博碩士論文 962206005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:52.15.209.168
姓名 洪嘉濃(Jia-Nong Hung)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 二維量子點光子晶體雷射模擬與分析
(Two dimensional quantum dots photonic crystal laser simulation and analysis)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要在研究二維光子晶體共振腔對量子點雷射的特性。光子晶體共振腔因為本身有高品質因子和低模態體積的特性,使得光在腔體內具有很強量子增益機制及高Purcell效應,有助於改善雷射的特性,例如低臨界功率、高自發性輻射耦合係數和高微分量子效益。
在本研究中,為了模擬光子晶體共振腔內載子和光子的交互作用,我們從雷射速率方程式推導,並引用雷射量子臨界功率的定義和計算共振腔體的基本物理參數,建立一個二維量子點光子晶體雷射的分析模組。我們利用此模組分別模擬品質因子、模態體積和Purcell效應對雷射特性的影響。最後我們利用雷射動態方程式,估計 quasi-L2共振腔雷射的小訊號調變速率可達到約400 GHz,並進一步找出影響調變速率的參數,使光子晶體雷射調變速度提升至THz的等級。
摘要(英) This thesis describes the characteristics of two dimensional photonic crystal cavity lasers. Photonic crystal cavities provide high quality factor (Q) and low mode volume (), which lead to enhanced light emission rate through Purcell effect. They can be used for improving the performance of lasers; for instance, lowering the threshold, increasing the spontaneous emission coupling efficiency and differential quantum efficiency.
In this work, we construct an analytic model for two dimensional quantum dot photonic crystal laser to simulate the interplay of carriers and photons in photonic crystal cavity based on rate equations. Then, we use the model to predict the spontaneous emission coupling efficiency as well as the effects of quality factor, mode volume and Purcell effect on the characteristics of photonic crystal cavity lasers. Small signal modulation speed as high as 400 GHz is predicted for a quasi-L2 cavity laser. Photon crystal cavity parameters for achieving modulation speeds up to the order of THz are also proposed and discussed.
關鍵字(中) ★ 高速調變速率
★ 量子點
★ 光子晶體雷射
關鍵字(英) ★ high speed modulation rate
★ quantum dot
★ photonic crystal laser
論文目次 中文摘要 Ⅰ
英文摘要 Ⅱ
誌謝 Ⅲ
目錄 V
圖目錄 VII
表目錄 IX
第一章 導論 1
1-1 簡介 1
1-2 光子晶體雷射發展與簡介 3
1-3 研究動機 6
第二章 基本原理 7
2-1 前言 7
2-2 雷射速率方程式推導 8
2-2 臨界功率定義 12
2-4 光子晶體雷射參數計算 15
2-5 結論 20
第三章 光子晶體雷射特性模擬 22
3-1 研究動機 22
3-2 自發性輻射耦合效率模擬 23
3-3 品質因子與模態體積對雷射特性模擬 26
3-4 不同光子晶體共振腔模擬與比較 31
3-5 光子晶體雷射實驗和理論分析 35
3-6 結論 39
第四章 光子晶體雷射調變速率模擬與分析 40
4-1 研究動機 40
4-2 小訊號調變速率計算與模擬 41
4-3 模擬結果分析 45
4-4 結論 48
第五章 結論和未來展望 49
參考文獻 51
圖目錄
圖1-1.一維、二維以及三維光子晶體結構圖 3
圖1-2.(a)平面波展開法計算之光子能隙(b)有限時域差分法計算之光子穿透頻譜 4
圖1-3.(a)O.Painter等人於1999年提出之結構SEM圖(b)為其光子晶體薄片結構圖 4
圖2-1.穩態條件下,載子密度和光子密度隨激發速率的變化,由此變化可以模擬光子晶體雷射的特性. 11
圖2-2.傳統雷射入射功率對輸出功率關係圖(L-L curve),傳統類型雷射具有明顯轉折臨界點,自發性輻射轉換成觸發性輻射造成。. 11
圖2-3.qL2腔體結構圖 16
圖2-4.qL2腔體結構立體圖 16
圖2-5.不同折射率材料反射與穿透的情形和全反射角 17
圖2-6.砷化鎵塊材(GaAs bulk)吸收係數 18
圖2-7.光子晶體雷射分析模型系統示意圖 21
圖3-1.不同自發性輻射耦合效率下,激發速率和載子密度的關係圖 22
圖3-2.不同自發性輻射耦合效率下,激發速率和光子密度的關係圖 24
圖3-3.不同自發性輻射耦合效率對於雷射臨界功率和微分量子效率的影響 24
圖3-4.qL2共振腔時間解析螢光光譜量測值(Time-resolved μ-PL) 25
圖3-5.品質因子變動對應的Purcell增率和自發性輻射生命週期 28
圖3-6.不同品質因子條件下,激發速率對載子密度的關係圖 28
圖3-7.不同品質因子條件下,激發速率對光子密度的關係圖 29
圖3-8.不同品質因子對於雷射臨界功率和臨界載子密度的影響 29
圖3-9.同一品質因子下,不同共振腔體激發速率對載子密度的關係圖 32
圖3-10.同一品質因子下,不同共振腔體激發速率對光子密度的關係圖 32
圖3-11.不同共振腔對臨界功率的關係圖 33
圖3-12.不同共振腔對微分量子效應的關係圖 33
圖3-13.(a)qL2共振腔輸入和輸出功率曲線與FWHM變化圖(b)低功率激發下(~0.3μW)的頻譜圖(Q~3000)(c)結構SEM圖 36
圖3-14.常見的半導體雷射材料和結構的增益常數和自發性輻射耦合效率 36
圖3-15.qL2輸入輸出曲線實驗數據與理論值吻合. 37
圖4-1.入射功率對雷射小訊號操作頻率的關係圖 46
圖4-2.自發性輻射耦合效率對雷射小訊號操作頻率的關係圖 46
圖4-3.品質因子對雷射小訊號操作頻率的關係圖 47
表目錄
表1.常用的光子晶體雷射參數及代表意義 9
表2.qL2、L3、modified H1共振腔之參數. 31
表3.qL2共振腔雷射參數 38
參考文獻 [1] Intel Technology Journal, Volume 8, Issue 2, 2004
[2] G. Bjork and Y. Yamamoto, “Analysis of Semiconductor Microcavity Lasers Using Rate Equations”, IEEE J. Quantum Electron.Vol.27, No.11, 2386–96 (1991).
[3] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics”,Phy. Rev. Lett., 58, 2059(1987)
[4] [4] S.John, “Strong localization of photons in certain disordered dielectric superlattices”,Phy.Rev. Lett., 58, 2486(1987)
[5] E. Yablonovitch, “Photonic crystals: semiconductor of light”, Scientific American December,47(2001)
[6] E. Yablonovitch, et. al. “Photonic band structure: The face-centered-cubic case employing nonspherical atoms”, Phys. Rev. Lett. 67, 2295(1991)
[7] O. Painter, et. al. “Two-Dimensional Photonic Band-Gap Defect Mode Laser”, Science,284, 1819(1999)
[8] Masahiro, et al. “Highly efficient optical pumping of photonic crystal nanocavity lasers using cavity resonant excitation”, Appl. Phys. Letters, 89, 161111 (2006)
[9] Hong-Gyu Park, et al, “Characteristics of Electrically Driven Two-Dimensional Photonic Crystal Lasers”, IEEE J. Quantum Electron, Vol. 41, No. 9, page 1131 (2005)
[10] Atsushi Sugitatsu, et al. “ Line-defect-waveguide laser integrated with a point defect in a two-dimensional photonic crystal slab”, Appl. Phys. Letters, 86, 171106 (2005)
[11] Ilya Fuchman, et al “Ultra photonic crystal nanocavity lasers and optical swithches”. Invited Paper Proc. of SPIE Vol.6889 688910-1
[12] Masayuki, et al. “Simultaneous Inhibition and Redistribution of Spontaneous Light Emission in Photonic Crystal”, Science, 308, 1296 (2005)
[13] E. M. Purcell, “Spontaneous Emission Probabilities at Ratio Frequency”, Phys. Rev., 69,681 (1946)
[14] W.-Y. Chen, W.-H. Chang, H.-S. Chang, and T. M. Hsu, “Enhanced light emission from InAs quantum dots in single-defect photonic crystal microcavities at room temperature”,Appl. Phys. Letters, 87, 071111 (2005)
[15] T. Yoshie, A.Scherer, et.al “Quantum dot photonic crystal laser”, Electronics Letters , Vol.38, No.17,page 967(2002)
[16] S.Noda, et.al, “Spontaneous-emission control by photonic crystals and nanocavities”, Nature photonics Vol.1 ,499 (2007)
[17] M. Nomura,Y. Yarakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity”, Opt. Express Vol.14, No.13, 6308 (2006)
[18] K.Sakoda, “Opticcal Properties of Photonic Crystal,” Springer-Verlag, 2004.
[19] K.S.Yee,” Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” IEEE Trans. Antennas Propag, 14, 302 (1966).
[20] K. Kawano and T. Kitoh, “Introduction to Optical Waveguide Analysis,” WILEY, (2001).
[21] K. Noazki et. al. “Laser characteristics with ultimate-small modal volume in photonic crystal salb point-shift nanolasers”, Appl. Phys. Letters, 88, 211101 (2006)
[22] Yoshihiro Akahane, et. al. “High-Q photonic nanocavity in a two dimensional photonic crystal”, Nature, 425, 944(2003)
[23] Han-Youl Ryu, et. al.. “Two-Dimensional Photonic Crystal Semiconductor Lasers: Computational Design, Fabrication,and Characterization”, IEEE J. Quantum Electrons, Vol. 8, No. 4,891 (2002)
[24] Dirk Englund, et. al. .“General recipe for designing photonic crystal cavities”, Opt. Express Vol.13, No.16, 5961 (2005)
[25] L. A. Coldren and S.W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).
[26] Hatice Altug and Jelena Vučković, “Photonic crystal nanocavity array laser”, Opt. Express Vol.13, No.22, 8819-8828(2005)
[27] G. Bjork and Y. Yamamoto, “Definition of a laser threshold”, Phys. Rev. A, Vol. 50, No. 2,1675 (1994)
[28]http://www.ioffe.ru/SVA/NSM/Semicond/GaAs/Figs/444a.gif
[29] J. Vuckovic, Y. Yamamoto, et. al.. “Enhanced single-photon emission from a quantum dot in a micropost microcavity”,Appl. Phys. Letters, 82, 3596 (2003)
[30] S.Reitzenstein,et. al..”Lasing in high-Q quantum micropoillar cavities” ,Appl. Phys. Letters, 89, 051107 (2006).
[31] D. Bimberg et al., IEEE J. Sel. Top. Quantum Electron. 3,196 (1997).
[32] Bryan Ellis,Ilya Fusgman, et. al.. “Dynamics of quantum dot photonic crystal laser”,Appl. Phys. Letters, 90, 151102 (2007)
[33] M. Nomura,Y. Yarakawa, et. al. “Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor” ,Phy. Rev. B Vol.75, 195313 (2007).
[34] Weidong Zhou, et. al.”Photonic crystal defect mode cavity modeling:a phenomenological dimensional reduction approach” ,Phy. Rev. B Vol.75, 195313 (2007).
[35] D. Englund, , Y. Arakawa, Y. Yamamoto, and J. Vuˇckovi’c, ”Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal”,Phys. Rev. Lett. 95(7), 013904 (2005).
[36] H. Altug, D. Englund, and J. Vuˇckovi’c, ”Ultrafast photonic crystal nanocavity laser ”Nature Phys. 2,484–488 (2006).
[37] D. Englund, and J. Vuˇckovi’c, ”Ultrafast photonic crystal lasers” Laser & Photon. Rev. 1–11 (2008).
[38] T.Tawara, et.al “Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities”, Opt. Express Vol.16, No.8, 5199 (2008)
[39] D. Miller, Rationale and challenges for optical interconnects to electronic chips.Proceedings of the IEEE 88, 728 (2000).
[40] I. Ichimura, F. Maeda, K. Osato, K. Yamamoto, and Y. Kasami, Optical Disk Recording Using a GaN Blue-Violet Laser Diode. Jpn. J. Appl. Phys. 39, 937(2000).
[41] K. L. Lear, et. al. “Small and large signal modulation of 850 nm oxide-confined vertical cavity surface emitting lasers”, Advances in Vertical Cavity Surface Emitting Lasers in series OSA Trends in Optics and Photonics, 15, 69-74 (1997).
[42] C. H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, Injection locking of VCSELs. J. Sel. Top. Quantum Electron. 9, 1386 (2003).
[43] L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. L. Thomas, R. Houdr´e, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths”. Applied Physics Letters 91, 123115 (2007).
[44] S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers.” Phys. Rev. Lett. 96, 127404 (2006).
[45] H. Altug, D. Englund, and J. Vuˇckovi´c, Ultrafast photonic crystal nanocavity laser. Nature Physics 2, 484 (2006).
[46] T. Yoshie, M. Lonˇcar, A. Scherer, and Y. Qiu, High frequency oscillation in photonic crystal nanolasers. Appl. Phys. Lett. 84, 3543 (2004).
[47] D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vuckovic,”Dynamics of quantum dot photonic crystal lasers” Opt. Express 15(4), 5550–5558 (2007).
[48] S.Fathpour, P Bhattacharya, “High speed quantum dot laser”, J. Phys. D: Appl. Phys. 38,2103-2111(2005)
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2009-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明