博碩士論文 962206044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.235.137.159
姓名 陳清仁(Tsing-Jen Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 次微米網狀粗化發光二極體表面之研究
(A study of texturing light-emitting diodes with the submicron meshed pattern)
相關論文
★ 氮化鎵微光學元件之研究★ 二維雙輸入雙輸出光子晶體分光器
★ 矽光波導元件光耗損研究★ 矽晶片波導元件研究
★ 砷化鎵光子晶體共振腔研究★ 應用奈米小球製作之波導模態共振器
★ 光子晶體異常折射之能流研究★ 氮化鎵光子晶體共振腔
★ 分析BATC大視野多色巡天計畫中正常星系的質光比★ 新型中空多模干涉分光器
★ 表面電漿對於半導體發光元件光萃取效率的影響之探討★ 半導體光子晶體雷射之研究
★ 新型中空光波導研製與應用★ 動態波長分配技術在乙太被動光纖網路的應用
★ 禁止頻帶材料的光學與聲波特性研究★ 漸變式光子晶體透鏡研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文的研究主題是藉由次微米網狀粗化發光二極體(light emitting diodes, LEDs)表面,提升其光輸出效率。在研究中,首先利用時域有限差分法(Finite-Difference Time-Domain;FDTD)模擬LEDs表面粗化對於其光萃取效率的影響,在製程部分則是採取微米球單層鋪排技術,提出兩種粗化製程:一種是溶膠-凝膠材料製程,另一種為微米球曝光顯影製程。實驗結果顯示,鋪排直徑1.5?m單層聚苯乙烯(polystyrene, PS)微米球,應用溶膠-凝膠材料製程,可將LEDs表面粗化成具有次微米級蜂巢狀結構。輸入順向電流為20mA時,未經粗化LEDs之順向電壓為3.22V,光輸出能量2.1W,結構深度為50nm與100nm具蜂巢狀表面LEDs順向電壓(forward Voltage, Vf)分別為3.32V與3.35V,相較於未經粗化之LEDs光輸出能量則分別提升19%與33%。同樣利用直徑1.5?m PS微米球,實施微米球曝光顯影製程則可在LEDs表面獲得具有次微米級空氣柱圖案樣式,此樣式達成本研究提出之光萃取效率模型之模擬設計。20mA電流注入下,當空氣柱結構深度為50nm、100nm和150nm,相較於未粗化LEDs其電性幾乎不受影響,光輸出能量則各提升9%、27%和45%,此結果與模擬結果趨勢相符,未來或可作為提升LEDs亮度之應用。
摘要(英) The subject of this thesis is to promote the output power of light emitting diodes (LEDs) by roughening the surfaces of LEDs with the sub-micrometer netlike structures. Firstly, we simulated the effects for light extraction efficiency of LEDs with different roughened structure by Finite-Difference Time-Domain (FDTD) method. In experiments, we proposed two methods to rough the surface of LEDs by using the monolayer microspheres array technique: one is the sol-gel process, and the other one is the microsphere photolithography process.
The polystyrene microspheres with diameter of 1.5?m were applied in this study. As the experimental results show, in sol-gel process, we made the honeycomb structures on the surface of LEDs. The forward Voltage (Vf) of conventional LEDs, which without roughened surface, was 3.22V and output power 2.1mW under the current of 20mA. The Vf of honeycomb structured LEDs with roughened depths of 50nm and 100nm were 3.32V and 3.35V, and the output powers compared with the conventional LEDs were promoted by 19% and 33%, respectively.
In microsphere photolithography process, we could obtain the sub-micrometer air-hole pillars structures on the surface of LEDs after dry etching. Meanwhile, the air-hole pillars structures also achieved the design of the model of simulation for light extraction efficiency of LEDs. As injecting of 20mA current, the electrical property of LEDs with air-hole pillars structures were almost the same compared with the conventional LEDs. The output power of LEDs with different etching depths of 50nm、100nm and 150nm were enhanced by 9%、27% and 45% as compared with the conventional LEDs, respectively. The experimental results are consistent with the tendency of the simulation. This novel technique could be applied on industry for promoting the output power of LEDs in the future.
關鍵字(中) ★ 發光二極體
★ 溶膠-凝膠
★ 奈微米球
關鍵字(英) ★ LEDs
★ nano- and microspheres
★ sol-gel
論文目次 摘要 I
Abstract II
目錄 III
圖 例 說 明 V
第一章 導論 1
前言 1
1-1 發光二極體發展概況 1
1-2 光萃取效率提升方式 2
1-3 結論 5
第二章 模擬計算 8
2-1 時域有限差分法 8
2-2 模擬設計與結果 11
2-3 結論 13
第三章 元件製作與粗化應用 15
3-1 溶膠-凝膠材料製程 15
3-2 蜂巢狀結構表面元件製作 18
3-3 微米球曝光顯影製程 23
3-4 空氣柱狀結構表面元件製作 26
3-5 結論 29
第四章 實驗結果與討論 30
4-1 週期性蜂巢狀表面粗化元件之光電特性分析 30
4-2 週期性空氣柱表面粗化元件之光電特性分析 32
4-3 結論 34
第五章 總結 37
參考資料 39
參考文獻 [1] H. J. Round, "A note on carborundum," Electrical world, 49, 309 (1907).
[2] J. N. Holonyak and S. F. Bevacqua, "Coherent (visible) light emission from GaAs1 - xPx junctions," Applied Physics Letters, 1 (4), 82-83 (1962).
[3] J. I. Pankove, "Luminescence in GaN," Journal of Luminescence, 7, 114-126 (1973).
[4] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, "Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer," Applied Physics Letters, 48 (5), 353-355 (1986).
[5] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, "Thermal Annealing Effects on P-Type Mg-Doped GaN Films," Japanese Journal of Applied Physics, 31 (Part 2, No. 2B), L139 (1992).
[6] S. a. S. Nakamura, Masayuki and IWASA,Naruhito and NAGAHAMA,Shin-ichi and YAMADA,Takao and MUKAI,Takashi, "Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes," Japanese journal of applied physics. Pt. 2, Letters, 34 (00214922), L1332-L1335 (1995).
[7] T. Nishida, H. Saito, and N. Kobayashi, "Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN," Applied Physics Letters, 79 (6), 711-712 (2001).
[8] E. F. Schubert, "Light-Emitting Diodes," ( Cambridge University Press, Cambridge, 2003).
[9] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, "Nitride-based LEDss with an SPS Tunneling contact layer and an ITO transparent contact," IEEE Photonics Technology Letters, 16 (4), 1002-1004 (2004).
[10] K. M. Uang, S. J. Wang, S. L. Chen, C. K. Wu, S. C. Chang, T. M. Chen, and B. W. Liou, "High-power GaN-based light-emitting diodes with transparent indium zinc oxide films," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 44 (4B), 2516-2519 (2005).
[11] C. H. Kuo, C. L. Yeh, P. H. Chen, W. C. Lai, C. J. Tun, J. K. Sheu, and G. C. Chi, "Low operation voltage of nitride-based LEDss with Al-doped ZnO transparent contact layer," Electrochemical and Solid State Letters, 11 (9), H269-H271 (2008).
[12] M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, "High-power truncated-inverted-pyramid (AlxGa1-x)(0.5)In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency," Applied Physics Letters, 75 (16), 2365-2367 (1999).
[13] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, "Enhanced output power of near-ultraviolet InGaN-GaN LEDss grown on patterned sapphire substrates," Ieee Photonics Technology Letters, 17 (2), 288-290 (2005).
[14] D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H. Horng, Y. S. Yu, and M. H. Pan, "Fabrication of pyramidal patterned sapphire substrates for high-efficiency InGaN-based light emitting diodes," Journal of the Electrochemical Society, 153 (8), G765-G770 (2006).
[15] C. C. Wang, H. Ku, C. C. Liu, K. K. Chong, C. I. Hung, Y. H. Wang, and M. P. Houng, "Enhancement of the light output performance for GaN-based light-emitting diodes by bottom pillar structure," Applied Physics Letters, 91 (12), - (2007).
[16] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, "Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening," Applied Physics Letters, 84 (6), 855-857 (2004).
[17] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, "Improved light-output and electrical performance of InGaN-based, light-emitting diode by microroughening of the p-GaN surface," Journal of Applied Physics, 93 (11), 9383-9385 (2003).
[18] J. Y. Kim, M. K. Kwon, I. K. Park, C. Y. Cho, S. J. Park, D. M. Jeon, J. W. Kim, and Y. C. Kim, "Enhanced light extraction efficiency in flip-chip GaN light-emitting diodes with diffuse Ag reflector on nanotextured indium-tin oxide," Applied Physics Letters, 93 (2), - (2008).
[19] C. H. Kuo, H. C. Feng, C. W. Kuo, C. M. Chen, L. W. Wu, and G. C. Chi, "Nitride-based near-ultraviolet light emitting diodes with meshed p-GaN," Applied Physics Letters, 90 (14), - (2007).
[20] K. Bao, X. N. Kang, B. Zhang, T. Dai, C. Xiong, H. Ji, G. Y. Zhang, and Y. Chen, "Improvement of light extraction from patterned polymer encapsulated GaN-based flip-chip light-emitting diodes by imprinting," Ieee Photonics Technology Letters, 19 (21-24), 1840-1842 (2007).
[21] S. J. Chang, C. F. Shen, W. S. Chen, C. T. Kuo, T. K. Ko, S. C. Shei, and J. K. Sheu, "Nitride-based light emitting diodes with indium tin oxide electrode patterned by imprint lithography," Applied Physics Letters, 91 (1), - (2007).
[22] K. J. Byeon, S. Y. Hwang, and H. Lee, "Fabrication of two-dimensional photonic crystal patterns on GaN-based light-emitting diodes using thermally curable monomer-based nanoimprint lithography," Applied Physics Letters, 91 (9), - (2007).
[23] T. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, "III-nitride blue and ultraviolet photonic crystal light emitting diodes," Applied Physics Letters, 84 (4), 466-468 (2004).
[24] J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, "InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures," Applied Physics Letters, 84 (19), 3885-3887 (2004).
[25] H. Ichikawa and T. Baba, "Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal," Applied Physics Letters, 84 (4), 457-459 (2004).
[26] A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, "Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode," Applied Physics Letters, 78 (5), 563-565 (2001).
[27] D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q. H. Park, "Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns," Applied Physics Letters, 87 (20), - (2005).
[28] H. K. Cho, S. K. Kim, D. K. Bae, B. C. Kang, J. S. Lee, and Y. H. Lee, "Laser Liftoff GaN Thin-Film Photonic Crystal GaN-Based Light-Emitting Diodes," Ieee Photonics Technology Letters, 20 (21-24), 2096-2098 (2008).
[29] W. N. Ng, C. H. Leung, P. T. Lai, and H. W. Choi, "Photonic crystal light-emitting diodes fabricated by microsphere lithography," Nanotechnology, 19 (25), - (2008).
[30] K. Piglmayer, R. Denk, and D. Bauerle, "Laser-induced surface patterning by means of microspheres," Applied Physics Letters, 80 (25), 4693-4695 (2002).
[31] C. L. Lin, P. H. Chen, C. H. Chan, C. C. Lee, C. C. Chen, J. Y. Chang, and C. Y. Liu, "Light enhancement by the formation of an Al oxide honeycomb nanostructure on the n-GaN surface of thin-GaN light-emitting diodes," Applied Physics Letters, 90 (24), - (2007).
[32] Y. Kane, "Numerical solution of inital boundary value problems involving maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat., 14 (3), 302-307 (1966).
[33] C. C. Chen, T. Pertsch, R. Iliew, F. Lederer, and A. Tunnermann, "Directional emission from photonic crystal waveguides," Optics Express, 14 (6), 2423-2428 (2006).
[34] H. K. Chiu, F. L. Hsiao, C. H. Chan, and C. C. Chen, "Compact and low-loss bent hollow waveguides with distributed Bragg reflector," Optics Express, 16 (19), 15069-15073 (2008).
[35] F. L. Hsiao, C. H. Chan, C. C. Chen, and K. C. Hsu, "Acoustic resonant leaky mode effects," Applied Physics Letters, 94 (4), - (2009).
[36] 欒丕綱、陳啟昌, "光子晶體 - 從蝴蝶翅膀到奈米光子學," (五南圖書出版股份有限公司, 2006).
[37] J. A. E. Wasey and W. L. Barnes, "Efficiency of spontaneous emission from planar microcavities," Journal of Modern Optics, 47 (4), 725-741 (2000).
[38] C. H. Chan, C. C. Chen, C. K. Huang, W. H. Weng, H. S. Wei, H. Chen, H. T. Lin, H. S. Chang, W. Y. Chen, W. H. Chang, and T. M. Hsu, "Self-assembled free-standing colloidal crystals," Nanotechnology, 16 (9), 1440-1444 (2005).
[39] C. K. Huang, C. H. Chan, C. Y. Chen, Y. L. Tsai, C. C. Chen, J. L. Han, and K. H. Hsieh, "Rapid fabrication of 2D and 3D photonic crystals and their inversed structures," Nanotechnology, 18 (26), - (2007).
指導教授 陳啟昌(Chii-Chang Chen) 審核日期 2009-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明