博碩士論文 962205016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.210.28.227
姓名 張逸塵(Yi-chen Zhang)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 混合先驗分佈下誤差項為自我迴歸之線性混合效應模型的貝氏分析
(Bayesian Inference on the Linear Mixed-Effect Models with Autoregressive Errors Using Mixture Priors)
相關論文
★ 具Box-Cox轉換之逐步加速壽命實驗的指數推論模型★ 多元反應變數長期資料之多變量線性混合模型
★ 多重型 I 設限下串聯系統之可靠度分析與最佳化設計★ 應用累積暴露模式至單調過程之加速衰變模型
★ 串聯系統加速壽命試驗之最佳樣本數配置★ 破壞性加速衰變試驗之適合度檢定
★ 串聯系統加速壽命試驗之最佳妥協設計★ 加速破壞性衰變模型之貝氏適合度檢定
★ 加速破壞性衰變模型之最佳實驗配置★ 累積暴露模式之單調加速衰變試驗
★ 具ED過程之兩因子加速衰退試驗建模研究★ 花蓮地區地震資料改變點之貝氏模型選擇
★ 颱風降雨量之統計迴歸預測★ 花蓮地區地震資料之長時期相關性及時間-空間模型之可行性
★ 台灣地區地震資料之經驗貝氏分析★ 颱風降雨量與風速之統計預測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文主要目的在於探討誤差項具自我迴歸之貝氏線性混合效應模型。經由混合先驗分佈,找出顯著的固定效應與隨機效應變數,進而得到中位機率模型,並由該模型進行貝氏之推論與預測。最後將此模型應用在一組高血糖和相對高胰島素血症,對於葡萄糖的容忍度實驗之資料中,結果顯示,本文提出的方法可以提供準確的預測。
摘要(英) In this thesis, we address the problem of Bayesian linear mixed effects model with auto-regressive errors. We consider a mixture prior to identify subsets of covariates having nonzero fixed effect coefficients or nonzero random effects variance, and eventually obtain a median probability model, which is utilized for Bayesian inference and prediction. Finally, the proposed method is applied to a study of the association of hyperglycemia and relative hyperinsulinemia, and it yields very accurate prediction results.
關鍵字(中) ★ 自我迴歸模型
★ 吉比氏抽樣法
★ 混合先驗分佈
★ 隨機效應
★ 固定效應
★ 貝氏預測
★ 中位機率模型
關鍵字(英) ★ Fixed effect
★ Random effect
★ Mixture prior
★ Gibbs sampling
★ AR(1) model
★ Median probability model
★ Bayesian prediction
論文目次 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
誌謝辭. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
第一章緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 研究動機與背景. . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 文獻探討與方法回顧. . . . . . . . . . . . . . . . . . . . . . 4
1.3 研究方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
第二章混合先驗分佈下之貝氏線性混合效應模型. . . . . 7
2.1 貝氏線性迴歸模型. . . . . . . . . . . . . . . . . . . . . . . 8
2.2 貝氏線性混合效應模型. . . . . . . . . . . . . . . . . . . . . 12
2.3 中位機率模型. . . . . . . . . . . . . . . . . . . . . . . . . . 16
第三章誤差具自我迴歸的貝氏線性混合效應模型. . . . . 19
3.1 貝氏推論. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.1 相關係數相同之模型. . . . . . . . . . . . . . . . . . 19
3.1.2 相關係數不同之模型. . . . . . . . . . . . . . . . . . 23
3.2 線性混合效應之中位機率模型. . . . . . . . . . . . . . . . . 25
3.3 貝氏預測. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
第四章模擬分析與實例應用. . . . . . . . . . . . . . . . . . 29
4.1 線性混合效應模型之模擬分析. . . . . . . . . . . . . . . . . 29
4.2 誤差具自我迴歸的線性混合效應模型之模擬分析. . . . . . . . 32
4.3 實例分析與預測. . . . . . . . . . . . . . . . . . . . . . . . 36
第五章結論. . . . . . . . . . . . . . . . . . . . . . . . . . . 42
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
參考文獻 [1] Akaike, H. (1974). A New Look at the Statistical Model Identification.
IEEE Transactions on Automatic Control 19, 716-723.
[2] Barbieri, M. M. and Berger, J. O. (2004). Optimal Predictive Model
Selection. The Annals of Statistics 32, 870-897.
[3] Barnard, G. A. (1963). New Methods of Quality Control. Journal of
the Royal Statistical Society: Series A 126, 255-258.
[4] Burnham, K. P. and Anderson, D. R. (2004). Multimodel Inference:
Understanding AIC and BIC in Model Selection. Sociological Methods
and Research 33, 261-304.
[5] Cai, B. and Dunson, D. B. (2006). Bayesian Covariance Selection in
Generalized Linear Mixed Models. Biometrics 62, 446-457.
[6] Carlin, B. P. and Louis, T. A. (2008). Bayes and Empirical Bayes
Methods for Data Analysis. Chapman and Hall, London. 3rd ed.
[7] Chen, Z. and Dunson, D. B. (2003). Random Effects Selection in Linear
Mixed Models. Biometrics 59, 762-769.
[8] Chi, E. M. and Reinsel, G. C. (1989). Models for Longitudinal Data
with Random Effects and AR(1) Errors. Journal of the American Sta-
tistical Association 84, 452-459.
[9] Chib, S. (1993). Bayes Regression with Autoregressive Errors: A
Gibbs Sampling Approach. Journal of Econometrics 58, 275-294.
[10] Clyde, M. A. (1999). Bayesian Model Averaging and Model Search
Strategies. In Bayesian Statistics 6 (Bernardo, J. M., Berger, J. O.
Dawid, A. P. and Smith, A. F. M. eds.) 157-185. Oxford University
Press.
[11] Collins, L. M. and Horn, J. L. (eds.) (1991). Best Methods for the
Analysis of Change. Washington, DC: America Psychological Association.
[12] Cox, D. R. and Oakes, D. (1984). Analysis of Survival Data. Chapman
and Hall, London.
[13] Crainiceanu, C. and Ruppert, D. (2004). Likelihood Ratio Tests in
Linear Mixed Models with One Variance Component. Journal of the
Royal Statistical Society B 66, 165-185.
[14] Dale, A. and Davies, R. B. (eds.) (1994). Analyzing Social and Political
Change: A Casebook of Methods. London: Sage.
[15] Diggle, P. J. (1990). Time Series: A Biostatistical Introduction. Oxford
University Press, Oxford.
[16] Dutilleul, P. and Pinel-Alloul, B. (1996). A doubly Multivariate Model
for Statistical Analysis of Spatio-Temporal Environmental Data. En-
vironmetrics 7, 551-565.
[17] Fan, T. H., Wang, G. Z., and Yu, J. H. (2009). A New Algorithm
in Bayesian Model Averaging in Regression Models. Technical Report,
National Central University.
[18] Gelfand, A. E. and Smith A. F. M. (1990). Sampling-Based Approaches
to Calculating Marginal Densities. Journal of the American
Statistical Association 85, 398-409.
[19] Geman, S. and Geman, D. (1984). Stochastic Relaxation, Gibbs Distribution
and the Bayesian Restoration of Image. IEEE Transactions
on Pattern Analysis and Machine Intelligence 6, 721-741.
[20] George, E. I. and McCulloch, R. E. (1993). Variable Selection Via
Gibbs Sampling. Journal of the American Statistical Association 88,
881-889.
[21] Geweke, J. (1996). Variable Selection and Model Comparison in Regression.
In Bayesian Statistics 5|Proceedings of the Fifth Valencia
International Meeting, Bernardo, J. M., Berger, J. O., Dawid, A. P.,
and Smith, A. F. M. (eds), 609-620. Oxford, U.K.: Oxford University
Press.
[22] Gilks, W. R., Wang, C. C., Yvonnet, B., and Coursaget, P. (1993).
Random-Effects Models for Longitudinal Data Using Gibbs Sampling.
Biometrics 49, 441-453.
[23] Gottman, J. M. (ed.) (1995). The Analysis of Change. Mahwah, N. J.:
Lawrence Erlbaum.
[24] Heitjan, D. F. and Sharma, D. (1997). Modelling Repeated-Series Longitudinal
Data. Statistics in Medicine 16, 347-355.
[25] Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T.
(1999). Bayesian Model Averaging: A Tutorial (with discussion). Sta-
tistical Science 14, 382-417.
[26] Jennrich, R. I. and Schluchter, M. D. (1986). Unbalanced Repeated-
Measures Models with Structured Covariance Matrices. Biometrics
42, 805-820.
[27] Kinney S. K. and Dunson, D. B. (2007). Fixed and Random Effects
Selection in Linear and Logistic Models. Biometrics 63, 690-698.
[28] Konishi, S. and Kitagawa, G. (2008). Information Criteria and Sta-
tistical Modeling. New York: Springer-Verlag.
[29] Kuo, L. and Mallick, B. (1998). Variable Selection for Regression Models.
Sankhy¹a: The Indian Journal of Statistics, Series B 60, 65-81.
[30] Laird, N. M. and Ware, J. H. (1982). Random-Effects Models for
Longitudinal Data. Biometrics 38, 963-974.
[31] Lin, X. (1997). Variance Component Testing in Generalized Linear
Models with Random Effects. Biometrika 84, 309-326.
[32] Lindstrom, M. J. and Bates, D. M. (1988). Newton-Raphson and EM
Algorithms for Linear Mixed-Effects Models for Repeated Measures
Data. Journal of the American Statistical Association 83, 1014-1022.
[33] Leamer, E. E. (1978). Speci¯cation Searches. Wiley, New York.
[34] McCulloch, C. E., Searle, S. R., and Neuhaus, J. M. (2008). General-
ized, Linear, and Mixed Models. Wiley, 2nd ed.
[35] Montgomery, D. C., Peck, E. A., and Vining, G. G. (2006). Introduc-
tion to Linear Regression Analysis. Wiley, New York, 4th ed.
[36] Raftery, A. E., Madigan, D., and Hoeting, J. A. (1997). Bayesian
Model Averaging for Linear Regression Models. Journal of the Amer-
ican Statistical Association 92, 179-191.
[37] Robert, C. P. (2007). The Bayesian Choice. New York: Springer-
Verlag. 2ed.
[38] Roberts, H. V. (1965). Probabilistic Prediction. Journal of the Amer-
ican Statistical Association 60, 50-62.
[39] Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals
of Statistics 6, 461-464.
[40] Stram, D. O. and Lee, J. W. (1994). Variance Components Testing in
the Longitudinal Mixed Effects Model. Biometrics 50, 1171-1177.
[41] Tsay, R. S. (2005). Analysis of Financial Time Series. Wiley, Hoboken,
N. J., 2nd ed.
[42] Zerbe, G. O. (1979). Randomization Analysis of the Completely Randomized
Design Extended to Growth and Response Curves. Journal
of the American Statistical Assocation 74, 215-221.
[43] Zerger, S. L. and Karim, M. R. (1991). Generalized Linear Model
with Random Effects: A Gibbs Sampling Approach. Journal of the
American Statistical Association 86, 79-86.
[44] 王國肇(2007)。貝氏模型平均演算法及其在長時期追蹤資料之應用。國
立中央大學統計研究所碩士論文。
指導教授 樊采虹、于振華
(Tasi-hung Fan、Jenn-hwa Yu)
審核日期 2009-6-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明