博碩士論文 962205010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:54.85.162.213
姓名 方義傑(Yi-Jie Fang)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 復發事件存活時間分析-丙型干擾素對慢性肉芽病患復發療效之案例研究
(Survival analysis for recurrent event data -a case study on the treatment effects on gamma interferon to the CGD patients' recurrence)
相關論文
★ 長期與存活資料之聯合模型-新方法和數值方法的改進★ 復發事件存活分析的共享廣義伽瑪脆弱因子之半母數聯合模型
★ 加乘法風險模型結合長期追蹤資料之聯合模型★ 有序雙重事件時間分析使用與時間相關的共變數-邊際方法的比較
★ 存活與長期追蹤資料之聯合模型-台灣愛滋病實例研究★ 以聯合模型探討地中海果蠅繁殖力與老化之關係
★ 聯合模型在雞尾酒療法療效評估之應用—利用CD4/CD8比值探討台灣愛滋病資料★ 時間相依共變數之雙重存活時間分析—台灣愛滋病病患存活時間與 CD4 / CD8 比值關係之案例研究
★ Cox比例風險模型之參數估計─比較部分概似法與聯合模型★ Cox 比例風險假設之探討與擴充風險模型之應用
★ 以聯合模型探討原發性膽汁性肝硬化★ 聯合長期追蹤與存活資料分析-肝硬化病患之實例研究
★ 復發事件存活時間分析-rhDNase對囊狀纖維化病患復發療效之案例研究★ 聯合長期追蹤與存活資料分析-原發性膽汁性肝硬化病患之實例研究
★ 復發事件存活時間分析-Thiotepa對膀胱癌病患復發療效之案例研究★ 半母數擴充風險模型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 慢性肉芽腫是一個罕見的免疫系統遺傳性疾病,但死亡率也高達2%至5%,1989年經實驗證實丙型干擾素能有效降低慢性肉芽腫病患情況,衛生署也在1999年2月將丙型干擾素列為慢性肉芽腫患者的治療藥物。而我們感興趣的是丙型干擾素對於慢性肉芽腫病患復發事件的療效,本篇使用國際肉芽腫組織128個慢性肉芽腫病患的資料,焦點放在多維事件存活時間的三種邊際模型(marginal model:AG、PWP、WLW)與脆弱模型(frailty model)的比較,並探討使用丙型干擾素療程,對於慢性肉芽腫病患復發的次數以及時間的影響。
摘要(英) Chronic Granulomatous Disease (CGD) is a rare inherited disorders of the immune function,but the annual death rate also reaches as high as 2% to 5%. It has been confirmed that the gamma interferon (IFN-r) can reduce the frequency and severity of infections in CGD disease effectively after experiment in 1989. The department of Health in Taiwan has listed gamma interferon as the chronic granuloma patient’s treatment medicine in 1999 February. We are interested in the treatment effects of gamma interferon to the 128 CGD patients’recurrence. To investigate this research problem, we focus on three marginal models (AG model, WLW model and PWP model) and frailty models approaches of multivariate survival data analysis. In addition to compare the performance of the these approaches, we also study the effect of gamma interferon to CGD patients’recurrence and survival times under different models.
關鍵字(中) ★ 復發事件
★ 邊際模型
★ 脆弱模型
★ 慢性肉芽腫病
關鍵字(英) ★ CGD
★ frailty model
★ marginal model
★ repeated events
論文目次 第一章緒論. . . . . . . . . . . . . . . . . . . . . . . .1
1.1 慢性肉芽腫病. . . . . . .. . . . . . . . . . . . . 1
1.2 研究方法文獻回顧. . .. . . . . . . . . . . . 4
1.2.1 邊際模型. . . . . . . . . . . . . . . . . . . . 5
1.2.2 脆弱模型. . . . . . . . . . . . . . . . . . . . . 6
1.3 研究架構. . . . . . . . . . . . . . . . . . . . 7
第二章模型方法. . . . . . . . . . . . . . . . . . . .8
2.1 符號定義與基本假設. . . . . . . . . . . . . . . . 8
2.2 邊際模型. . . . . . . . . . . . . . . . . 9
2.2.1 PWP邊際模型. . . . . . . . . . . . . . 12
2.2.2 AG邊際模型. . . . . . . . . . . . 12
2.2.3 WLW邊際模型. . . . . .. . . . . 13
2.2.4 適當的模型配適. . . . . . .. . . 14
2.3 邊際模型參數估計. . . . . . .. . . . . . . 15
2.3.1 夾擠變異數估計量. . . . . . . . 16
2.4 脆弱模型. . . . . . . . . . . . . . . . . . 17
2.4.1 脆弱模型參數估計. . . . . . . . . . . . . 19
2.4.2 PPL演算法. . . . . . . . . . . . . . 20
2.4.3 脆弱參數分佈與懲罰函數. . . . . . . . . . . 22
第三章模擬研究. . . . . . . . . . .23
3.1 模擬方法設定. . . .. . . . . . . . . . . . . 23
3.2 模擬結果. . . .. . . . . . . . . . . . . . . . 24
3.2.1 每個觀測者事件發生之間相互獨立. . . . . . . . . . 24
3.2.2 同一個個體事件發生之間含有相關性. .. . . . . . . 26
3.2.3 總結. . . . . . . . . . . . . . . . . . . . . 27
第四章實例分析. . . . . .. . . . . . . . . .28
4.1 資料說明. . . . . . . . . . . . . . . . . . . . . . 28
4.2 敘述性資料分析. . . . . . . . . . . . . . . . . . . 29
4.3 無母數方法分析. . . . . . .. . . . . . . . . . 31
4.3.1 Kaplan-Meier 估計量. . . . . . . . . . . . . . 31
4.3.2 無母數假設檢定. . . . . . . . . . . 33
4.4 模型估計. . . . . . . . . . . . . . . 34
4.4.1 PWP模型. . . . . . . . . . . 35
4.4.2 脆弱模型. . . . . . . . . . . . . 37
第五章結果與結論. . . . . . . . . . .39
參考文獻. . . . . . . . . . . . . . . . . . 41
參考文獻 [1] Aalen, O. O. (1994). Effects of frailty in survival analysis. Stat. Methods Med. Res.,3, 227–2430.
[2] Andersen, P. K. and Gill, R. D. (1982). Cox’s regression model for counting processes:A large sample study. Annals of Statistics, 10, 1100–1120.
[3] Box-Steffensmeier, J. M. and Boef., S. D. (2006). Repeated events survival models:The conditional frailty model. Statistics in Medicine, 25(20), 3518–3533.
[4] Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of chronic disease incidence. Biometrika, 65, 141–151.
[5] Clayton, D. G. and Cuzick, J. (1985). Multivariate generalisations of the proportional hazards model. Journal of the Royal Statistical Society, A–148, 82–117.
[6] Clegg, L. X., Cai, J., and Sen, P. K. (1999). A marginal mixed baseline hazards model for multivariate failure time data. Biometrics, 55, 805–812.
[7] Cook, R. J. and Lawless, J. F. (2002). Analysis of repeated events. Statistical Methods in Medical Research, 11, 141–166.
[8] Cox, D. R. (1972). Regression models and life-tables (with discussion). Journal of the Royal Statistical Society, B–34, 187–200. 41
[9] Crowder, M. (1985). A multivariate distribution with weibull connections. Journal of the Royal Statistical Society, B–51, 93–107.
[10] Fleming, T. R. and Harrington, D. P. (1991). Counting processes and survival analysis. Wiley, New York.
[11] Gillick, M. (2001). Pinning down frailty. J. Gerontol. Ser. A-Biol. Sci. Med. Sci., 56, M134–M135.
[12] Guo, G. and Rodriguez, G. (1992). Estimating a multivariate proportional hazards model for clustered data using the em algorithm. with an application to child survival in guatemala. Journal of American Statistical Association, 87, 969–976.
[13] Hougaard, P. (1986a). Survival moels for heterogeneous populations derived frim stable distributions. Biometrics, 73, 671–678.
[14] Hougaard, P. (1986b). A class of multivariate failure time distributions. Biometrics, 73, 387–396.
[15] Huber, P. J. (1967). The behaviour of maximum ikelihood estimates under nonstandard conditions. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, 221–233.
[16] Huster, J. H., Brookmeyer, R., and Self, S. G. (1989). Modelling paired survival data with covariates. Biometrics, 45, 145–156.
[17] Kaplan, E. L. and Meier, P. (1958). Non-parameteric estimation from incomplete observtion. Journal of American Statistical Association, 53, 457–481,562–563.
[18] Kelly, P. J. and Lim, L. L. (2000). Survival analysis for recurrent event data: an application to childhood infectious diseases. Statistics in Medicine, 19, 13–33. 42
[19] Klein, J. P. (1992). Semiparametirc estimation of random e?ects using the cox model based on the em algorithm. Biometrics, 48, 798–806.
[20] Lawless, J. F. and Nadeau, C. (1995). Some simple robust methods for the analysis of recurrent events. Technometrics, 37, 158–168.
[21] Lee, E. W., Wei, L. J., and Amato, D. A. (1992). Cox-type regression analysis for large numbers of small groups of correlated failure time observations. In Klein, J. P. and Goel, P. K. (eds), Survival Analysis: State of the Art. Kluwer: Dordrecht , pp. 237–247.
[22] Liang, K. Y., Self, S. G., Bandeen-Roche, K. J., and Zeger, S. L. (1995). Some recent developments for regression analysis of multivariate failure time data. Lifetime Data Analysis, 1, 403–415.
[23] Lin, D. Y. (1994). Cox regression analysis of multivariate failure time data: the marginal approach. Statistics in Medicine, 13, 2233–2247.
[24] Lin, D. Y. and Wei, L. J. (1989). The robust inference for the cox proportional hazard model. Journal of the American Statistical Association, 84, 1074–1078.
[25] Lin, D. Y., Wei, L. J., Yang, I., and Ying, Z. (2000). Semiparametric regression for the mean and rate functions of recurrent events. Journal of the Royal Statistical Society, B–62, 711–730.
[26] MaGilchrist, C. A. and Aisbtt, C. W. (1991). Regression with frailty in survival analysis. Biometrics, 47, 461–466. 43
[27] Nielsen, G. G., Gill, R. D., Andersen, R. K., and S⊘rensen, T. I. A. (1992). A counting process approach to maximum likelihood estimation in frailty models. Scandinavian Journal of Statistics, 19, 25–43.
[28] Oakes, D. (1992). Frailty models for multiple event times. Survival analysis: state of the art , pp. 371–379.
[29] Pepe, M. S. and Cai, J. (1993). Some graphical displays and marginal regression analyses for recurrent failure times and time-dependent covariates. Journal of American Statistical Association, 88, 811–820.
[30] Prentice, P. L., Williams, B. J., and Peterson, A. V. (1981). On the regression analysis of multivariate failure time data. Biometrika, 68, 373–379.
[31] Schaubel, D. E. and Cai, J. (2005). Analysis of clustered recurrent event data with application to hospitalization rates among renal failure patients. Biostatistics, 6, 404–419.
[32] Spiekerman, C. F. and Lin, D. Y. (1998). Marginal regression models for multivariate failure time data. Journal of American Statistical Association, 93, 1164–1175.
[33] Therneau, T. M. and Grambsch, P. M. (2000). Modeling survival data:extending the Cox Model . Springer.
[34] Vaupel, J. W., Manton, K. G., and Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, 16, 439–454.
[35] Wei, L. J., Lin, D. Y., and Weissfeld, L. (1989). Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. Journal of American Statistical ssociation, 84, 1065–1073. 44
[36] Yashin, A. I., Vaupel, J. W., and Iachine, I. A. (1995). Correlated individual frailty: An advantageous approach to survival analysis of bivariate data. Mathematical Population Studies, 5(2), 145–159. 45
指導教授 曾議寬(Yi-kuan Tseng) 審核日期 2009-6-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明