博碩士論文 962205017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.218.67.1
姓名 黃偉恆(Wei-heng Huang)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 具有韋伯壽命零件的串聯系統之可靠度分析
(Reliability Analysis of a Series System with Weibull Lifetime Components)
相關論文
★ 具Box-Cox轉換之逐步加速壽命實驗的指數推論模型★ 多元反應變數長期資料之多變量線性混合模型
★ 多重型 I 設限下串聯系統之可靠度分析與最佳化設計★ 應用累積暴露模式至單調過程之加速衰變模型
★ 串聯系統加速壽命試驗之最佳樣本數配置★ 破壞性加速衰變試驗之適合度檢定
★ 串聯系統加速壽命試驗之最佳妥協設計★ 加速破壞性衰變模型之貝氏適合度檢定
★ 加速破壞性衰變模型之最佳實驗配置★ 累積暴露模式之單調加速衰變試驗
★ 具ED過程之兩因子加速衰退試驗建模研究★ 花蓮地區地震資料改變點之貝氏模型選擇
★ 颱風降雨量之統計迴歸預測★ 花蓮地區地震資料之長時期相關性及時間-空間模型之可行性
★ 台灣地區地震資料之經驗貝氏分析★ 颱風降雨量與風速之統計預測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在串聯系統中,只要有一個零件失效,系統即無法運作。然而每個零件可能有不同的失效時間分佈,使得系統停擺的時間往往是不確定的。
本文考慮具有m個零件的串聯系統,假設每個零件之壽命具韋伯分佈且彼此獨立,若只觀察到系統失效之時間時之可靠度分析。
首先,以EM演算法求得各零件壽命分佈中參數的最大概似估計量及相關統計推論;另外並考慮以無資訊先驗分佈的
"馬可夫鏈蒙地卡羅"方法之客觀貝氏推論。 
更進一步地將上述方法,發展於 type-I 設限實驗中,另以有母數的拔靴法以估計該模型下參數最大概似估計量的標準差。
模擬結果顯示,在兩種實驗中,最大概似推論與貝氏推論都能提供準確的估計,而樣本不是太大時,無資訊先驗分佈之貝氏分析所得結果較最大概似法為佳。
摘要(英) A series system fails if any of its components fails. However, each component may have different life time distribution and,
in practice, the exact component responsible for the failure of the system can not often be identified. This paper considers
a life test on a series system of m components, each having a Weibull life time distribution, and when only the system failure
time is observed. The maximum likelihood estimates via EM algorithm is developed for the parameters of each component as well as
for the system reliability. Objective Bayesian inference incorporated with the Markov chain Monte Carlo method is also addressed.
Furthermore, statistical inference is developed for the Type-I censoring experiment within a prespecified time interval and
parametric bootstrap method is used to estimate the standard errors of the MLE in this case.
Simulation study carried out reveals that the Bayesian analysis with noninformative prior provides better results than the likelihood approach
in both situations at least in the case of small sample sizes.
關鍵字(中) ★ EM 演算法
★ 有母數拔靴法
★ type-I 設限
★ 貝氏估計
★ 串聯系統
★ 韋伯分佈
★ 最大概似估計量
★ 可靠度函數。
關鍵字(英) ★ parametric bootstrap method
★ EM-algorithm
★ reliability function.
★ maximum likelihood estimators
★ Weibull distribution
★ Series system
★ Type-I censoring
★ Bayesian estimators
論文目次 摘要i
Abstract ii
誌謝iii
Contents iv
List of Tables vi
List of Figures vii
1. Introduction 1
1.1 Statistical Motivation and Background . . . . . . . . . . . . . . . . . . . . . 1
1.2 Proposed Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Complete Scheme 5
2.1 Model Description and Notation . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Complete observations . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 EM algorithm under incomplete observations . . . . . . . . . . . . . . 10
2.2.3 Inference on functions of parameters . . . . . . . . . . . . . . . . . . 12
2.3 Bayesian Approach via Markov Chain Monte Carlo Method . . . . . . . . . . . 13
2.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Simulation study I: Complete model . . . . . . . . . . . . . . . . . . 15
2.4.2 Simulation study II: Incomplete model . . . . . . . . . . . . . . . . . . 20
2.4.3 Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3. Type-I Censoring Scheme 27
3.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Statistical Inference under Complete Failure Observations . . . . . . . . . . . 29
3.2.1 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Parametric bootstrap method . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Bayesian approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.4 Inference on functions of parameters . . . . . . . . . . . . . . . . . . 34
3.3 Inference without Knowing the Causing Component Experiment . . . . . . . . 35
3.3.1 EM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Bayesian approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.1 Simulation study I: Complete model under Type-I censoring . . . . . . 37
3.4.2 Simulation study II: Incomplete model under Type-I censoring . . . . . 43
4. Conclusion 47
Reference 48
參考文獻 [1] Casella, G. and Berger, R.L. (2002). Statistical Inference, 2nd Ed. Duxbury, Pacific
Grove, CA.
[2] Cohen, A.C. (1965). Maximum likelihood estimation in the Weibull distribution
based on complete and on censored samples. Technometrics 7, 579-588.
[3] DiCiccio, T.J. and Efron, B. (1996). Bootstrap confidence intervals. Statistical Science
11, 189-212.
[4] Efron, B. (1979). Bootstrap method: another look at the jacknife. Annals of Statistics
17, 1-26.
[5] Efron, B. (1981). Censored data and bootstrap. Journal of the American Statistical
Association 76, 312-319.
[6] Efron, B. (1994). Missing data, imputation and the bootstrap. Journal of the American
Statistical Association 89, 463-475.
[7] Efron, B. and Tibshirani, R.J. (1986). Bootstrap method for standard errors, confidence
intervals and other measures of statistical accuracy. Statistical Science 1,
54-75.
[8] Efron, B. and Tibshirani, R.J. (1993). An introduction to the bootstrap. New York:
Chapman and Hall.
[9] Gertsbakh, I. (2001). Reliability Theory: with Applications to Preventive Maintenance,
Springer: New York.
[10] Guess, F.M., Usher, J.S. and Hodgson, T.J. (1991). Estimating system and component
reliabilities under partial information on cause of failure. J. Stat. Plann. Inf.
29, 75-85.
[11] Harter, H.L. and Moore, A.H. (1967). Asymptotic variances and covariances of
maximum-likelihood estimators, from censored samples, of the parameters of Weibull
and Gamma populations. Technometrics 20, 171-177.
[12] Jaeckel, L. (1972). The infinitesimal jackknife. Bell Laboratories Memorandum ]MM
72-1215-11.
[13] Lemon, G.H. (1975). Maximum likelihood estimation for the three parameterWeibull
distribution based on censored samples. Technometrics 17, 247-254.
[14] Lin, D.K., Usher, J.S. and Guess, F.M. (1993). Exact maximum likelihood estimation
using masked system data. IEEE Trans. Reliab. R-42, 631-635.
[15] Louis, T.A. (1982). Finding the observed information matrix when using the EM
algorithm. J. Roy. Statist. Soc., Ser. B 44, 226-233.
[16] Miller, R.G. (1974a). The jackknife - a review. Biometrika 61, 1-15.
[17] Miller, R.G. (1974b). An unbalanced jackknife. Annals of Statistics 2, 880-891.
[18] Miyakawa, M. (1984). Analysis of incomplete data in competing risk model. IEEE
Trans. Reliab. R-33, 293-296.
[19] Nelson, W. and Meeker, W.Q. (1978). Theory for optimum accelerated censored life
test for Weibull and extreme value distributions. Technometrics 20, 171-177.
[20] Nelson, W. (1990). Accelerated Testing: Statistical Models, Test Plans, and Data
Analysis, John Wiley and Sons, New York.
[21] Sarhan, A.M. (2001). Reliability estimations of components from masked system life
data. Reliability Engineering and System Safety 74, 107-113.
[22] Sarhan, A.M. (2003). Estimation of system components reliabilities using masked
data. Applied Mathematics and Computation 136, 79-92.
[23] Tanner, M.A. (1993). Tools for Statistical Inference, 2nd Ed. Springer-Verlag, New
York.
[24] Usher, J.S. (1996).Weibull component reliability-prediction in the presence of masked
data. IEEE Trans. Reliab. R-45, 229-232.
[25] Usher, J.S. and Hodgson, T.J. (1988). Maximum likelihood analysis of component
reliability using masked system life-test data. IEEE Trans. Reliab. R-37, 550-555.
指導教授 樊采虹(Tsai-Hung Fan) 審核日期 2009-6-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明