博碩士論文 962206003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.117.70.24
姓名 俞文翔(Wen-Hsiang Yu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 耦合表面電漿模態之線性與非線性侷域場分析與應用於微量分子感測上之設計與驗證
(The Analysis of Linear and Nonlinear Localization Characteristics of Coupled Surface Plasmon Mode and Applied to the Design and the Demonstration in Single Molecule Detection)
相關論文
★ 以側磨光纖半塊材耦合器激發微米球型共振腔基模之研究★ 以氬離子雷射對玻璃材料加工之研究
★ 以裸光纖激發球共振腔之共振譜研究★ 錐狀平面波導光柵結構與微米小球共振腔之光耦合效率研究
★ 溶膠凝膠法合成以鉭元素為基礎的全固態電致變色元件★ S型彎曲波導與微米小球共振腔之光耦合效率研究
★ 錐狀光纖與微米球共振腔耦合之研究與應用★ 以鎖模鈦藍寶石飛秒雷射雙光子聚合製作光波導微結構之研究
★ 利用光子晶體的能隙邊緣移動達成全光開關之研究★ 利用繞射圖形檢測錐狀光纖的製造與品質
★ 利用雙光子聚合技術製作高耦合效率波導陣列光纖耦合器★ 光學印刷電路板之製作與特性分析
★ 鈉鉀離子交換波導之製作及其表面消逝波之研究★ 拉伸式長週期光纖光柵的模態色散現象研究
★ 可調式窄頻液晶濾波器★ 基於D形光纖之拉曼感測器模擬與設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 短短的數十年內,間隙表面電漿之發展已從科幻邁入真實,並於表面電漿迴路、太赫茲產生、近場光學顯微鏡、高密度資料儲存、高效率太陽能電池、單分子檢測、光熱治療與生物標籤等領域扮演了舉足輕重的角色。本論文對於間隙結構中之耦合表面電漿模態進行了線性/非線性和侷域/非侷域之全波向量特性分析,並進一步將分析結果應用於單分子之探測上。
在結構設計與分析中,「表面電漿超稜鏡」被提出用以分析空間中的角色散,可用以製作微型光譜儀,其偵測敏感度高達5.4˚/nm;「表面電漿輸送環」之研究,探索了模態分裂之起源係源自內共振腔之耦合,並被用於同時偵測奈米散射體之電極化率與位置;「無定義共振腔」之研究,重新詮釋了在金屬奈米狹縫中之Goos-Hänchen相位平移,應用於建立具有無限大增強係數與趨近於零體積之光學共振腔。「非線性拉曼增強與溫度抑制」之研究,揭發了溫度場與電磁場間在奈米粒子上之強耦合效應,調控了照射強度相依增強係數與溫度之非線性函數關係,應用於單分子感測上,可以得到合理的偵測靈敏度卻又不造成分子劣化。
實驗上,「單分子表面增強異常閃爍拉曼光譜」之研究,基於自行建立的拉曼顯微鏡,清晰的觀測了間隙表面電漿輔助誘發之單分子拉曼光譜,而其中同調閃爍之震動模態被歸因於震動模式之耦合;「在金奈米島間中之光頻率混合」之研究,基於自行建立之多色激發-探測系統,實現了小於40 fs四波混合的鬆弛時間量測;「三維光學塔柏效應」之研究,基於近場光學顯微鏡之超空間解析能力,繪製了在繞射極限下之三維干涉圖形。
本論文對於利用時空超解析光譜研究表面電漿與奈米待測物之動態行為開啟了新的道路,可作為次世代了解與控制奈米系統之參考。
摘要(英) For the past few decades, the development of gap plasmons has been turned from science fiction into reality, and played a pivotal role in the fields of nanocircuitry, terahertz generation, near-field optical microscopy, high-density data storage, high efficiency solar cells, single molecule detection, photo-thermal therapy, and nontoxic bio-labels. This thesis presents in depth full-vectorial analysis for the linear/nonlinear and local/nonlocal properties of coupled surface plasmons in a variety of gap structures, and the application to the detection of single molecule.
In the structure design and analysis, the “plasmonic superprism” was proposed for the analysis of angular dispersion of light waves in free space. It can be readily used for the manufacture of miniaturized spectrometer with a detection sensitivity as high as 5.4˚/nm; The “plasmonic carousel” explored the origin of giant mode splitting from intracavity resonance. This effect wad found useful in simultaneously monitoring the position and the polarizability of nano-objects; the “indefinite cavity” revisits the Goos-Hänchen phase shift in a tiny metallic slit, and the peculiar resonance was applied to design an optical cavity with infinite enhancement factor and nearly zero mode; the “nonlinear Raman enhancement and temperature suppression” unraveled the strong coupling between the temperature field and electromagnetic field in metal nanoparticles. The nonlinear relationship between the temperature and the electromagnetic enhancement as a function of illumination intensity was tailored to give appropriate detection sensitivity for single molecules while avoid thermal degradation.
Experimentally, the study “anomalous blinking characteristic in single molecule surface enhanced Raman spectroscopy” based on home-built Raman microscope clearly observed the gap plasmons assisted single molecule Raman scattering. Of particular interest, the synchronous blinking in various vibrational modes was attributed to the vibronic coupling; the study “optical frequency mixing at gold nanoisland” was conducted basing on home-built multi-color pump-probe system. Four wave mixing dynamics with a temporal resolution <40 fs was relaized which is useful for nonlinear spectroscopy and bio-labeling; “three dimensional optical Talbot carpet” was demonstrated based on scanning near-field optical microscope, where 3D interference pattern beyond the diffraction limit was mapped.
This thesis opens an avenue for studying of the interactions between surface plasmons and nano-objects where the dynamics were probed by spatial-temporal resolved spectroscopy. The results will certainly benefit to the scientic society, particularly in the fields of bio-photonics and next-generation nanosystems.
關鍵字(中) ★ 表面電漿子學
★ 表面電漿模態
關鍵字(英) ★ Plasmonics
★ Surface Plasmon Mode
論文目次 目 錄
摘 要 I
ABSTRACT II
誌 謝 IV
目 錄 V
圖目錄 VIII
表目錄 XIV
符號說明 XV
一、序論 1
1-1歷史背景 1
1-2研究動機 4
1-3論文架構 5
二、表面電漿模態之基本理論 7
2-1 傳播型式表面電漿模態 7
2-1-1 金屬-介電質界面之表面電漿模態 7
2-1-2 基於介電質-金屬-介電質結構之長距離耦合表面電漿模態 10
2-1-3 基於金屬-介電質-金屬結構之場增強耦合表面電漿模態 13
2-1-4光學耦合器 15
2-2 侷域化表面電漿模態 17
三、數值模擬方法 19
3-1有限時域差分法 19
3-1-1簡介 19
3-1-2數值邊界條件 21
3-2-3色散材料之模擬 30
3-2-4總場-散射場連結邊界條件 35
3-2有限差分法 39
四、次波長尺度光感測結構之設計 44
4-1表面電漿超稜鏡 44
4-1-1 簡介 44
4-1-2 異質金屬-介電質-金屬表面電漿準對稱模態之傳播特性 45
4-1-3 模態強色散區域與角色散分光之連結 49
4-1-4表面電漿超稜鏡與折射率分光效應 50
4-2表面電漿輸送環 52
4-2-1 簡介 52
4-2-2 模態分裂之成因 52
4-2-3 相位加速現象 57
4-2-4 彎曲角度相依之模態分裂 58
4-2-5利用模態分裂與波長平移同時偵測單奈米物體之電極化率與位置 59
4-3無定義共振腔 61
4-3-1 簡介 61
4-3-2 次波長表面電漿狹縫之Goos-Hänchen相位平移 62
4-3-3 無定義共振腔之滿足條件 67
4-4非侷域溫度-電磁場交互作用對單分子表面增強拉曼感測之貢獻 68
4-4-1 簡介 68
4-4-2 模型與數值過程 70
4-4-3 計算結果與討論 73
五、實驗架設之建立與結果 79
5-1單分子表面增強拉曼閃爍效應 79
5-1-1 簡介 79
5-1-2群體分子之表面增強拉曼散射 81
5-1-3單分子表面增強拉曼閃爍效應 87
5-2利用寬頻激發-探測技術偵測金分子膜之四波混合效應 94
5-2-1 實驗架設 94
5-2-2量測結果之驗證與分析 96
5-3朝向超空間解析表面增強同調/非同調分子光譜-利用塔柏圖形驗證近場光學顯微術之次波長空間解析能力 102
5-3-1 實驗架設 102
5-3-2 光學塔柏圖形之量測 104
六、 結論與未來展望 108
七、 參考文獻 111
參考文獻 參考文獻
第一章
[1.1] R. W. Wood “On a Remarkable Case of Uneven Distribution of Light in Diffraction Grating Spectrum,” Proc. Phys. Soc. London 18, 269-275 (1902).
[1.2] L. Rayleigh “On the Dynamic Theory of Gratings,” Proc. R. Soc. London Ser. A 79, 399–416 (1907).
[1.3] L. Rayleigh “Note on the Remarkable Case of Diffraction Spectra Described by Prof. Wood,” Phil. Mag. 14, 60-65 (1907).
[1.4] W. L. Bragg “The Diffraction of Short Electromagnetic Waves by a Crystal,” Proceedings of the Cambridge Philosophical Society 17, 47-57 (1913).
[1.5] R. W. Wood “Diffraction Gratings with Controlled Groove form and Abnormal Distribution of Intensity,” Phil. Mag. 23, 310-317, (1912).
[1.6] R. W. Wood “Anomalous Diffraction Gratings,” Phys. Rev. 48, 928-936, (1935).
[1.7] J. Zenneck, “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie,” Ann. der Physik, 23, 846–866 (1907).
[1.8] A. Sommerfeld, “Über die Ausbreitlung der Wellen in der drahtlosen Telegraphie", Annalen der Physik,” 28, 665-736, 1909.
[1.9] U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves),” J. Opt. Soc. Am. 32, 213-222 (1941).
[1.10] D. Pine and D. Bohm, “A Collective Description of Electron Interactions:Ⅱ Collective vs Individual Particle Aspects of the Interactions,” Phys. Rev. 85, 338-353 (1952).
[1.11] R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874-881 (1957).
[1.12] C. J. Powell and J. B. Swan, “Origin of the Characteristic Electron Energy Losses in Aluminum,” Phys. Rev. 115, 869-875 (1959).
[1.13] T. Turbadar, “Complete Absorption of Light by Thin Metal Films,” Proc. Phys. Soc. 73, 40-44 (1959).
[1.14] A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[1.15] E. Kretschmann and H. Raether, “Radiative Decay of Non-Radiative Surface Plasmons Excited by Light,” Z. Phys. 239, 2135-2136 (1968).
[1.16] E. Kretschmann, “Decay of Non Radiative Surface Plasmons into Light on Rough Silver Films. Comparison of Experimental and Theoretical Results,” Optics Communications 6, 185-187 (1972).
[1.17] R.P.H. Kooyman, H. Kolkman, J. Van Gent, and J. Greve, “Surface Plasmon Resonance Immunosensors: Sensitivity Considerations,” Anal. Chim. Acta. 213, 35-45 (1988).
[1.18] B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and Biosensing,” Sensors and Actuators 4, 299-304 (1983).
[1.19]R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent Light Emission from GaAs Junctions,” Phys. Rev. 1, 366-368 (1962).
[1.20] K. C. Kao and G. A. Hockham, “Dielectric-Fibre Surface Waveguides for Optical Frequencies,” Proc. IEE 113, 1151-1158 (1966).
[1.21] E. Ruska and M. Knoll, “Die Magnetische Sammelspule für Schnelle Elektronenstrahlen,” Z. Tech. Physik. 12, 389–400 (1931).
[1.22] M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal Waveguide Dimensions Nonlinear Interactions,” Opt. Express 12, 2880–2887 (2004).
[1.23] D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photonics 4, 83 - 91 (2010).
[1.24] S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel Plasmon-Polariton Guiding by Subwavelength Metal Groove,” Phys. Rev. Lett. 95, 046802 (2005).
[1.25] F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. GonzÁlez, J. C. Webber, and A. Dereux, “Efficient Unidirectional Nanoslit Coupler for Surface Plasmons,” Nat. Phys. 3, 324-328 (2007).
[1.26] Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective Polarizer Based on a Stacked Double-Layer Subwavelength Metal Grating Structure Fabricated using Nanoimprint Lithograpy,” Appl. Phys. Lett. 77, 927-929 (2000).
[1.27] A. V. Zayats, W. Dickson, I. I. Smolyaninov, and C. C. Davis, “Polarization Superprism Effect in Surface Polaritonic Crystals,” Appl. Phys. Lett. 82, 4438-4440 (2003).
[1.28] C.-Y. Tai, W.-H. Yu, and S. H. Chang, “Giant Angular Dispersion Mediated by Plasmonic Modal Competition,” Opt. Express 24, 24510-24515 (2010).
[1.29] S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel Plasmon Subwavelength Waveguide Components Including Interferometers and Ring Resonators,” Nature 440, 508-511 (2006).
[1.30] M. U. González, J.-C. Webber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, and E. Devaux, and T. W. Ebbesen, “Design, Near-Field Characterization, and Modeling of 45o Surface-Plasmon Bragg Mirrors,” Phys. Rev. B 73, 155416 (2006).
[1.31] R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Integrated Optics Elements Based on Long-Ranging Surface Plasmon Polaritons,” Opt. Express 13, 977-984 (2005).
[1.32] W. Nomura, M. Ohtsu, and T. Yatsui, “Nanodot Coupler with a Surface Plasmon Polariton Condenser for Optical Far/Near-Field Conversion,” Appl. Phys. Lett 86, 181108 (2005).
[1.33] T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-Plasmon Circuitry,” Phys. Today 61, 44-50 (2008).
[1.34] R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon Lasers at Deep Subwavelength Scale,” Nature 461, 629-632 (2009).
[1.35] M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a Spaser-Based Nanolaser,” Nature 460, 1110-1112 (2009).
[1.36] F. J. Garcia-Vidal and E. Moreno, “Laser Go Nano,” Nature 461, 604-605 (2009).
[1.37] N. Del Fatti, R. Bouffanais, F. Vallée, and C. Flytzanis, “Nonequilibrium Electron Interaction in Metal Films,” Phys. Rev. Lett. 81, 922-925 (1998).
[1.38] M. Pohl, V. I. Belotelov, I. A. Akimov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Plasmonic Crystals for Ultrafast Nanophotonics: Optical Switching of Surface Plasmon Polaritons,” Phys. Rev. Lett. 85, 081401 (2012).
[1.39] V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward Integrated Plasmonic Circuits,” MRS Bull. 37, 728-738 (2012).
[1.40] R. P. Van Duyne, “Molecular Plasmonics,” Science. 306, 985-986 (2004).
[1.41] C. V. Lavers and J. S. Wilkinson, “A Waveguide-Coupled Surface-Plasmon Sensor for an Aqueous Environment,” Sen. Actu. B 22, 75-81 (1994).
[1.42] J. Homola, “Optical Fiber Sensor Based on Surface Plasmon Excitation,” Sen. Actu. B 29, 401-405 (1995).
[1.43] E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, “Sensor Based on an Integrated Optical Microcavity,” Opt. Lett. 27, 512-514 (2002).
[1.44] A. Michelson and E. Morley, “On the Relative Motion of the Earth and the Luminiferous Ether,” Amer. J. Sci. 34, 333–345 (1887).
[1.45] Y. Gao, Q. Gan, Z, Xin, X, Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder Interferometer for Ultrasensitive On-Chip Biosensing,” Acs Nano 5, 9836-9844 (2011).
[1.46] A. M. Armani, R. P. Kulkarni, S. E. Fraser, and K. J. Vahala, “Label-Free Single Molecule Detection with Optical Microcavities,” Science 317, 783-787 (2007).
[1.47] O. Folin and H. Wu, “A System of Blood Analysis: Supplement I. A Simplified and Improved Method for Determination of Sugar,” J. Biol. Chem. 41, 367-374 (1920).
[1.48] H. V. Hsieh, Z. A. Pfeiffer, T. J. Amiss, D. B. Sherman, J. B. Pitner, “Direct Detection of Glucose by Surface Plasmon Resonance with Bacterial Glucose/Galactose-Binding Protein,” Biosens. Bioelectron. 19, 653-660 (2004).
[1.49] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman Spectra of Pyridine Adsorbed at a Silver Electrode,” Chem. Phys. Lett. 26, 163-166 (1974).
[1.50] S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275, 1102-1106 (1997).
[1.51] T. Plakhotnik, E. A. Donley, and U. P. Wild, “Single-Molecule Spectroscopy,” Annu. Rev. Phys. Chem. 48, 181-212 (1997).
[1.52] P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical Detection of Single Non-Absorbing Molecules using the Surface Plasmon Resonance of a Gold Nanorod,” Nature Nanotech. 7, 379-382 (2012).
[1.53] M. Käll, “One Molecule at a Time,” Nature Nanotech. 7, 347-349 (2012).
[1.54] I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sönnichsen, “Single Unlabeled Protein Detection on Individual Plasmonic Nanoparticles,” Nano Lett. 12, 1092-1095 (2012).
[1.55] S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and Sensitive Detection of Respiratory Virus Molecular Signatures Using a Silver Nanorod Array SERS Substrate,” Nano Lett. 6, 2630-2636 (2006).
[1.56] G. M. Shankar, S. Li, T. H. Mehta, A. Garcia-Munoz, N. E. Shepardson, I. Smith, F. M. Brett, M. A. Farrell, M. J. Rowan, C. A. Lemere, C. M. Regan, D. M. Walsh, B. L. Sabatini, and D. J. Selkoe, “Amyloid-β Protein Dimers Isolated Directly from Alzheimer’s Brains Impair Synaptic Plasticity and Memory,” Nature Medicine 14, 837-842 (2008).
[1.57] M. E. Bruce, “New Variant Creutzfeldt-Jakob Disease and Bovine Spongiform Encephalopathy,” Nature Medicine 6, 258-259 (2000).
[1.58] B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of Dynamic Molecular Rulers Based on Plasmon Coupling between Gold Nanoparticles,” Nano Lett. 5, 2246-2252 (2005).
[1.59] Y. S. Chen, M. Y. Hong, and G. S. Huang, “A Protein Transistor Made of an Antibody Molecule and Two Gold Nanoparticles,” Nature Nanotech. 7, 197-203 (2012).
[1.60] B. Lounis and W. E. Moerner, “Single Photons on Demand from a Single Molecule at room Temperature,” Nature 427, 491-493 (2000).
[1.61] S. C. Sullivan, W. K. Woo, J. S. Steckel, M. Bawendi, and V. Bulović, “Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices,” Organic Electronics 4, 123-130 (2003).
[1.62] S. R. Emory, R. A. Jensen, T. Wenda, M. Han, and S. Nie, “Re-Examining the Origins of Spectral Blinking in Single-Molecule and Single-Nanoparticle SERS,” Faraday Discussions 132, 249-259 (2006).
[1.63] A. M. Michaels, J. Jiang, and L. Brus, “Ag Nanocrystal Junction as the Site for Surface Enhanced Raman Scattering of Single Rhodamine 6G Molecules,” J. Phys. Chem. B 104, 11965-11971 (2000).
[1.64] L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors under Magnetic Resonance Guidance,” PANS 100, 13549-13554 (2003).
[1.65] A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano Lett. 7, 1929-1934 (2007).
[1.66] K. M. Hilligsøe, T. V. Anderson, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum Generaton in a Photonic Crystal Fiber with Two Zero Dispersion Wavelengths,” Opt. Express 12, 1045-1054 (2004).
[1.67] Y. Wang, X. Liu, D. Whitmore, W. Xing, and E. O. Potma, “Remote Multi-Color Excitation using Femtosecond Propagating Surface Plasmon Polaritons in Gold Films,” Opt. Express 19, 13454-13463 (2011).
第二章
[2.1] M. A. Ordal, R. J. Bell, R. W. Alexander, Jr, L. L. Long, and M. R. Querry, “Optical Properties of Fourteen Metals in the Infrared and Far Infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V and W,” Applied Optics 24, 4493-4499 (1985).
[2.2] P. Berini, “Long-Range Surface Plasmon Polaritons,” Advances in Optics and Photonics 1, 484-588 (2009).
[2.3] D. Sarid, “Long-Range Surface-Plasma Waves on Very Thin Metal Films,” Phys. Rev. Lett. 47, 1927-1930 (1981).
[2.4] D. Sarid, “Long-Range Surface-Plasma Waves on Very Thin Metal Films (Erratum),” Phys. Rev. Lett. 48, p. 446 (1982).
[2.5] A. E. Craig, G. A. Olson, and D. Sarid, “Experimental Observation of Long-Range Surface Plasmon-Polaritons,” Opt. Lett. 8, 380-382 (1983).
[2.6] P. Berini, “Plasmon-Polariton Modes Guided by a Metal Film of Finite Width,” Opt. Lett. 24, 1011-1013 (1999).
[2.7] J.-C. Webber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon Polaritons of Metallic Nanowires for Controlling Submicron Propagation of Light,” Phys. Rev. B 60, 9061-9068 (1999).
[2.8] P. Berini, “Air Gaps in Metal Stripe Waveguides Supporting Long-Range Surface Plasmon-Polaritons,” J. Appl. Phys. 102, 033112 (2007).
[2.9] Y. Satuby and M. Orenstein, “Surface-Plasmon-Polariton Modes in Deep Metallic Trenches-Measurement and Analysis,” Opt. Express 15, 4247-4252 (2007).
[2.10] M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations,” Science 299, 682-686 (2003).
[2.11] F. Yang, J. R. Sambles, and G. W. Bradberry, “Prism Coupling to Long-Range Coupled-Surface Modes,” J. Mod. Opt. 38, 707-717 (1991).
[2.12] G. P. Bryan-Brown, F. Yang, G. W. Bradberry, and J. R. Sambles, “Prism and Grating Coupling to Long-Range Coupled-Surface Exciton-Polaritons,” J. Mod. Opt. 38, 707-717 (1991).
[2.13] Y. J. Chen, E. S. Koteles, R. J. Seymour, G. J. Sonek, and J. M. Ballantyne, “Surface Plasmons on Gratings: Coupling in the Minigap Regions,” Solid State Communications 46, 95-99 (1983).
[2.14] F. Liu, Y. Rao, Y. Huang, W. Zhang, and J. Peng, “Coupling Between Long Range Surface Plasmon Polariton Mode and Dielectric Waveguide Mode,” Appl. Phys. Lett. 90, 141101 (2007).
[2.15] R. Charbonneau, C. Scales, I. Breuklaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive Integrated Optics Elements Based on Long-Range Surface Plasmon Polaritons,” J. Lightwave Technol. 24, 477-494 (2006).
[2.16] G. Mie, “Beiträge zur Optik Trüber Medien, Speziell Kolloidaler Metallösungen,” Annalen der Physik 330, 377–445 (1908).
[2.17] E. Hao and G. C. Schatz “Electromagnetic Fields around Silver Nanoparticles and Dimers,” J. Chem. Phys. 120, 357–366 (2004).
[2.18] W. S. Chang, J. W. Ha, L. S. Slaughter, and S. Link, “Plasmonic Nanorod Absorbers as Orientation Sensors,” PANS 107, 2781–2786 (2010).
[2.19] P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett. 4, 899–903 (2004).
[2.20] L. Chuntonov, and G. Haran, “Trimeric Plasmonic Molecules: The Role of Symmetry,” Nano Lett. 11, 2440–2445 (2011).
[2.21] K. H. Su, Q. H. Wei, and X. Zhang “Tunable and Augmented Plasmon Resonance of Au/SiO2/Au Nanodisks,” Appl. Phys. Lett. 88, 063118 (2006).
[2.22] M. Maillard, P. Huang, and L. Brus, “Silver Nanodisk Growth by Surface Plasmon Enhanced Photoreduction of Adsorbed [Ag+],” Nano Lett. 3, 1611–1615 (2003).
[2.23] F. Xia, X. Zuo, R. Yang, Y. Xiao, D. Kang, A. Vallée-Bélisle, X Gong, J. D. Yuen, B. B. Y. Hsu, A. J. Heeger, and K. W. Plaxco “Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes,” PNAS 107, 10837–10841 (2010).
第三章
[3.1] A. Taflove, “Application of the Finite-Difference Time-Domain Method to Sinusoidal Steady State Electromagnetic Penetration Problems,” IEEE Trans. Electromag. Compat 22, 191-202 (1980).
[3.2] K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equation in Isotropic Media,” IEEE Trans. Attenna. Propaga. 14, 302-307 (1966).
[3.3] J. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” Journal of Computational Physics 114 185–200 (1994).
[3.4] A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House 2005).
[3.5] W. C. Chew and W. H. Weedon “An Efficient PML Implementation for the ADI-FDTD Method,” Microw. Opt. Tech. Lett. 7 599–604 (1994).
[3.6] S. Wang and F. L. Teixeira, “A 3D Perfectly Matched Medium from Modified Maxwell’s Equations with Stretched Coordinates,” IEEE Micro. Wire. Components Lett 14, 248-249 (2000).
[3.7] M. Kuzuoglu and R. Mittra, “Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers,” IEEE Microwaves Guided Wave Lett 6, 447-449 (1996).
[3.8] J. A. Roden and S. D. Gedney “Convolution PML (CPML): An Efficient FDTD Implementation of the CFS-PML for Arbitrary Media,” Microw. Opt. Tech. Lett. 27, 334–339 (2000).
[3.9] R. Luebbers, F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider “A Frequency-Dependent Finite-Difference Time Domain Formulation for Dispersive Materials,” IEEE Trans. Electromag. Compat. 32, 222–227 (1990).
[3.10] G. X. Fan and Q. H. Liu, “A FDTD Algorithm with Perfectly Matched Layers for General Dispersive Media,” ,” IEEE Trans. Attenna. Propaga. 48, 637-646 (2000).
[3.11] G. X. Fan, Q. H. Liu, and S. A. Hutchinson, “FDTD and PSTD simulations for plasma applications,” IEEE Trans. Plasma Sci. 29, 341-348 (2001).
[3.12] Q. H. Liu, “An FDTD Algorithm with Perfectly Matched Layers for Conductive Media,” Microw. Opt. Tech. Lett. 14, 134–137 (1997).
[3.13] A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices,” Applied Optics 37, 5271–5283 (1998).
[3.14] D. E. Mcrewether, R. Fisher, and F. W. Smith, “On Implementing a Numeric Huygen’s Source Scheme in a Finite-Difference Program to Illuminate Scattering Bodies,” IEEE Trans. Nuclear Science, 27, 1829–1833 (1980).
[3.15] K. R. Umashankar and A. Taflove, “A Novel Method to Analyze Electromagnetic Scattering of Complex Objects” IEEE Trans. Electromagn. Compat., 24, 397–405 (1982).
[3.16] J. Hull and A. White, “Valuing Derivative Securities Using the Explicit Finite Difference Method” Journal of Financial and Quantitative Analysis 25, 87–100 (1990).
[3.17] G. Baffou, R. Quidant, and C. Girard, “Mapping Generation in Plasmonic Nanostructures: Influence of Morphology,” Appl. Phys. Lett. 94, 153109 (2009).
[3.18] L. Gamet, F. Ducros, F. Nicoud, and T. Poinsot, “Compact Finite Difference Schemes on Non-Uniform Meshes. Application to Direct Numerical Simulation of Compressible Flows” Int. J. Numer. Fluids 29: 159–191 (1999).
[3.19] G. Baffou, R. Quidant, and F. J. G. de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4, 709-716 (2010).
[3.20] G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104, 136805 (2010).
第四章
[4.1] J. R. Marciante and D. H. Raguin, “High Efficiency, High Dispersion Diffraction Gratings Based on Total Internal Reflection,” Opt. Lett. 29, 542-544 (2004).
[4.2] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism Phenomena in Photonic Crystals,” Phys. Rev. B 58, R10096 (1998).
[4.3] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism Phenomena in Photonic Crystals: Toward Microscale Lightwave Circuits,” J. Lightwave Technol. 17, 2032-2039 (1999).
[4.4] H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative Refraction at Visible Frequencies,” Science 316, 430-432 (2007).
[4.5] I. P. Kaminow, W. L. Mammel, and H. P. Weber, “Metal-Clad Optical Waveguides: Analytical and Experimental Study,” Appl. Opt. 13, 396–405 (1974).
[4.6] A. Haus, Waves and Fields in Optoelectronics, Prentice-Hall, Englewood Cliffs, NJ, (1984).
[4.7] S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q Toroidal Microresonators for Cavity Quantum Electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[4.8] A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317, 783–787 (2007).
[4.9] F. Vollmer and S. Arnold, “Whispering-Gallery-Mode Biosensing: Label-Free Detection down to Single Molecules,” Nat. Methods 5, 591–596 (2008).
[4.10] A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering Gallery Mode Biosensors in the Low Q Limit,” Appl. Phys. B 90, 561–567 (2008).
[4.11] B. E. Little, J. P. Laine, and H. A. Haus, “Analytic Theory of Coupling from Tapered Fibers and Half-Blocks into Microsphere Resonators,” J. Lightwave Technol. 17, 704-715 (1999).
[4.12] A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved Transmission Model for Metal-Dielectric-Metal Plasmonic Waveguides with Stub Structure,” Opt. Express 18, 6191–6204 (2010).
[4.13] J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Surface Plasmon Reflector based on Serial Stub Structure,” Opt. Express 17, 20134–20139 (2009).
[4.14] A. Hosseini and Y. Massoud, “Nanoscale Surface Plasmon Based Resonator using Rectangular Geometry,” Appl. Phys. Lett. 90, 181102 (2007).
[4.15] J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Plasmon Flow Control at Gap Waveguide Junctions using Square Ring Resonators,” J. Phys. D Appl. Phys. 43, 055103 (2010).
[4.16] G. Veronis and S. Fan, “Bends and Splitters in Metal-Dielectric-Metal Subwavelength Plasmonic Waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[4.17] D. F. P. Pile and D. K. Gramotnev, “Plasmonic Subwavelength Waveguides: Next to Zero Losses at Sharp Bends,” Opt. Lett. 30, 1186–1188 (2005).
[4.18] T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “High Sensitivity Nanoparticle Detection using Optical Microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[4.19] J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-Chip Single Nanoparticle Detection and Sizing by Mode Splitting in an Ultrahigh-Q Microresonator,” Nat. Photonics 4, 46–49 (2010).
[4.20] S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[4.21] M. L. Gorodetsky and V. S. Ilchenko, “Optical Microsphere Resonators: Optimal Coupling to High-Q Whispering Gallery Modes,” J. Opt. Soc. Am. B 16, 147–154 (1999).
[4.22] T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal Coupling in Traveling-wave Resonators,” Opt. Lett. 27, 1669–1671 (2002).
[4.23] M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh Scattering in high-Q Microspheres,” J. Opt. Soc. Am. B 17, 1051–1057 (2000).
[4.24] J. Avelin, R. Sharma, I. Hänninen, and A. H. Sihvola, “Polarizability Analysis of Cubical and Square-Shaped Dielectric Scatterers,” IEEE Trans. Antenn. Propag. 49, 451–457 (2001).
[4.25] C. V. Raman and K. S. Krishnan, “A Newtype of Secondary Radiation,” Nature 121, 501–502 (1928).
[4.26] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman Spectra of Pyridine Adsorbed at a Silver Electrode,” Chem. Phys. Lett. 26, 163-166 (1974).
[4.27] S. L. McCall and P. M. Platzman, “Raman Scattering from Chemisorbed Molecules at Surfaces,” Phys. Rev. B 22, 1660-1662 (1980).
[4.28] J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, “Charge-Transfer Theory of Surface Enhanced Raman Spectroscopy: Herzberg–Teller Contributions,” J. Chem. Phys. 84, 4174-4180 (1986).
[4.29] F. Goos and H. Hänchen, Ein neuer und Fundamentaler Versuch zur Totalreflexion, Ann. Phys. 436, 333–346 (1947).
[4.30] Y. Takakura, “Optical Resonance in a Narrow Slit in a Thick Metallic Screen,” Phys. Rev. Lett. 86, 5601 (2001).
[4.31] R. Gordon, “Light in a Subwavelength Slit in a Metal: Propagation and Reflection,” Phys. Rev. B 73, 153405 (2006).
[4.32] R. Gordon, “Angle-Dependent Optical Transmission through a Narrow Slit in a Thick Metal Film,” Phys. Rev. B 75, 193401 (2007).
[4.33] Klaus Halterman and Simin Feng, “Resonant Transmission of Electromagnetic Fields through Subwavelength Zero-ε Slits,” Phys. Rev. A 78, 021805 (2008).
[4.34] V. G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of Permittivity and Permeability,” Sov. Phys. Usp. 10, 509 (1968).
[4.35] F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2, 707-718 (2008).
[4.36] T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103, 9846-9853 (1999).
[4.37] V. L. Schlegel and T. M. Cotton, “Silver-island films as substrates for enhanced Raman scattering: effect of deposition rate on intensity,” Anal. Chem. 63, 241-247 (1991).
[4.38] J. T. Bahns, F. Yan, D. Qiu, R. Wang, and L. Chen, “Hole-enhanced Raman scattering,” Appl. Spectrosc. 60, 989-993 (2006).
[4.39] K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold−nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett. 6, 2173-2176 (2006).
[4.40] P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88, 5935-5944 (1984).
[4.41] S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102-1106 (1997).
[4.42] K. Kneipp, H. Kneipp, R. Manoharan, E. B. Hanlon, I. Itzkan, R. R. Dasari, and M. S. Feld, “Extremely large enhancement factors in surface-enhanced Raman scattering for molecules on colloidal gold clusters,” Appl. Spectrosc. 52, 1493-1497 (1998).
[4.43] A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932-9939 (1999).
[4.44] M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature (London) 383, 802-804 (1996).
[4.45] Th. Basché, S. Kummer, and C. Bräuchle, “Direct spectroscopic observation of quantum jumps of a single molecule,” Nature 373, 132-134 (1995).
[4.46] S. R. Emory, R. A. Jensen, T. Wenda, M. Han, and S. Nie, “Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS,” Faraday Discuss. 132, 249-259 (2006).
[4.47] A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B 104, 11965-11971 (2000).
[4.48] Al. L. Efros and M. Rosen, “Random telegraph signal in the photoluminescence intensity of a single quantum dot,” Phys. Rev. Lett. 78, 1110-1113 (1997).
[4.49] K. A. Bosnick, J. Jiang, and L. E. Brus, “Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates,” J. Phys. Chem. B 106, 8096-8099 (2002).
[4.50] Z. Wang and L. J. Rothberg, “Origins of blinking in single-molecule Raman spectroscopy,” J. Phys. Chem. B 109, 3387-3391 (2005).
[4.51] Y. Maruyama, M. Ishikawa, and M. Futamata, “Thermal activation of blinking in SERS signal,” J. Phys. Chem. B 108, 673-678 (2004).
[4.52] G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104, 136805 (2010).
[4.53] H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9, 1139-1146 (2009).
[4.54] P. T. Leung, M. H. Hider, and E. J. Sanchez, “Surface-enhanced Raman scattering at elevated temperatures,” Phys. Rev. B 53, 12659-12662 (1996).
[4.55] L. Xu, and Y. Fang, “Temperature-induced effect on surface-enhanced Raman scattering of p, m-hydroxybenzoic acid on silver nanoparticles,” Spectroscopy 18, 26-31 (2003).
[4.56] A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929-1934 (2007).
[4.57] R. C. Maher, L. F. Cohen, P. Etchegoin, H. J. N. Hartigan, R. J. C. Brown, and M. J. T. Milton, “Stokes/anti-Stokes anomalies under surface enhanced Raman scattering conditions,” J. Chem. Phys. 120, 11746-11753 (2004).
[4.58] G. Baffou, R. Quidant, and F. J. G. de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4, 709-716 (2010).
[4.59] R. Franz and G. Wiedemann, “Ueber die wärme-leitungsfähigkeit der metalle,” Annalen der Physik 165, 497-531 (1853).
[4.60] N. W. Ashcroft and N. D. Mermin, Solid State Physics, (Harcourt Brace College Publishers, Orlando, Florida 1976), Chap. 1.
[4.61] K. Linko and K. Hynynen, “Erythrocyte damage caused by the Haemotherm microwave blood warmer,” Acta Anaesthesiol Scand. 23, 320-328 (1979).
[4.62] M. I. Hafez, S. Zhou, R. R. H Coombs, I. D. McCarthy, “The effect of irrigation on peak temperatures in nerve root, dura, and intervertebral disc during laser-assisted foraminoplasty,” Lasers in Surgery and Medicine 29, 33-37 (2001).
[4.63] S. W. Kuo and F. C. Chang, “Studies of miscibility behavior and hydrogen bonding in blends of poly(vinylphenol) and poly(vinylpyrrolidone),” Macromolecules 34, 5224-5228 (2001).
[4.64] J. R. Wünsch, “Polystyrene-synthesis, production and applications,” Rapra Review Reports 10, 15 (2000).
[4.65] D. E. Johnson, “Pyrolysis of benzenethiol,” Fuel 66, 255-260 (1987).
[4.66] D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” PANS 100, 13549-13554 (2003).
第五章
[5.1] M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Nonexponential “Blinking” Kinetics of Single CdSe Quantum Dots: A Universal Power Law Behavior,” J. Chem. Phys. 112, 3117-3120 (2000).
[5.2] M. Pelton, D. G. Grier, and P. Guyot-Sionnest, “Characterizing Quantum-Dot Blinking Using Noise Power Spectra,” Appl. Phys. Lett. 85, 819-821 (2004).
[5.3] K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, M. S. Feld, “Detection and Identification of a Single DNA Base Molecule Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. E 57, R6281-R6284 (1998).
[5.4] H. Zohar and S. J. Muller, “Labeling DNA for Single-Molecule Experiments: Methods of Labeling Internal Specific Sequences on Double-Stranded DNA,” Nanoscale 3, 3027-3039 (2011).
[5.5] K. Firman, L. Evans, J. Youell, “A Synthetic Biology Project-Developing a Single-Molecule Device for Screening Drug-Target Interactions,” FEBS Lett. 586, 2157-2163 (2012).
[5.6] H. P. Lu and X. S. Xie, “Single-Molecule Spectral Fluctuations at Room Temperature,” Nature 385, 143-146 (1997).
[5.7] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, and I. Itzkan, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78, 1667-1670 (1997).
[5.8] D. G. Thomas, J. J. Hopfield, and W. M. Augustyniak, “Kinetics of Radiative Recombination at Randomly Distributed Donors and Acceptors,” Phys. Rev. 140, A202-A220 (1965).
[5.9] A. Weiss and G. Haran, “Time-Dependent Single-Molecule Raman Scattering as a Probe of Surface Dynamics,” J. Phys. Chem. B 105, 12348-12354 (2001).
[5.10] D. P. Formm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the Chemical Enhancement for Surface-Enhanced Raman Scattering with Au Bowtie Nanoantennas,” J. Phys. Chem. 124, 061101 (2006).
[5.11] S. A. Meyer, E. C. Le Ru, and P. G. Etchegoin, “Quantifying Resonant Raman Cross Sections With SERS,” J. Phys. Chem. A 114, 5515-5519 (2010).
[5.12] R. F. Kubin and A. N. Fletcher, “Fluorescence Quantum Yields of Some Rhodamine Dyes,” J. Luminescence 27, 455-462 (1982).
[5.13] R. S. Chao, R. K. Khanna, and E. R. Lippincott, “Theoretical and Experimental Resonance Raman Intensities for the Manganate Ion,” J. Raman Spectrosc. 3, 121-131 (1975).
[5.14] T. W. Collette and T. L. Williams, “The Role of Raman in the Analytical Chemistry of Potable Water,” J. Environ. Monit. 4, 27-34 (2002).
[5.15] Watanabe, H; Hayazawa, N; Inouye, Y; Kawata, S, “DFT Vibrational Calculations of Rhodamine 6G Adsorbed on Silver: Analysis of Tip-Enhanced Raman Spectroscopy,” J. Phys. Chem. B 2005, 109, 5012–5020.
[5.16] A. M. Schwartzberg, C. D. Grant, A. Wolcott, C. E. Talley, T. R. Huser, R. Bogomolni, and J. Z. Zhang, “ Unique Gold Nanoparticle Aggregates as a Highly Active Surface-Enhanced Raman Scattering Substrate,” J. Phys. Chem. B 108, 19191-19197 (2004).
[5.17] S. Harish, R. Sabarinathan, J. Joseph, and K. L. N. Phani, “Role of pH in the Synthesis of 3-Aminopropyl Trimethoxysilane Stabilized Colloidal Gold/Silver and Their Alloy Sols and Their Application to Catalysis,” Mater. Chem. Phys. 127, 203-207 (2011).
[5.18] Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of Fluorescence Intensity on the Spectral Overlap Between Fluorophores and Plasmon Resonant Single Silver Nanoparticles,” Nano Lett. 7, 690-693 (2007).
[5.19] R. Verberk, A. M. Van Oijen, and Michel Orrit, “Simple Model for the Power-Law Blinking of Single Semiconductor Nanocrystals,” Phys. Rev. B 66, 233202 (2002).
[5.20] M. Pelton, D. G. Grier, and P. Guyot-Sionnest, “Characterizing Quantum-Dot Blinking using Noise Power Spectra,” Appl. Phys. Lett. 85, 819-821 (2004).
[5.21] Daniel L. Rudnick and Russ E. Davis, “Red noise and regime shifts,” Deep-Sea Research I 50, 691–699 (2003).
[5.22] J. Tang, and R. A. Marcus, “Mechanism of fluorescence blinking in semiconductor nanocrystal quantum dots,” J. Chem. Phys. vol. 123, 054704, August 2005.
[5.23] A. Weiss and G. Haran, “Single Molecule SERS Spectral Blinking and Vibronic Coupling,” J. Phys. Chem. C 115, 4540-4545 (2011).
[5.24] P. Hohenberg, W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev. 136, B864-B871 (1964).
[5.25] R. Zondervan , F. Kulzer , S. B. Orlinskii, and M. Orrit, “Photoblinking of Rhodamine 6G in Poly(vinyl alcohol): Radical Dark State Formed through the Triplet,” J. Phys. Chem. A 107, 6770–6776 (2003).
[5.26] F. Masia, W. Langbein, P. Watson, and P. Borri, “Resonant Four-Wave Mixing of Gold Nanoparticles for Three-Dimensional Cell Microscopy,” Opt. Lett. 34, 1816–1818 (2009).
[5.27] Y. Jung, H. Chen, L. Tong, and J. X. Cheng, “Imaging Gold Nanorods by Plasmon-Resonance-Enhanced Four Wave Mixing,” J. Phys. Chem. C 113, 2657–2663 (2009).
[5.28] N. Garrett, M. Whiteman, and J. Moger, “Imaging the Uptake of Gold Nanoshell in Live Cells using Plasmon Resonance Enhanced Four Wave Mixing Microscopy,” Opt. Express 19, 17563–17574 (2011).
[5.29] Ranka, J. K., R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[5.30] J. M. Dudley, G. G.enty, and S. Coen, “Supercontinuum Generation in Photonic Crystal Fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
[5.31] M. Danckwerts and L. Novotny, “Optical Frequency Mixing at Coupled Gold Nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[5.32] S. Palomba and L. Novotny, “Nonlinear Excitation of Surface Plasmon Polaritons by Four-Wave Mixing,” Phys. Rev. Lett. 101, 056802 (2008).
[5.33] J. Renger, R. Quidant, N. van Hulst, and L. Novotny, “Surface-Enhanced Nonlinear Four-Wave Mixing,” Phys. Rev. Lett. 104, 046803 (2010).
[5.34] H. Harutyunyan, S. Palomba, J. Renger, R. Quidant, and L. Novotny, “Nonlinear Dark-Field Microscopy,” Nano Lett. 10, 5076-5079 (2010).
[5.35] S. Palomba, H. Harutyunyan, J. Renger, R. Quidant, N. F. van Hulst, and L. Novotny, “Nonlinear Plasmon at Planar Metal Surfaces,” Phil. Trans. R. Soc. A 369, 3497-3509 (2011).
[5.36] Y. Zhang, F. Wen, Y. R. Zhen, P. Nordlander, and N. J. Halas, “Coherent Fano Resonances in a Plasmonic Nanocluster Enhance Optical Four-Wave Mixing,” PNAS 110, 9215-9219 (2013).
[5.37] E. J. Canto-Said, D. J. Hagan, J. Young, and E. W. van Stryland, “Degenerate Four-Wave Mixing Measurement of High Order Nonlinearities in Semiconductor,” IEEE J. Quantum Electron. 27, 2274-2280 (1991).
[5.38] F. Masia, W. Langbein and P. Borri, “Measurement of the Dynamics of Plasmons Inside Individual Gold Nanoparticles using a Femtosecond Phase-Resolved Microscope,” Phys. Rev. B 85, 235403 (2012).
[5.39] F. Masia, W. Langbein and P. Borri, “Polarization-Resolved Ultrafast Dynamics of the Complex Polarizability in a Single Gold Nanoparticles,” Phys. Chem. Chem. Phys. 15, 4226-4232 (2013).
[5.40] H. F. Talbot, “Facts Relating to Optical Science,” Philos. Mag. No IV, 401-407 (1836).
[5.41] L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, Mark Edwards, Charles W. Clark, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Temporal, Matter-Wave-Dispersion Talbot Effect,” Phys. Rev. Lett. 83, 5407-5411 (1999).
[5.42] L. Rayleigh, “On copying Diffraction Gratings and on Some Phenomenon Connected Therewith,” Philos. Mag. 11, 196-205 (1881).
[5.43] Jaap H. M. Neijzen, Robert D. Morton, Peter Dirksen, Henry J. L. Megens, Frank Bornebroek, “Automatic Alignment System for Optical Projection Printing,” Proc. SPIE 3677, 382-394 (1999).
[5.44] G. Bouwhuis and S. Wittekoek, “Improved Wafer Stepper Alignment Performance using an Enhanced Phase Grating Alignment System,” IEEE Trans. Electron Devices ED-26, 723-728 (1979).
[5.45] Igor I. Smolyaninov and Christopher C. Davis, “Apparent Superresolution in Near-Field Optical Imaging of Periodic Gratings,” Opt. Lett. 23, 1346-1347 (1998).
[5.46] Daniel Crespo, José Alonso, and Eusebio Bernabeu, “Generalized Grating Imaging using an Extended Monochromatic Light Source,” J. Opt. Soc. A. 17, 1231-1240 (2000).
[5.47] M. R. Dennis, N. I. Zheludev, and F. Javier García de Abajo, “The Plasmon Talbot Effect,” Opt. Express 15, 9692-9700 (2007).
[5.48] J. Wen, Y. Zhang, S. N. Zhu, and M. Xiao, “Theory of Nonlinear Talbot Effect,” J. Opt. Soc. B. 28, 275-280 (2011).
[5.49] Y. Lu, C. Zhou, and H. Luo, “Talbot Effect of a Grating with Different Kinds of Flaws,” J. Opt. Soc. A. 22, 2662-2667 (2005).
[5.50] K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg Gratings Fabricated in Monomode Photosensitive Optical Fiber by UV Exposure Through a Phase Mask,” Appl. Phys. Lett. 62, 1035-1037 (1993).
指導教授 戴朝義(Chao-Yi Tai) 審核日期 2013-12-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明