博碩士論文 962204022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.224.69.179
姓名 侯喬茵(Chiao-yin Hou)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 環狀核苷酸磷酸二酯酶4B對於小鼠T細胞功能之調節
(Regulation of Murine T cell Functions By Phosphodiesterase 4B)
相關論文
★ PDE抑制劑與cAMP訊號傳導對類風濕性關節炎小鼠模型中CD4+ T細胞釋放IFN-g與IL-17A之調控★ PDE4和cAMP訊號傳導於小鼠骨髓細胞分化為樹突細胞之角色
★ 利用斑馬魚研究肝臟疾病和肝癌之發生:B型肝炎病毒X抗原,黃麴毒素,p53突變,src和edn1的致癌作用及其協同效應★ 環狀核苷酸磷酸二酯酶4對LPS/TLR4訊息傳導誘導小鼠巨噬細胞表現IFN-β的影響
★ 抑制環狀核苷酸磷酸二酯酶 3 (PDE3)對 3T3-L1 脂肪細胞內蛋白質表現之影響★ 環狀核苷酸磷酸二酯酶4B對小鼠樹突細胞分化與CXCR4表現之調控
★ 利用聚乙烯亞胺輸送環狀核苷酸磷酸二酯酶4B之專一性反義寡核苷酸可抑制LPS刺激小鼠巨噬細胞釋放TNF-α★ PDE4與PDE3抑制劑對膠原蛋白誘發DBA/1小鼠關節炎及釋放發炎激素IFN-γ與IL-17A的協同調控作用
★ 環狀核苷酸磷酸二酯酶4B對內毒素誘導巨噬細胞 產生IL-1Ra和樹突細胞表現TLRs之影響 及其對乾癬症生成之潛在角色★ 環狀核苷酸磷酸二脂酶4B對內毒素刺激小鼠樹突細胞表現NOD1與CXCR4的影響
★ TDAG8 participates in different phases of neuropathic pain by regulating distinct pathways of substance P★ Innovative Mind-Body Intervention Day Easy Exercise Increases Peripheral Blood CD34+ Cells and Attenuates Back Pain in Adults
★ Viscolin對不同免疫細胞發炎反應的影響★ 環狀腺苷單磷酸與其它訊息傳遞因子對脂肪細胞釋放阻抗素之影響
★ 巨噬細胞中抑制PDE4對LPS誘導發炎反應之調控★ 環狀核苷酸磷酸二酯酶4對LPS刺激小鼠巨噬細胞產生IL-1Ra之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) CD4+ T細胞是後天免疫系統的重要調節者,而CD4+ Th2細胞的發炎反應會導致不同的過敏病症。已知增加細胞內環狀腺苷單磷酸(cAMP)濃度可抑制T細胞的活化,並抑制免疫發炎細胞的聚集與增生,因此增加細胞內cAMP濃度被視為是治療T細胞引起之發炎疾病的有效方法。第四型環狀核苷酸磷酸二酯酶 (PDE4) 是分解cAMP的專一性酵素,在T細胞中PDE的表現以PDE4為主,抑制PDE4可增加細胞內cAMP的濃度進而抑制T細胞的活化與相關的發炎反應。本研究利用PDE4A-/-、PDE4B-/-、PDE4D-/-小鼠與相同品系之野生型小鼠的T細胞進行實驗,首先以非TCR-專一性抗原Concanavalin A (ConA)處理脾臟T細胞,我們發現,在野生型與PDE4A-/-細胞中,ConA可顯著增加細胞生長速率與IL-2的產生,而此反應在PDE4B或PDE4D剔除T細胞中則明顯降低,若以rolipram(PDE4抑制劑)共同處理細胞,野生型與PDE4A-/-細胞的反應會顯著被抑制,而對PDE4B-/-或PDE4D-/-細胞的抑制程度則相對較低,顯示PDE4B與PDE4D,而非PDE4A,會參與或調控ConA引發的T細胞增生與IL-2產生。此外,H89會將rolipram對細胞增生與IL-2釋放的抑制返回到和ConA單獨刺激的情況相當,因此得知rolipram是經由增加cAMP、活化PKA以調節T細胞的發炎反應。同時,利用小鼠過敏性氣喘模型進行實驗,以過敏原ovalbumin(OVA)激釁(sensitized)及鼻道刺激(nasal challenged)野生型與PDE4B-/-小鼠,我們發現野生型小鼠之氣管周邊淋巴結細胞在OVA處理下,其生長速率與Th2細胞激素如IL-4與IL-5的分泌均會顯著上升,而PDE4B-/-淋巴結細胞對OVA的反應則明顯下降,表示氣喘過敏原所引發的Th2免疫反應需要PDE4B的參與。我們進一步發現,OVA致敏(primed)小鼠之周邊淋巴(如脾臟)T細胞,其細胞增生率也會被剔除PDE4B所抑制。綜合上述結果顯示,PDE4B在過敏性氣喘致病過程中扮演重要的角色,抑制或去除PDE4B可減緩Th2細胞所導致的發炎反應,如免疫細胞增生與Th2細胞激素的產生,因此本研究為研發PDE4B專一性抑制劑做為抗過敏性氣喘藥物提供了理論基礎。
摘要(英) CD4+ T cells play a key role in regulation of acquired immune responses. The inflammatory responses of CD4+ Th2 cells may lead to different allergic conditions and diseases. Evidence indicates that elevation of intracellular cAMP concentrations can attenuate T cell activation and proliferation and cell recruitment to the inflammatory sites. Thus, manipulation of cAMP levels in T cells is regarded as an attractive strategy in treatment of allergic inflammatory diseases. Type 4 phosphodiesterases (PDE4), the enzymes that degrade cAMP with high affinity, express at high levels in T cell, and are critical in regulation of T cell responses. In this study, we used PDE4-deficient mice in C57Bl/6 and Balb/c genetic backgrounds to investigate how PDE4s regulate T cell functions under different antigen stimulations. Using non TCR-specific antigen concanavalin A (ConA) to stimulate spleen T cells, we observed that in the wild-type and PDE4A-/- cells ConA induced cell proliferation and IL-2 production, whereas the responses were significantly reduced in the PDE4B-/- and PDE4D-/- cells. The PDE4 inhibitor rolipram was shown to suppress these responses significantly in the wild-type and PDE4A-/- cells, and more importantly, the PKA inhibitor H89 restored the responses to levels similar to those with the ConA treatment alone. These findings demonstrated that PDE4B and PDE4D, but not PDE4A, are involved in regulating ConA-induced T cell proliferation and IL-2 production, and the inhibitory effects of rolipram is mediated by PKA activation. Using the allergen ovalbumin (OVA) to sensitize and challenge the wild-type and PDE4B-/- mice, we observed that the cell proliferation and Th2 cytokine release (IL-4 and IL-5) in response to OVA were induced in peri-broncheal lymph node cells of wild-type mice. This induction, however, was significantly blocked in the PDE4B-/- cells, demonstrating that PDE4B is involved in the allergen induced Th2 cell responses. In addition to the local lymph node T cells, the peripheral spleen T cells of the OVA-primed PDE4B-/- mice also displayed a decrease in cell proliferation to OVA stimulation. Taken together, these results indicate that PDE4B plays an important role in the pathogenesis of allergic asthma. Inhibition or ablation of PDE4B can significantly attenuate Th2-driven inflammatory responses. The findings also provide the experimental base for developing PDE4B selective inhibitors as novel anti-inflammatory agents.
關鍵字(中) ★ T細胞
★ 發炎
★ 磷酸二酯酶
★ 過敏
★ 氣喘
關鍵字(英) ★ phosphodiesterase 4
★ PDE4
★ T-cell
★ inflammation
★ asthma
★ allergy
論文目次 目 錄
中文摘要 …………………………………………………………………………… i
英文摘要 …………………………………………………………………………… ii
誌謝 …………………………………………………………………………… iv
目錄 …………………………………………………………………………… v
圖目錄 …………………………………………………………………………… vii
縮寫檢索表 …………………………………………………………………………… viii
壹 緒論……………………………………………………………………… 1
1.1 環狀腺苷單磷酸的抗發炎特性與調節T細胞活化…………………… 1
1.2 環狀核苷酸磷酸二酯酶異構酶 (PDE Isozymes) …………………… 2
1.3 PDE4與發炎反應……………………………………………………… 2
1.4 細胞增生劑與T細胞發炎反應………………………………………… 3
1.5 PDE4與T細胞免疫反應……………………………………………… 3
1.6 CD4+ Th2細胞對氣喘的影響………………………………………… 4
1.7 PDE4抑制劑的研發…………………………………………………… 5
1.8 研究目的………………………………………………………………… 6
貳 材料與方法……………………………………………………………… 8
2.1 材料……………………………………………………………………… 8
2.1.1 實驗藥材………………………………………………………………… 8
2.1.2 實驗小鼠………………………………………………………………… 8
2.1.3 實驗試劑………………………………………………………………… 8
2.1.3.1 腹腔注射佐劑…………………………………………………………… 8
2.1.3.2 卵蛋白抗原 (OVA; ovalbumin) ……………………………………… 9
2.1.3.3 PBS細胞緩衝溶液……………………………………………………… 9
2.1.3.4 RPMI-1640細胞培養液………………………………………………… 9
2.2 方法……………………………………………………………………… 10
2.2.1 致敏程序………………………………………………………………… 10
2.2.1.1 腹腔注射………………………………………………………………… 10
2.2.1.2 鼻腔激釁………………………………………………………………… 10
2.2.1.3 抗原致敏 (OVA-primed)……………………………………………… 11
2.2.1.4 多次抗原激釁 (OVA-sensitized)……………………………………… 11
2.2.2 細胞分離與培養………………………………………………………… 11
2.2.2.1 分離脾臟細胞…………………………………………………………… 11
2.2.2.2 分離淋巴結細胞………………………………………………………… 12
2.2.2.3 磁珠抗體純化細胞……………………………………………………… 13
2.2.2.4 阻斷細胞生長…………………………………………………………… 14
2.2.2.5 淋巴細胞混合反應……………………………………………………… 14
2.2.3 T細胞功能測定………………………………………………………… 14
2.2.3.1 細胞增生測定…………………………………………………………… 15
2.2.3.2 細胞激素含量測定……………………………………………………… 16
参 實驗結果………………………………………………………………… 17
3.1 非專一性抗原ConA對PDE4基因剔除脾臟T細胞之影響………… 17
3.2 cAMP調節劑對ConA刺激脾臟T細胞之影響……………………… 17
3.3 PDE抑制劑對OVA刺激脾臟T細胞增生之影響…………………… 19
3.4 專一性抗原OVA對PDE4B基因剔除脾臟T細胞之影響…………… 20
3.5 專一性抗原OVA對PDE4B基因剔除鼠氣管周邊淋巴細胞之影響… 21
3.6 專一性抗原OVA對PDE4B基因剔除鼠CD4+ T細胞增生之影響… 22
肆 討論……………………………………………………………………… 24
4.1 以ConA為抗原產生的細胞發炎反應………………………………… 24
4.2 OVA抗原致敏(primed)小鼠之脾臟細胞及其免疫反應……………… 26
4.3 OVA過敏原激釁(sensitized)引發氣喘的過敏反應…………………… 26
伍 結論……………………………………………………………………… 29
陸 圖與圖解………………………………………………………………… 30
參考文獻 …………………………………………………………………………… 40
參考文獻 Abrahamsen. H., et al., TCR- and CD28-mediated recruitment of phosphodiesterase 4 to lipid rafts potentiates TCR signaling. J. Immunol., 2004. 173(8):4847-58.
Ariga, M., et al., Nonredundant function of phosphodiesterases 4D and 4B in neutrophil recruitment to the site of inflammation. J. Immunol., 2004. 173(12):7531-8.
Arp, J., et al., Regulation of T-cell activation by phosphodiesterase 4B2 requires its dynamic redistribution during immunological synapse formation. Mol. Cell Biol., 2003. 23(22):8042-57.
Barnes, P.J., Drugs for asthma. Br. J. Pharmacol., 2006. 147 Suppl 1:S297-303.
Baroja, M.L., et al., Specific CD3 epsilon association of a phosphodiesterase 4B isoform determines its selective tyrosine phosphorylation after CD3 ligation. J. Immunol., 1999. 162(4):2016-23.
Bender, A.T. and Beavo, J.A., Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol. Rev., 2006. 58(3):488-520.
Bjørgo, E. and Taskén. K., Role of cAMP phosphodiesterase 4 in regulation of T-cell function. Crit. Rev. Immunol., 2006. 26(5):443-51.
Borger, P., et al., Interleukin-4 gene expression in activated human T lymphocytes is regulated by the cyclic adenosine monophosphate-dependent signaling pathway. Blood. 1996. 87(2):691-8.
Chung, K.F., Phosphodiesterase inhibitors in airways disease. Eur. J. Pharmacol., 2006. 533(1-3):110–117.
Cohn, L., Elias, J.A. and Chupp, G.L., Asthma: mechanisms of disease persistence and progression. Annu. Rev. Immunol., 2004. 22:789-815.
Conti, M. and Jin, S.L., The molecular biology of cyclic nucleotide phosphodiesterases. Prog. Nucleic. Acid. Res. Mol. Biol., 1999. 63:1-38.
Conti, M., et al., Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J. Biol. Chem., 2003. 278(8):5493-6.
Daniel, P., et al., Differential expression and fuction of phosphodiesterase 4 (PDE4) subtypes in human primary CD4+ T cells: predominant role of PDE4D. J. Immunol., 2007. 178(8):4820-31.
de Rooji, J., Zwartkruis, F.J., et al., Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature, 1998. 396:474-7.
Dent, G., et al., Inhibitionof eosinophil cyclic nucleotide PDE activity and opsonized zymosan-stimulated respiratory burst by “type IV”-selective PDE inhibitors. Br. J. Pharmacol., 1991. 103:1339-46.
Edelman, G.M., et al., The covalent and three-dimensional structure of concanavalin A. Proc. Natl. Acad. Sci. USA, 1972. 69(9):2580-4.
Erdogan, S. and Houslay, M.D., Challenge of human Jurkat T-cells with the adenylate cyclase activator forskolin elicits major changes in cAMP phosphodiesterase (PDE) expression by up-regulating PDE3 and inducing PDE4D1 and PDE4D2 splice variants as well as down-regulating a novel PDE4A splice variant. Biochem. J., 1997. 321(Pt1):165-75.
Essayan, D.M., Cyclic nucleotide phosphodiesterases. J. Allergy Clin. Immunol., 2001. 108:671-80.
Essayan, D.M., et al., Effects of nonselective and isozyme selective cyclic nucleotide phosphodiesterase inhibitors on antigen-induced cytokine gene expression in peripheral blood mononuclear cells. Am. J. Respir. Cell Mol. Biol., 1995. 13:692-702.
Freedman, M.H. and Raff, M.C., Induction of increased calcium uptake in mouse T lymphocytes by concanavalin A and its modulation by cyclic nucleotides. Nature, 1975. 255(5507):378-82.
Galli, S.J., Tsai, M. and Piliponsky, A.M., The development of allergic inflammation. Nature. 2008. 454(7203):445-54.
Gavett, S.H., et al., Depletion of murine CD4+ T lymphocytes prevents antigen-induced airway hyperreactivety and pulmonary eosinophilia. Am. J. Respir. Cell Mol. Biol., 1994. 10:587-93.
Gelfand, E.W., Pro: mice are a good model of human airway disease. Am. J. Respir. Crit. Care Med., 2002. 166(1):5-6; discussion 7-8.
Giembycz, M.A., et al., Identification of cyclic AMP phosphodiesterases 3, 4 and 7 in human CD4+ and CD8+ T-lymphocytes: role in regulating proliferation and the biosynthesis of interleukin-2. Br. J. Pharmacol., 1996. 118(8):1945-58.
Giembycz, M.A., et al., Inhibition of CD4 and CD8 T-lymphocyte (T-CL) proliferation and cytokine secretion by isoenzyme selective phosphodiesterase (PDE) inhibitors: correlation with intracellular cyclic AMP concentrations. Clin. Exp. Allergy, 1994. 24:995.
Giembycz, M.A., Life after PDE4: overcoming adverse events with dual-specificity phosphodiesterase inhibitors. Curr. Opin. Pharmacol., 2005. 5(3):238-44.
Hansen, G., et al., Absence of muscarinic cholinergic airway resposes in mice deficient in the cyclic nucleotide phosphodiesterase PDE4D. Proc. Natl. Acad. Sci. USA, 2000. 97:6751-56.
Hatzelmann, A. and Schudt, C., Anti-inflammatory and immunomodulatory potential of the novel PDE4 inhibitor roflumilast in vitro. J. Pharmacol. Exp. Ther., 2001. 297(1):267-79.
Henney, C.S., Bourne, H.R. and Lichtenstein L.M., The role of cyclic 3',5' adenosine monophosphate in the specific cytolytic activity of lymphocytes. J Immunol., 1972. 108(6):1526-34.
Holt, P.G., et al., Drug development strategies for asthma: in search of a new paradigm. Nat. Immunol., 2004. 5:698.
Hwang, T.L., et al., Viscolin, a new chalcone form Viscum coloratum, inhibits human nentrophil superoxide anion and elastase release via a cAMP-dependent pathway. Free Radical Biology & Medicine, 2006. 41:1433-41.
Jin, S.L.C. and Conti, M., Induction of the cyclic nucleotide phosphodiesterase PDE4B is essential for LPS-activated TNFα-responses. Proc. Natl. Acad. Sci. USA, 2002. 99:7628-33.
Jin, S.L.C., et al., Specific role of phosphodiesterase PDE4B in lipopolysaccharide-induced signaling in mouse macrophages. J. Immunol., 2005. 175(3):1523-31.
Jin, S.L., Richter, W. and Conti, M., Insights into the physiological functions of PDE4s from knockout mice. In: “Cyclic Nucleotide Phosphodiesterases in Health and Disease”, Beavo, J., Francis, S., and Houslay, M. (eds), CRC Press LLC. 2006.
Jones, N.A., et al., Phosphodiesterase (PDE) 7 in inflammatory cells from patients with asthma and COPD. Pulm. Pharmacol. Ther., 2007. 20(1):60-8.
Kammer, G.M., The adenylate cyclase-cAMP-protein kinase A pathway and regulation of the immune response. Immunol. Today, 1988. 9(7-8):222-9.
Kanda, N. and Watanabe, S., Regulatory roles of adenylate cyclase and cyclic nucleotide phosphodiesterases 1 and 4 in interleukin-13 production by activated human T cells. Biochem. Pharmacol., 2001. 62(4):495-507.
Kaupp, U.B. and Seifert, R., Cyclic nucleotide-gated ion channels. Physiol. Rev., 2002. 82:769-824.
Kawasaki, H., et al., A family of cAMP-binding proteins that directly activate Rap1. Science, 1998. 282:2275-79.
Kopf, M., et al., Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature, 1993. 362:245-8.
Lichtenstein, L.M. and Margolis, S., Histamine release in vitro: inhibition by catecholamines and methylxanthines. Science, 1968. 161(844):902-3.
Lipworth, B.J., Phosphodiesterase-4 inhibitors for asthma and chronic obstructive pulmonary disease. Lancet, 2005. 365(9454):167-175.
Mary, D., et al., Regulation of interleukin 2 synthesis by cAMP in human T cells. J. Immunol., 1987. 139(4):1179-84.
Mehats, C., et al., PDE4D plays a critical role in the control of airway smooth muscle contraction. FASEB J., 2003. 17:1831-41.
Melmon, K.L., Bourne, H.R., et al., Hemolytic plaque formation by leukocytes in vitro. Control by vasoactive hormones. J. Clin. Invest., 1974. 53(1):13-21.
Mosmann, T.R. and Coffman, R.L., TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol., 1989. 7:145-173.
Mustelin, T. and Tasken, K., Positive and negative regulation of T-cell activation through kinases and phosphatases. Biochem. J., 2003. 371:15-27.
Nakajima, H., and Takatsu, K., Role of Cytokines in Allergic Airway Inflammation. Int. Arch. Allergy Immunol., 2007. 142:265–273.
O'Garra, A. and Arai, N., The molecular basis of T helper 1 and T helper 2 cell differentiation. Trends Cell Biol., 2000. 10(12):542-550.
Openshaw, Peter., et al., Heterogeneity of Intracellular Cytokine Synthesis at the Single-Cell Level in Polarized T Helper I and T Helper 2 Populations. J. Exp. Med., 1995. 182(5):1357-67.
Pala, P., et al., et al., Flow cytometric measurement of intracellular cytokines. J. Immunol. Methods., 2000. 243(1-2):107-24.
Persson, C.G., Con: mice are not a good model of human airway disease. Am. J. Respir. Crit. Care Med., 2002. 166(1):6-7; discussion 8.
Robinson, D. S., et al., Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N. Engl. J. Med., 1992. 326:298-304.
Rousseau, E., et al., Biochemical and pharmacological characterization of cyclic nucleotide phosphodiesterase in airway epithelium. Mol. Cel. Biochem., 1994. 140(2):171-5.
Sallusto, F., et al., Chemokines and chemokine receptors in T-cell priming and Th1/Th2-mediated responses. Immunol Today., 1998. 19(12):568-74.
Sanz, M.J., Cortijo, J. and Morcillo, E.J., PDE4 inhibitors as new anti-inflammatory drugs: effects on cell trafficking and cell adhesion molecules expression. Pharmacol. Ther., 2005. 106:269-97.
Schebesch. C., et al., Alternatively activated macrophages actively inhibit proliferation of peripheral blood lymphocytes and CD4+ T cells in vitro. Immunology. 1997. 92(4):478-86.
Seldon, P.M., et al., Phosphodiesterase IV inhibitors and β-adrenoceptor agonist suppress lipopolysaccharide-induced tumour necrosis factor-α generation by human peripheral blood monocytes. Br. J. Pharmacol., 1994. 112:215.
Seybold, J., et al., Induction of phosphodiesterases 3B, 4A4, 4D1, 4D2, and 4D3 in Jurkat T-cells and in human peripheral blood T-lymphocytes by 8-bromo-cAMP and Gs-coupled receptor agonists. Potential role in beta2-adrenoreceptor desensitization. J. Biol. Chem., 1998. 273(32):20575-88.
Shum, B.O., Rolph, M.S. and Sewell, W.A., Mechanisms in allergic airway inflammation - lessons from studies in the mouse. Expert. Rev. Mol. Med., 2008. 10:e15.
Takeda, K., et al., Strain dependence of airway hyperresponsiveness reflects differences in eosinophil localization in the lung. Am. J. Physiol. Lung Cell Mol. Physiol., 2001. 281:394-402.
Tasken, K. and Aandahl, E.M., Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol. Rev., 2004. 84:137-67.
Torgersen, K.M., et al., Molecular mechanisms for protein kinase A-mediated modulation of immune function. Cell Signal, 2002. 14(1):1-9.
Torphy, T.J., Phosphodiesterase isozymes: molecular targets for novel antiasthma agents. Am. J. Respir. Crit. Care Med., 1998. 157:351-70.
Umetsu, D.T. and DeKruyff, R.H., Th1 and Th2 CD4+ cells in the pathogenesis of allergic diseases. Proc. Soc. Exp. Biol. Med., 1997. 215(1):11-20.
van Hove, C.L., et al., Comparison of acute inflammatory and chronic structural asthma-like responses between C57BL/6 and BALB/c mice. Int. Arch. Allergy Immunol., 2009. 149(3):195-207.
Vischer, T.L., The differential effect of cyclic AMP on lymphocyte stimulation by T- or B-cell mitogens. Immunology, 1976. 30(5):735-9.
Whitesell, R.R., et al., Mitogen-stimulated glucose transport in thymocytes. Possible role of Ca++ and antagonism by adenosine 3':5'-monophosphate. J. Cell Biol., 1977. 72(2):456-69.
Wills-Karp, M., Immunologic basis of antigen-induced airway hyperresponsiveness. Annu. Rev. Immunol., 1999. 17: 255-81.
Zimmermann, N., et al., Chemokines in asthma: cooperative interaction between chemokines and IL-13. J. Allergy Clin. Immunol., 2003. 111:227-42.
Zosky, G.R. et al., Animal models of asthma. Clin. Exp. Allergy, 2007. 37:937-88.
Zosky, G.R. et al., Ovalbumin-sensitized mice are good models for airway hyperresponsiveness but not acute physiological responses to allergen inhalation. Clin. Exp. Allergy, 2008. 38:829-38.
指導教授 金秀蓮(Siou-lian Catherine Jin) 審核日期 2010-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明