博碩士論文 962206047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.145.23.123
姓名 李銘瑋(Ming-Wei Lee)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 小動物針孔單光子放射電腦斷層掃描系統之系統校正與配置最佳化
(System Calibrations and Configuration Optimizations of Small-Animal Pinhole SPECT Systems)
相關論文
★ 以GATE模型及系統矩陣演算法重建SPECT螺旋影像★ LED檯燈視覺舒適度研究
★ 表面電漿共振系統之相位擷取與分析★ 人眼眼球模型與視覺表現之模擬分析研究
★ 白光LED之視覺生理效應評估★ 不同色溫螢光燈用於辦公室照明之視覺效應研究
★ 表面電漿共振儀之動態相位偵測技術 與微量生物分子檢測應用★ 二次通過成像架構量測人眼的光學系統品質
★ 週期性奈米金屬結構對拉曼散射訊號增強之研究★ 日眩光要因分析研究
★ 非球面檢測之迭代相移干涉與子孔徑相位接合演算法開發★ 應用可容忍隨機位移之相移干涉術於相位式表面電漿共振系統之穩定度增進
★ 以偵測任務及系統效能評估找尋多針孔微單光子放射電腦斷層掃描系統之最佳化配置★ 結合表面電漿共振及溫度控制於免疫球蛋白鍵結之檢測分析
★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數★ 多陽極光電倍增管閃爍相機之訊號讀出系統與高效最大可能性位置估算演算法開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於小動物單光子放射電腦斷層掃描(Single Photon Emission Computed Tomography, SPECT)的系統架構簡單且成本低廉,十分適合應用於臨床前生醫研究。並可藉由小動物模型探討與人體相關疾病之致病機轉、進程,以及治療的藥物與方法。為開發高影像品質與高解析度之小動物針孔SPECT系統,於本研究將提出小動物針孔SPECT系統之系統校正與配置最佳化。
應用針孔SPECT於小動物造影研究中,為使針孔SPECT系統達到高空間解析度,取得高準確度的系統矩陣(H矩陣)為基本要件。於本研究,採用融合量測數據與數值模型快速建立固定式與圓軌旋轉式針孔SPECT的H矩陣。透過格點掃描與系統校正實驗所取得之實驗資料,可分析各立體像素之點響應函數(Point Response Function, PRF)與系統配置幾何參數間的關係,並建立PRF數值模型。而完整針孔SPECT的H矩陣則由PRF數值模型估算取得。本研究藉由全實驗量測與所提之H矩陣建立方法,其系統表現比較結果驗證所提之H矩陣建立方法可行性。
本研究藉由準直儀配置最佳化提出小偵測面積針孔SPECT應用於小鼠心臟造影之最佳準直儀配置。此準直儀配置最佳化流程藉數值模型評估不同配置設計之針孔SPECT的系統表現,以快速挑選最佳候選配置。隨後,透過偵測任務與傅立葉串音方法評估各最佳候選配置之系統影像品質與空間解析度,並藉由影像品質與空間解析度權衡函數決定最佳準直器配置。 此外,一系列假體重建將驗證此最佳準直器配置針孔SPECT的系統表現。
本研究亦提出簡廉閃爍晶體伽瑪相機,由NaI(Tl)閃爍晶體、64陽極光電倍增管、簡易訊號讀出設備及高效最大可能性值位置估算組成。簡易訊號讀出設備藉對稱分流電路、訊號處理電路及多通道訊號擷取系統產生16通道數位訊號。最後,本研究藉模擬與實驗評估此伽瑪相機之偵測器表現。
摘要(英) Since small-animal SPECT systems typically possess simple configurations and relatively lower cost, small-animal SPECT is suitable for preclinical research. Micro-SPECT along with small-animal models of human diseases is widely used to study disease mechanisms and investigate potential therapies. For developing high image quality and high resolution pinhole SPECT systems, methods of system calibrations and configuration optimizations of small-animal pinhole SPECT systems are proposed in this study.
In pinhole SPECT applied to small-animal studies, it is essential to have an accurate imaging system matrix, called H matrix, for high-spatial-resolution image reconstructions. Generally, an H matrix can be obtained by various methods, such as measurements, simulations or some combinations of both methods. In this study, combination methods of measurement and analytic models are utilized to obtain H matrices of pinhole SPECT systems, including stationary and circular-orbit rotating pinhole SPECT imagers. The method utilizes a grid-scan experiment on selected voxels and parameterizes the measured point response functions (PRFs) into 2D Gaussians. The imaging property database can be built with the measured PRFs. In addition, the geometry of pinhole SPECT systems can be described by the geometric projection models. The PRFs of missing voxels are interpolated by the relations between the Gaussian coefficients and the geometric parameters of the imaging system. A full H matrix is constructed by combining the measured and interpolated PRFs of all voxels. The feasibilities of proposed interpolation methods are validated with PRF estimations, phantom reconstructions and detection task evaluations.
An optimized configuration of multi-pinhole aperture can improve the spatial resolution and the sensitivity of pinhole SPECT simultaneously. In this study, an optimization strategy of the multi-pinhole configuration with a small detector is proposed for mouse cardiac imaging. To accelerate the optimization process, the candidates of optimal multi-pinhole configuration are decided by the preliminary evaluations with the analytic models. Subsequently, the pinhole SPECT systems equipped with the designed multi-pinhole apertures are modeled in GATE to generate the H matrices for the system performance assessments. The area under the ROC curves (AUC) of the designed systems is evaluated by detection tasks with their corresponding H matrices. In addition, the spatial resolutions are estimated by the Fourier crosstalk approach, and the sensitivities are calculated with the H matrices of designed systems, respectively. A trade-off function of AUC and resolution is introduced to find the optimal multi-pinhole configuration. Furthermore, a series of OSEM reconstruction images of synthetic phantoms are reconstructed with the H matrices of designed systems.
In this study, micro-SPECT based on a scintillation gamma camera is developed. The camera is composed of a NaI(Tl) scintillator, compact readout electronics and a maximum-likelihood position estimator (MLPE) for a 64-anode PMT. The electronic readout system consists of a symmetric charge division circuit, the signal processing circuits and a multi-channel DAQ system to output 16 channel digital signals. Moreover, the MLPE is developed with the multivariate normal model and the truncated center-of-gravity combined with local directed search method to estimate the gamma-ray event position. Simulation and experimental studies are performed to verify the feasibility of the proposed readout electronics and MLPE.
關鍵字(中) ★ 單光子放射電腦斷層掃描
★ 系統校正
★ 配置最佳化
★ 閃爍晶石式伽瑪相機
關鍵字(英) ★ SPECT
★ System Calibration
★ Configuration Optimization
★ Scintillation Gamma Camera
論文目次 摘要 I

ABSTRACT II

ACKNOWLEDGE IV

LIST OF FIGURES VIII

LIST OF TABLES XIV

CHAPTER 1
INTRODUCTION 1
1.1 Medicine Imaging 1
1.2 Nuclear Medicine Imaging 2
1.2.1 Positron emission tomography (PET) 3
1.2.2 Single photon emission computed tomography (SPECT) 4
1.2.2.1 Image formation in SPECT 5
1.2.2.2 Gamma ray detection 7
1.3 Structure of this Dissertation 8

CHAPTER 2
SYSTEM CALIBRATIONS FOR STATIONARY SMALL-ANIMAL
PINHOLE SPECT SYSTEMS 10
2.1 System Matrix of a Linear Digital-Imaging System 13
2.2 Grid-Scan Experiment 15
2.2.1 FastSPECT II (Stationary pinhole SPECT system) 16
2.2.2 PRF parameterization with 2D Gaussian 17
2.3 Distance-Weighted Gaussian Interpolation Method Combined with
Geometric Parameter Estimations (DW-GIMGPE) 18
2.3.1 Geometric collinear projection model 18
2.3.2 The relations between Gaussian coefficients and geometric parameters 19
2.3.3 Building the imaging property database 23
2.3.4 Estimations of the Gaussian coefficients by the geometric parameters 25
2.4 Feasibility and Effectiveness Validation of DW-GIMGPE 27
2.4.1 Comparisons of the point responses from the measurement and the interpolations by DW-GIMGPE 27
2.4.2 Comparisons of OSEM reconstructed slices of hot-rod phantom and normal rat cardiac imaging 31
2.4.2.1 Comparisons of the line profiles across one OSEM reconstructed slice of a hot-rod phantom 32
2.4.2.2 Comparisons of the line profiles across one OSEM reconstructed slice of normal rat cardiac imaging 36
2.4.3 Detectability performance of the imaging system with associated H matrices 37
2.4.4 The computation time for building a complete H matrix 42

CHAPTER 3
SYSTEM CALIBRATIONS FOR CIRCULAR-ORBIT SMALL-ANIMAL
PINHOLE SPECT SYSTEMS 45
3.1 Calibrations of Circular-Orbit Pinhole SPECT System 48
3.1.1 Geometric calibration 48
3.1.2 Grid-scan experiment 51
3.2 Interpolations of System Matrices 53
3.2.1 Modified Gaussian interpolation method combined with geometric parameter estimations (M-GIMGPE) 53
3.2.2 Modified Gaussian interpolation method (M-GIM) 56
3.3 Comparisons between M-GIMGPE and M-GIM 58
3.3.1 Geometries of M3R SPECT system identified with geometric calibrations 58
3.3.2 MLEM reconstructions of hot-rod phantom with the interpolated H matrices 60
3.3.3 Comparison of the processing time for building a complete H matrix 64

CHAPTER 4
MULTI-PINHOLE SPECT SYSTEM DESIGNS
FOR MOUSE CARDIAC IMAGING 66
4.1 Binary Decision Detection Tasks 69
4.2 Preliminary Evaluations of the System Configuration 70
4.2.1 Determination of the magnification and the number of pinholes 71
4.2.2 Sensitivity and resolution by the geometric analytic models 73
4.3 System Performance Estimations with System Matrices 76
4.3.1 System matrices by simulation and interpolation 76
4.3.1.1 Single pinhole pattern and regular four-pinhole patterns with various multiplexing levels 77
4.3.1.2 Rotation of the four-pinhole pattern only and rotation of the detector plus the four-pinhole pattern together 78
4.3.2 Evaluation of the system performance 79
4.3.2.1 Image quality assessment with signal detection tasks 80
4.3.2.2 Calculation of the spatial resolution and sensitivity with the Fourier crosstalk approach and H matrices 85
4.4 System Performance Validations with Image Reconstructions 89
4.4.1 Hot-rod phantom 90
4.4.2 Mouse heart phantom 98
4.4.3 Defrise phantom 101

CHAPTER 5
MULTI-ANODE-PMT SCINTILLATION CAMERA 106
5.1 Multi-Anode-PMT Scintillation Cameras 106
5.1.1 Packages of the scintillation camera with MAPMT 107
5.1.2 Electronics of MAPMT scintillation cameras 108
5.2 Position Estimators 109
5.2.1 Maximum-likelihood position estimator (MLPE) 109
5.2.2 Mean detector response function (MDRF) 110
5.2.3 ML searching schemes 111
5.3 Performance Evaluations of MAPMT Scintillation Camera with MDRF Simulation 113
5.3.1 Spatial resolution estimations 113
5.3.2 Uniformity estimation with flood image 116
5.4 Experimental Validations of MAPMT Scintillation Camera 117
5.4.1 MDRF and covariance matrix 117
5.4.2 CR bound estimations 118

CHAPTER 6
CONCLUSIONS AND FUTURE WORK 121
6.1 Conclusions 121
6.2 Future Work 124
REFERENCES 128
APPENDIX 134
參考文獻 Abbey C K and Barrett H H 2001 Human and model-observer performance in ramp-spectrum noise: effects of regularization and object variability J. Opt. Soc. Am. A 18(3) 473-88
Accorsi R and Metzler S D 2004 Analytic determination of the resolution equivalent effective diameter of a pinhole collimator IEEE Trans. Med. Imaging 23(6) 750-63
Acton P D and Kung H F 2003 Small animal imaging with high resolution single photon emission tomography Nucl. Med. and Biol. 30(8) 889-95
Audenhaege K V, van Holen R, Vandenberghe S, Vanhove C, Metzler S D and Moore S C 2015 Review of SPECT collimator selection, optimization and fabrication for clinical and preclinical imaging Med. Phys. 42(8) 4796-813
Balaban R S and Hampshire V A 2001 Challenges in small animal noninvasive imaging ILAR Journal 42(3) 248-62
Barrett H H and Myers K J 2004 Foundations of Image Science (Hoboken, NJ: Wiley-Interscience)
Barrett H H, Hunter W J C, Miller B W, Morre S K, Chen Y C and Furenlid L R 2009 Maximum-likelihood methods for processing signals from gamma-ray detector IEEE Trans. Nucl. Sci. 56(3) 725-35
Beekman F J, van der Have F, Vastenhouw B, van der Linden A J, van Rijk P P, Burbach J P and Smidt M P 2005 U-SPECT-I: a novel system for submillimeter-resolution tomography with radiolabeled molecules in mice J. Nucl. Med. 46(7) 1194-200
Beque D, Nuyts J, Bormans G, Suetens P and Dupont P 2003 Characterization of pinhole SPECT acquisition geometry IEEE Trans. Med. Imag. 22(5) 599-612
Beque D, Nuyts J, Suetens P and Bormans G 2005 Optimization of geometrical calibration in pinhole SPECT IEEE Trans. Med. Imag. 24(2) 180-90
Bitar Z El, Huesman R H, Boutchko R, Bekaert V, Brasse D and Gullberg G. T 2013 A detector response function design in pinhole SPECT including geometrical calibration Phys. Med. Biol., 58(7) 2395-411
Cao Z, Bal G, Accorsi R and Acton P D 2005 Optimal number of pinholes in multi-pinhole SPECT for mouse brain imaging─a simulation study Phys. Med. Biol. 50(19) 4609-24
Chen Y C, Furenlid L R, Wilson D W, Barrett H H 2005 Small-Animal SPECT Imaging Kupinski M A and Barrett H H ed (Springer, New York, NY) pp. 195-201
Chen Y C 2006 System Calibration and Image Reconstruction for a New Small-Animal SPECT System (Tucson, AZ: University of Arizona, PhD dissertation)
Cherry S R and Gambhir S S 2001 Use of positron emission tomography in animal research ILAR Journal 42(3) 219-32
Chung Y H, Choi Y, Song T Y, Jung J H, Cho G and Choe Y S 2004 Evaluation of maximum-likelihood position estimation with Poisson and Gaussian noise models in a small gamma camera IEEE Trans. Nucl. Sci. 51(1) 101-4
Dai T T, Ma T Y, Wei Q Y, Wang S, Liu H, Cui J J, Huang Q J and Liu Y Q 2011 Design and sampling completeness evaluation of scanning orbits in multi-pinhole small animal SPECT imaging IEEE Nucl. Sci. Symp. Conf. Rec. 2011 pp. 2836-39
de Kemp R A, Epstein F H, Catana C, Tsui B M W and Ritman E L 2010 Small-animal molecular imaging methods J. Nucl. Med. 51(5) 18S-32S
Deprez K, Pato L R, Vandenberqhe S and Van Holen R 2013 Characterization of a SPECT pinhole collimator for optimal detector usage (the lofthole) Phys. Med. Biol. 58(4) 859-85
Funk T, Despres P, Barber W C, Shah K S and Hasegawa B H 2006 A multipinhole small animal SPECT system with submillimeter spatial resolution Med. Phys. 33(5) 1259-68
Furenlid L R, Wilson D W, Chen Y C, Kim H, Pietraski P J, Crawford M J and Barrett H H 2004 FastSPECT II: A second-generation high-resolution dynamic SPECT imager IEEE Trans. Nucl. Sci. 51(3) 631-5
Gifford H C 1997 Theory and application of Fourier crosstalk: An evaluator for digital-system design (Tucson, AZ: University of Arizona, PhD dissertation)
Goode A R, Glover D K, Watson D D, Beller G A, Riou L M and Lima R 2002 Application of a small field-of-view gamma camera based on a 5" PSPMT and crystal scintillator array for high resolution small animal cardiac imaging IEEE Nucl. Sci. Symp. Conf. Rec. 2002 3 1765-69
Gross K A and Kupinski M A 2005 SPECT image quality assessment and system parameter optimization for detection tasks Frontiers in Optics, OSA Technical Digest Series paper FThM2
Havelin R J, Miller B W, Barrett H H, Furenlid L R, Murphy J M, Dwyer R M and Foley M J 2013 Design and performance of a small-animal imaging system using synthetic collimation Phys. Med. Biol. 58(10) 3397-412
Hesterman J Y, Kupinski M A, Furenlid L R, Wilson D W and Barrett H H 2007 The multi-module, multi-resolution system (M3R): A novel small-animal SPECT system Med. Phys. 34(3) 987-93
Hesterman J Y 2007 The Multi-Module Multi-Resolution SPECT System: A Tool for Variable-Pinhole Small-Animal Imaging (Tucson, AZ: University of Arizona, PhD dissertation)
Hill D L G, Batchelor P G, Holden M and Hawkes D J 2001 Medical image registration Phys. Med. Biol. 46(3) R1-45
Hsieh H H, Hsiao I T, Lin K J and Hsu C H 2008 Analytic calculation of multi-pinhole collimator sensitivity with tilted pinholes IEEE Nucl. Sci. Symp. Conf. Rec. 2008 pp 4724-27
Hsieh H H, Hsu C H, Mok G S P, Tsai Y J, Chang S I and Hsiao I T 2010 System matrix based on sensitivity model for small animal multi-pinhole SPECT system IEEE NSS/MIC Conf. Rec. 2010 pp 3308-11
Hunter W C J 2007 Modeling stochastic processes in gamma-ray imaging detectors and evaluation of a multi-anode PMT scintillation camera for use with maximum-likelihood estimation methods (Tucson, AZ: University of Arizona, PhD dissertation)
Jaszczak R J, Li J, Wang H, Zalutsky M R and Coleman R E 1994 Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT Phys. Med. Biol. 39(3) 425-37
Khali M M, Tremoleda J L, Bayomy T B and Gsell W 2011 Molecular SPECT imaging: An overview Int. J. Mol. Imag. 2011 p.796025
Kim H, Furenlid L R, Crawford M J, Wilson D W, Barber H B, Peterson T E, Hunter W C, Liu Z, Woolfenden J M and Barrett H H 2006 SemiSPECT: a small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays Med. Phys. 33(2) 465-74
Lee M W, Lin W T, Ni Y C, Jan M L and Chen Y C 2012 Rapid construction of circular orbit pinhole SPECT imaging system matrices by Gaussian interpolation method combined with geometric parameter estimations The 5th Biennial Workshop on Small-Animal SPECT Imaging, Tucson, Arizona, USA, November 6-8, 2012
Lee M W, Lee Y L, Chen C Y and Chen Y C 2013 Development of compact readout electronics and efficient maximum-likelihood position estimator for multi-anode-PMT scintillation cameras IEEE NSS/MIC Conf. Rec. 2013 pp. 1-3
Lee Y L 2013 Development of compact readout electronics and efficient maximum likelihood position estimator for a multi-anode-PMT scintillation camera (Taoyuan, Taiwan: National Central University, MS thesis)
Lee M W and Chen Y C 2014 Rapid construction of pinhole SPECT system matrices by distance-weighted Gaussian interpolation method combined with geometric parameter estimations Nucl. Instr. Meth. Phys. Res. A 737 122-34
Lee M W, Haung W Z and Chen Y C 2015 Helical trajectory design of multi-pinhole SPECT based on sampling completeness evaluations for mouse whole-body imaging 2015 IEEE NSS/MIC, San Diego, California, USA, Oct 31-Nov 7, 2015
Lefkoupoulos D, Fonroget J, Devaux J Y, Guilhem J B, Roucayrol J C and Guiranud R 1983 Quantitative 3D imaging with coded apertures by using SVD decomposition of the transmission matrix Nuclear Medicine and Biology Advances: Proceedings of the Third World Congress of Nuclear Medicine and Biology, August 29 to September 2, 1982, Paris, France, Raynaud C ed., Pergamon Press, Oxford, 1983, pp 503-6
Metzler S D, Bowsher J E, Simth M F and Jaszczak R J 2001 Analytic determination of pinhole collimator sensitivity with penetration IEEE Trans. Med. Imaging 20(8) 730-41
Metzler S D and Jaszczak R J 2006 Simultaneous multi-head calibration for pinhole SPECT IEEE Trans. Nucl. Sci. 53(1) 113-20
Metzler S D, Vemulapalli S, Jaszczak R J, Akabani G and B. B. Chin 2010 Feasibility of whole-body functional mouse imaging using helical pinhole SPECT Mol. Imag. Biol. 12(1) 35-41
Mok G S P 2009 Design and development of a multi-pinhole collimator for high-resolution and high-efficiency SPECT imaging of atherosclerotic plaques in APOE-/-MICE (Baltimore, MD: Johns Hopkins University, PhD dissertation)
Mok G S P, Wang Y and Tsui B M W 2009 Quantification of the multiplexing effects in multi-pinhole small animal SPECT: a simulation study IEEE Trans. Nucl. Sci. 56(5) 2636-43
Nillius P and Danielsson M 2010 Theoretical bounds and system design for multipinhole SPECT IEEE Trans. Med. Imag. 29(7) 1390-400
Olcott P D, Talcott J A, Levin C S, Habte F and Foudray A M K 2005 Compact readout electronics for position sensitive photomultiplier tubes IEEE Tran. Nucl. Sci. 52(1) 21-7
Opie L H and Hesse B 1997 Radionuclide tracers in the evaluation of resting myocardial ischemia and viability Eur. J. Nucl. Med. 24(9) 1183-93
Popov V, Majewski S and Welch B L 2006 A novel readout concept for multianode photomultiplier tubes with pad matrix anode layout Nucl. Instr. Meth. Phys. Res. A 567(1) 319-22
Porat B and Friedlander B 1986 Computation of the exact information matrix of gaussian time series with stationary random components IEEE Trans. Acoust. Speech Singal Process. 34(1) 118-30
Rentmeester M C M, van der Have F and Beekman F J 2007 Optimizing multi-pinhole SPECT geometries using an analytical model Phys. Med. Biol. 52(9) 2567-81
Rowe R K, Aarsvold J N, Barrett H H, Chen J C, Klein W P, Moore B A, Pang I W, Patton D D and White T A 1993 A stationary hemispherical SPECT imager for three-dimensional brain imaging J. Nucl. Med. 34(3) 474-80
Schramm N U, Ebel G, Engeland U, Schurrat T, Behe M and Behr T M 2003 High-resolution SPECT using multipinhole collimation IEEE Trans. Nucl. Sci. 50(3) 315-20
Siegel S, Silverman R W, Shao Y and Cherry S R 1996 Simple charge division readouts for imaging scintillator arrays using a multi-channel PMT IEEE Tran. Nucl. Sci. 43(3) 1634-41
Tai Y C and Laforest R 2005 Instrumentation aspects of animal PET Annu. Rev. Biomed. Eng. 7 255-85
Tipton M D 1978 The ODCAT: one dimensional coded aperture tomography Proc. SPIE 152 113-20
Tuy H K 1983 An inverse formula for cone-beam reconstruction SIAM J. Appl. Math. 43(3) 546-552
van der Have F, Vastenhouw B, Rentmeester M and Beekman F J 2008 System calibration and statistical image reconstruction for ultra-high resolution stationary pinhole SPECT IEEE Trans. Med. Imag. 27(7) 960-71
Vunckx K, Nuyts J, Vanbilloen B, Saint-Hubert M D, Vanderghinste D, Rattat D, Mottaghy F M and Defrise M 2009 Optimized multipinhole design for mouse imaging IEEE Trans. Nucl. Sci. 56(5) 2696-705
Wang Y and Tsui B M W 2007 Pinhole SPECT with different data acquisition geometries: usefulness of unified projection operators in homogeneous coordinates IEEE Trans. Med. Imag. 26(3) 298-308
Weisenberger A G, Bradley E L, Majewski S and Saha M S 1998 Development of a novel radiation imaging detector system for in vivo gene imaging in small animal studies IEEE Tran. Nucl. Sci. 45(3) 1743-49
Wei Q Y, Wang S, Ma T Y, Wu J, Liu H, Xu T P, Xia Y, Fan P, Lyu Z L and Liu Y Q 2015 Performance evaluation of a compact PET/SPECT/CT tri-modality system for small animal imaging applications Nucl. Instr. Meth. Phys. Res. A 786 147-54
Wernick M N and Aarsvold J N 2004 Introduction to Emission Tomography in Emission Tomography: The Fundamentals of PET and SPECT ed Wernick M N and Aarsvold J N (San Diego, CA: Elsevier Academic Press) pp 11-23
Wietholt C, Hsiao I T and Chen C T 2007 A system model for pinhole SPECT simulating edge penetration, detector and pinhole response and non-uniform attenuation Proc. SPIE 6510 65103N
Wojcik R, Majewski S, Steinbach D and Weisenberger A G 1998 High spatial resolution gamma imaging detector based on 5" diameter R3292 hamamatsu PSPMT IEEE Trans. Nucl. Sci. 45(3) 487-91
Woods R P, Cherry S R and Mazziotta J C 1992 Rapid automated algorithm for aligning and reslicing PET images J. Comput. Assist. Tomogr. 16 620-33
Wu M C, Hasegawa B H and Dae M W 2002 Performance evaluation of a pinhole SPECT system for myocardial perfusion imaging of mice Med. Phys. 29(12) 2830-39
Zeng G L, Galt J R, Wernick M N, Mintzer R A and Aarsvold J N 2004 Single-Photon Emission Computed Tomography in Emission Tomography: The Fundamentals of PET and SPECT ed Wernick M N and Aarsvold J N (San Diego, CA: Elsevier Academic Press) pp 127-52
指導教授 陳怡君(Yi-Chun Chen) 審核日期 2016-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明