond to survive such detrimental condition and what genetic determinants are responsible for the protecting responses, forward genetic approach was employed to directly identify genes that play active roles in plant heat tolerance. Arabidopsis hit2 mutant (as heat-intolerance 2) was hence identified through screening of ethylmethane sulfonate (EMS)-mutagenized M2 plants. The growth of hit2 mutant is more sensitive than that of wild type plants under non-lethal, prolonged high temperature stress (37oC for 3 days). In addition, hit2 mutant is hypersensitive to both heat shock and methyl viologen (MV, also known as paraquat) treatments. For gene mapping, mutants in the Columbia background were crossed to plants of the Landsberg erecta background and F1 plants were allowed self-pollinated to produce the F2 plants. About 2700 F2 individuals with hit2 phenotype were collected and subjected to the mapping analysis. Results indicated that hit2 is located at the region between AGI map 5,570kb and 5,620kb of the chromosome 5, which is covered by bacterial artificial chromosome F2K13. Sequencing of the entire region revealed a single nucleotide substitution from C to T in a gene encoding a putative NADPH dependent oxidoreductase. We also compare the stress sensitivity between hit2 and hit1-1, a previously identified heat intolerant mutant whose mutated gene product is homologues to yeast tethering protein Vps53p. Results showed that hit1-1 mutant is hypersensitive to paraquat treatment but resistant to heat shock treatment. Accordingly, we proposed that HIT1 and HIT2 protect plants from heat stress damage via different mechanisms. It is suggested that HIT1 plays the role in repairing damaged membrane through vesicle recycling while HIT2 is responsible for protecting plants from high temperature induced oxidative stress. Currently, we are cloning the wild-type HIT2 gene for complementation test. Examination of the Molecular and cellular function of HIT2 will follow as well.
關鍵字(中) ★ 對熱耐受性較低的突變株
★ 氧化還原酶
★ 阿拉伯芥
關鍵字(英) ★ oxidoreductase
★ heat intolerance
★ hit2
★ Arabidopsis
論文目次 目錄
中文摘要------------------------------I
英文摘要-----------------------------II
致謝--------------------------------III
目錄---------------------------------IV
圖表目錄-----------------------------VI
緒論----------------------------------1
材料與方法----------------------------6
1. hit2突變株之顯隱性鑑定--------6
2. hit2突變株之位址定位----------6
(1) hit2位址定位之種子製備--------6
(2) 挑選定位所需的hit2突變株------7
(3) hit2突變點之位址定位----------8
(4) F3表現型分析-----------------12
3. 核甘酸之定序-----------------12
4. HIT2基因之質體構築-----------14
(1) mRNA之萃取-------------------14
(2) cDNA合成---------------------15
(3) 以PCR擴增HIT2基因------------16
(4) DNA接合反應------------------17
(5) 勝任細胞之製作---------------17
(6) 細菌轉殖---------------------18
(7) 質體DNA之萃取----------------18
(8) HIT2基因轉殖確認-------------19
5. hit1、hit2突變株處理巴拉刈表現型測試--20
6. hit1、hit2突變株處理heat shock表現型測試--20
結果---------------------------------21
1. hit2突變株之表現型-----------21
2. hit2突變株之顯隱性鑑定-------21
3. hit2突變點之位址定位---------21
4. 核甘酸定序尋找突變點---------23
5. HIT2基因之質體構築-----------23
6. 巴拉刈表現型測試-------------24
7. Heat shock表現型測試---------25
討論---------------------------------26
1. HIT2基因的功能---------------26
2. 生理試驗---------------------29
參考資料-----------------------------34
圖表目錄
圖一、hit2突變株與野生型表現型比較---40
圖二、hit2突變株定位之F2表現型挑選---41
圖三、hit2突變株表現型---------------42
圖四、hit2與Col雜交產生之 F1表現型測試-43
圖五、不經過熱處理之F2分離情形--------44
圖六、C483050與C483070定序結果--------45
圖七、hit2突變株位址定位結果----------46
圖八、核甘酸定序結果------------------47
圖九、HIT2基因------------------------48
圖十、hit1與hit2處理巴拉刈之種子發芽--49
圖十一、hit1與hit2處理巴拉刈之幼苗成熟-50
圖十二、 hit1與hit2 37 ℃熱處理表現型--51
圖十三、hit1與hit2 heat shock處理表現型-52
圖十四、HIT1、HIT2在植物對抗環境逆境的角色-53
表一、hit2突變株之顯隱性鑑定-------------54
表二、不經過熱處理之F2分離情形-----------55
表三、經過熱處理之F2位址分析數據---------57
附件一、位址定位之引子-------------------58
附件二、定序之引子-----------------------59
附件三、At5g16790在阿拉伯芥發育表現情形--64
參考文獻 參考資料
Babiychuk, E., Kurchnir, S., Belles-Boix, E., Van Montagu, M. and Inzé, D.(1995) Arabidopsis thaliana NADPH oxidoreductase homologs confer tolerance of yeasts toward the thiol-oxidizing drog diamide. JBC 270:26224-26231
Baerson, S. R., Sanchez-Moreiras, A., Pedrol-Bonjoch, N., Schulz, M., Kagan, L. A., Agarwal, A. K., Reigosa, M. J. and Duke, S. O. (2005) Detoxification and transcriptome response in Arabidopsis seedlings exposed to the allelochemical benzoxazolin-2(3H)-one. JBC 280:21867-21881
Bailly, C., El-Maarouf-Bouteau, H., and Corbineau, F. (2008) From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. C.R. Biologies 331:806-814.
Burczynski, M. E., Sridhar, G. R., Palackal, N. T., and Penning, T. M. (2001) The reactive oxygen species- and Michael acceptor-inducible human aldo-keto reductase AKR1C1 reduces the a,β -unsaturated aldehyde 4-hydroxy-2-nonenal to 1,4-dihydroxy-2-nonene. JBC 276:2890-2897.
Charng, Y., Liu, H., Liu, N., Hsu, F., and Ko, S. (2006) Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiol 140:1297-1305.
Charng, Y., Liu, H., Liu, N., Chi, W., Wang, C., Chang, S., and Wang, T. (2007) A heat-Inducible transcription factor, HsfA2, is Required for extension of acquired thermotolerance. Plant Physiol 143: 251–262.
Conibear, E., Stevens, T. H. (2000) Vps52p, Vps53p, and Vps54p form a novel multisubunit complex required for protein sorting at the yeast late Golgi. Mol Biol Cell 11:305-323.
Conibear, E., Cleck, J. N., and Stevens, T. H. (2003) Vps51p Mediates the Association of the GARP (Vps52/53/54) Complex with the Late Golgi t-SNARE Tlg1p. Mol Biol Cell 14:1610-1623.
Dat, J., Vandenabeele, S., Vranova, E., Van Montagu, M., Inzé*, D., and Van Breusegem, F. (2000) Dual action of the active oxygen species during plant stress responses. CMLS 57:779-795.
Edwards, K. J, Barton, J. D, Rossjohn, J, Thorn, J. M, Taylor, G. L, Ollis, D. L.(1996) Structural and sequence comparisons of quinone oxidoreductase, zeta-crystallin, and glucose and alcohol dehydrogenases. Arch Biochem Biophys 328:173-183
EFEOGLU B (2009) Heat shock proteins and heat shock response in plants. GU Journal of Science 22:67-75.
Gepstein, S., and Horwitz, B. A. (1995) The impact of Arabidopsis research on plant biotechnology. Biotechnol Adv 13:403-414.
Gidrol, X., Lin, W. S., Degousee, D, Yip, S. F., and Kush, A.(1994) Accumulation of reactive oxygen species and oxidation of cytokinin in germinating soybean seeds. Eur. J. Biochem 224:21-28.
Goodman, H. M., Ecker, J. R, and Dean, C. (1995) The genome of Arabidopsis thaliana. Proc. Natl. Acad. Sci. 92:10831-10835.
Jander, G., Norris, S. R., Rounsley, S. D., Bush, D. F., Levin, I. M., and Last, R. L. (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol. 129:440-450.
Lee, C. F., Pu, H. Y., Wang, L. C., Sayler, R. J., Yeh, C. H., and Wu, S. J. (2006) Mutation in a homolog of yeast Vps53p accounts for the heat and osmotic hypersensitive phenotypes in Arabidopsis hit1-1 mutant. Planta 224:330-338.
Levine, A. (2002) Regulation of stress responses by intracellular vesicle trafficking? Plant Physiol Biochem. 40:531-535.
Leshem, Y., Melamed-Book, N., Cagnac, O., Ronen, G., Nishri, Y., Solomon, M., Cohen, G. and Levine, A. (2006) Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2-containing vesicles with tonoplast and increased salt tolerance. Proc. Natl. Acad. Sc.i 103:18008–18013.
Lobstein, E., Guyon, A., Ferault, M., Twell, D., Pelletier , G., and Bonhomme, S. (2004) The putative Arabidopsis homolog of yeast Vps52p is required for pollen tube elongation, localizes to golgi, and might be involved in vesicle trafficking. Plant Physiol. 135:1480-1490.
Lukowitz, W., Gillmor, C. S. and Scheible, W. R. (2000) Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you. Plant Physiol. 123:795-805
Konieczny, A., Ausubel, F. M.(1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403-410
Kushnir, S., Babiychuk, E., Kampfenkel, K., Belles-Boix, E., Montagu, M. C., and Inzé, D. (1995) Characterization of Arabidopsis thaliana cDNAs that render yeasts tolerant toward the thiol-oxidizing drug diamide. Proc. Natl. Acad. Sci. 92:10580-10584
Mano ,J., Yoon, H. J., Asada, K., Babiychuk, E., Inzé, D., and Mikami, B. (2000) Crystallization and preliminary X-ray crystallographic analysis of NADPH: azodicarbonyl/quinone oxidoreductase, a plant ζ-crystallin. Biochim Biophys Acta 1480:374-376.
Mano, J., Babiychuk, E., Belles-Boix, E. , Hiratake, J., Kimura, A., Inze, D., Kushnir ,S., and Asada, K. (2000) A novel NADPH: diamide oxidoreductase activity in Arabidopsis thaliana P1 ζ-crystallin. Eur. J. Biochem. 267:3661-3671.
Mano, J., Ohno, C., Domae, Y., Asada, K. (2001) Chloroplastic ascorbate peroxidase is the primary target of methylviologen-induced photooxidative stress in spinach leaves: its relevance to monodehydroascorbate radical detected with in vivo ESR. Biochim Biophys Acta 1504:275-287
Mano, J., Torii, Y., Hayashi, S., Takimoto, K., Matsui, K., Nakamura, K., Inze, D., Babiychuk, E., Kushnir, S., and Asada, K. (2002) The NADPH: quinone oxidoreductase P1-ζ-crystallin in Arabidopsis catalyzes the a,ß-hydrogenation of 2-alkenals: detoxication of the lipid peroxide-derived reactive aldehydes. Plant Cell Physiol. 43:1445-1455.
Mano, J., Belles-Boix, E., Babiychuk, E., Inze, D., Torii, Y., Hiraoka, E., Takimoto, K., Slooten, L., Asada, K. and Kushnir, S. (2005)Protection against photooxidative injury of tobacco leaves by 2-alkenal reductase. Detoxication of lipid peroxide-derived reactive carbonyls. Plant Physiol. 139: 1773-1783
Mazel, A., Leshem, Y., Tiwari, B. S. and Levine, A.(2004) Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7(AtRabG3e). Plant Physiol. 134:118-128
Meinke, D. W., Cherry, M., Dean, C., Rounsley, S. D. and Koornneef, M. (1998) Arabidopsis thaliana: A model plant for genome analysis. Science 282, 662
Meinke, D. W., Meinke, L. K., Showalter, T. C., Schissel, A. M., Mueller, L. A. and Tzafrir, I. (2003) A sequence-based map of Arabidopsis genes with mutant phenotypes. Plant Physiol. 131:409-418.
Murthy, U. M. N. and Sun, W. Q. (2000) Protein modification by Amadori and Maillard reactions during seed storage: roles of sugar hydrolysis and lipid peroxidation. J.Exp. Bot. 348: 1221-1228
Mueller, S., Hibert, B., Dueckershoff, D., Roitsch,T., Krischke, M., Mueller, M. J. and Berger, S. (2008) General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. Plant cell 20:768-785
Rao, P. V., Krishna, C. M., and Zigler, J. S. (1992) Identification and characterization of the enzymatic activity of ζ-crystallin from guinea pig lens. A novel NADPH: quinone oxidoreductase. JBC 267:96-102.
Szigeti, Z. (2005) Mechanism of paraquat resistance–from the antioxidant enzymes to the transporters. Acta Biologica Szegediensis 49:177-179.
Sun, W., Van Montagu, M., and Verbruggen, N. (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta 1577:1-9.
Taylor, N. L., Day, D. A. and Millar, A. H. (2004) Target of stress-induced oxidative damage in plant mitochondria and their impact on cell carbon/nitrogen metabolism. Eur. J. Biochem 55:1-10
Terryn, N., Rouzé, P., and Montagu, M. V. (1999) Plant genomics. FEBS Lett. 452:3-6.
Peters, J. L., Cnudde, F., and Gerats, T. (2003) Forward genetics and map-based cloning approaches. Trends in Plant Sci. 8:484-491.
Ponce, M. R., Robles, P., and Micol, J. L. (1999) High-throughput genetic mapping in Arabidopsis thaliana. Mol Gen Genet 261:408-415.
Pu, S. Y. (2004) Genetic Mapping of hit1 Locus in Arabidopsis thaliana. Master Thesis, Grauduate schoolof Life Science, National Central University
Wang, L. C. (2006) The effects of HIT1, a vesicle tethering factor homolog, on tip growth and the raw mapping of hit2 locus in Arabidopsis. Master Thesis, Grauduate schoolof Life Science, National Central University
Wang, L.C., Yeh, C.H., Ronald, J. S, Lee, Y. Y, Lu, C.A, and Wu, S. J. (2008) Arabidopsis HIT1, a putative homolog of yeast tethering protein Vps53p, is required for pollen tube elongation. Botanical Studies 49: 25-32
Wang, W., Vinocur, B., and Altman, A. (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1-14.
Williams, J. G. K., Reiter, R. S., Young, R. M., and Scolnik, P. A. (1993) Genetic mapping of mutations using phenotypic pools and mapped RAPD markers. Nucl. Acids Res 21:2697.
Wu, S. J., Locy, R. D., Shaw, J. J., Cherry, J. H. and Singh, N. K. (2000) Mutation in Arabidopsis HIT1 locus causing heat and osmotic hypersensitivity. J. Plant Physiol. 157:543-547
Youn, B., Kim, S. J., Moinuddin, S. G. A., Lee, C., Bedgar, D. L., Harper, A. R., Davin, L. B., Lewis, N. G. and Kang, C. (2006) Mechanistic and structural studies of apoform, binary, and ternary complexes of the Atabidopsis alkenal double bond reductase At5g16970. JBC 281:40076-40088
指導教授 吳少傑(Shaw-jye Wu) 審核日期 2009-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明