博碩士論文 962205020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.215.79.116
姓名 陳婉婷(Wan-ting Chen)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 Cox比例風險模型之參數估計─比較部分概似法與聯合模型
(Estimation for Cox proportional hazards model─ Comparison between partial likelihood and joint modeling approach)
相關論文
★ 長期與存活資料之聯合模型-新方法和數值方法的改進★ 復發事件存活分析的共享廣義伽瑪脆弱因子之半母數聯合模型
★ 加乘法風險模型結合長期追蹤資料之聯合模型★ 有序雙重事件時間分析使用與時間相關的共變數-邊際方法的比較
★ 存活與長期追蹤資料之聯合模型-台灣愛滋病實例研究★ 以聯合模型探討地中海果蠅繁殖力與老化之關係
★ 聯合模型在雞尾酒療法療效評估之應用—利用CD4/CD8比值探討台灣愛滋病資料★ 時間相依共變數之雙重存活時間分析—台灣愛滋病病患存活時間與 CD4 / CD8 比值關係之案例研究
★ 復發事件存活時間分析-丙型干擾素對慢性肉芽病患復發療效之案例研究★ Cox 比例風險假設之探討與擴充風險模型之應用
★ 以聯合模型探討原發性膽汁性肝硬化★ 聯合長期追蹤與存活資料分析-肝硬化病患之實例研究
★ 復發事件存活時間分析-rhDNase對囊狀纖維化病患復發療效之案例研究★ 聯合長期追蹤與存活資料分析-原發性膽汁性肝硬化病患之實例研究
★ 復發事件存活時間分析-Thiotepa對膀胱癌病患復發療效之案例研究★ 半母數擴充風險模型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在生物醫學研究的過程中經常收集到與時間有關的長期追蹤共變數,一般最常使用Cox比例風險模型推估時間相依共變數與存活時間過程的關聯性。傳統使用Cox(1972)的部分概似法估計參數,但前提是必須有所有研究對象的完整共變數資訊及無測量誤差,才能達到準確地估計。為了減少部分概似法參數估計上的偏差,採用Wulfsohn(1997)聯合模型能有效地同時運用長期追蹤資料與存活資訊作分析。本研究之目的是比較部分概似法與聯合模型對共變數是與時間有關之下,其參數估計值之變化情況,以利於實例分析中提供根據資料的型態選擇有效率又準確的估計方法。本篇以模擬不同的共變數歷史與存活資料,得到若資料是時間固定(每位研究對象按時回診),使用程式效率高的部分概似法即可有良好的估計結果。然而,隨著共變數資料遺失比例愈高(研究對象測量時間參差不齊),部分概似法所估計的參數偏差愈大,則必須使用估計過程較為繁雜的聯合模型估計其參數,以有效減少偏差。最後,藉由地中海果蠅資料驗證部分概似法與聯合模型所估計的參數之變化。
摘要(英) Time-dependent covariates along with survival information are very common to be collected at same time in many medical research. It is very popular to use Cox proportional hazards model when studying the relationship between time-dependent covariates and the survival time. Cox(1972) propose a method called partial likelihood to estimate model parameters. To obtain unbiased and efficient estimates, we need to know complete information of the covariate history for all individuals and time-dependent covariates without measurement error. Therefore, failure to settle measurement error on the observed covariates and handle incompleteness of time-dependent covariates can cause the estimation to be biased. In order to reduce the bias of the parameter estimate based on partial likelihood, Wulfsohn(1997) successfully develope a joint modeling approach, which employs efficiently longitudinal and survival information at the same time. The purpose of this research is to compare the estimation betweem partial likelihood and joint modeling approach when time-dependent covariates present. We undertake the simulation studies to investigate the properties of the estimation according to various percentage of missing covariate. The simulation results show that partial likelihood is appropriate when individual is examined on schedule. Otherwise, we suggest to use joint modeling. Finally, an example of medfly data is analyzed to demonstrate the properties of the estimation based on partial likelihood and joint modeling approach.
關鍵字(中) ★ Cox比例風險模型
★ 部分概似法
★ 聯合模型
★ 隨機效應
★ 長期追蹤資料
關鍵字(英) ★ Longitudinal data
★ Cox proportional hazards model
★ Partial likelihood
★ Joint model
★ Random effect
論文目次 第一章 緒論.....................1
第二章 統計方法.................7
2.1 部分概似法................8
2.2 聯合模型.................13
2.2.1 EM演算法之E-step.....16
2.2.2 EM演算法之M-step.....18
2.2.3 估計參數過程.........20
2.2.4 參數標準差...........20
第三章 模擬研究................22
3.1 模擬方法.................22
3.1.1 生成資料演算法.......24
3.1.2 二分法...............25
3.2 模擬資料設計.............25
3.3 模擬結果.................26
第四章 實例分析................34
4.1 資料背景.................34
4.2 模型配適.................35
4.3 遺失比例分析.............40
第五章 結論與討論..............44
參考文獻........................46
參考文獻 [1] Anderson, P. K. and Gill, R. D. (1982). Cox’s regression model for counting processes, a large sample study. Annals of Statistics 10. 1100-1120.
[2] Burden, Richard L. and Faires, J. Douglas (2000). Numerical Analysis (7th ed.). Brooks/Cole
[3] Carey, J. R., Liedo, P., Muller, H. G.,Wang, J. L., and Chiou, J. M. (1998). Relationship of age patterns of fecundity to mortality, longevity, and lifetime reproduction in a large cohort of Mediterranean fruit fly females. Journal of Gerontology-Biological Sciences 53. 245-251.
[4] Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society 34(B). 187-220.
[5] Cox, D. R. (1975). Partial likelihood. Biometrika 62. 269-276.
[6] Efron, B. (1994). Missing data, imputation and bootstrap (with Discussion). J. Am. Statist. Assoc. 89. 463-479.
[7] Hsieh, F., Tseng, Y. K., and Wang, J. L. (2006). Joint modeling of survival time and longitudinal data: likelihood approach revisit. Biometrics, 62.1037-1043.
[8] Klein, J. P. and M. L. Moeschberger (1997). Survival Analysis: Techniques for Censored and Truncated Data. Springer.
[9] Lawless, J. F. (1982). Statistical Models and Methods for Lifetime Data. John Wiley & Sons, Inc., New York.
[10] Louis, T. A. (1982). Finding the observed Fisher information when using the EM algorithm. Journal of the Royal Statistical Society, Series B 44. 226-233.
[11] Lin, D. Y. and Ying, Z. (1993). Cox regression with incomplete covariate measurements. Journal of the American Statistical Association 88(424). 1341-1349.
[12] Menggang Yu, Ngayee J. Law, Jeremy M. G. Taylor and Howard M. Sandler. (2004). Joint longitudinal-survival-cure models and their application to prostate cancer. Statist. Sinica 14. 835-862.
[13] Orchard, T. and Woodbury, M. A. (1972). A missing information principle: Theory and applications. In Proceedings of the 6th Berkeley Symposium on Mathematical Statistics and Probability, Volume1, p. 697-715. Berkeley: University of California Press.
[14] Prentice, R. L. (1982). Covariate measurement errors and parameter estimation in failure time regression model. Biometrika 69. 331-342
[15] Press, W. H., Teutolsky, S. A., Vetterling, W. T., and Flannery, B.P. (1992). Numerical recipes in FORTRAN: the art of scientific computing. New York, NY, USA: Cambridge University Press, 2nd ed.
[16] Paik, M. C., and Tsai, W. Y. (1997). On using the Cox proportional hazards model with missing covariates. Biometrika 84(3). 579-593.
[17] Schafer, D.W.(1987). Covariate measurement errors in generalized linear models. Biometrika 74. 385-391.
[18] Tierney, L. and Kadane, J. B. (1986). Accurate approximation for posterior moments and marginal densities. Journal of the American Statistical Association 81. 82-86.
[19] Tseng, Y. K., Hsieh F. and Wang J.L. (2005). ”Joint modeling of accelerated failure time and longitudinal data.” Biometrika 92. 587-603.
[20] Tseng, Y. K. and Hsieh, Y. H. (2006). A Joint model approach for evaluating the efficacy of HAART treatment for AIDS patients in Taiwan. Submitted.
[21] Wulfsohn, M. S. and Tsiatis, A. A. (1997). A joint model for survival and longitudinal data measured with error. Biometrics, 53. 330-339.
[22] Wang, Y. and Taylor, J. M. G. (2001). Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome. Journal of the American Statistical Association, 96. 895-905.
[23] Zhou, H. and Pepe, M. S. (1995). Auxiliary covariate data in failure time regression. Biometrika 82(1). 139-149.
[24] Zeng D. and Cai J. (2005). Asymptotic results for maximum likelihood estimators in joint analysis of repeated measurements and survival time. The Annals of Statistics 33(5). 2132-63.
指導教授 曾議寬(Yi-kuan Tseng) 審核日期 2009-6-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明