博碩士論文 962206064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:13.59.72.129
姓名 鐘敏豪(Ming-hao Chung)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 SOI脊型波導之彎曲結構與濾波器在晶片內光學連結應用
(SOI-based Rib Waveguide Bends and Filters for Intra-chip Optical Interconnects)
相關論文
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 以矽光學平台為基礎之4通道×10-Gbps 光學連結模組之接收端研究
★ 透明導電層上之高分子聚合物微奈米光學結構於氮化鎵發光二極體光學特性研究★ 具45度反射面之非共平面轉折波導光路
★ 以矽光學平台為基礎之4通道 x 10 Gbps光學連結模組之發射端★ 具三維光路之光連接發射端模組
★ 矽基光學平台技術為核心之雙向4通道 x 10-Gbps光學連接收發模組★ 建立於矽基光學平台之高分子聚合物波導光路
★ 適用於色序式微型投影機之微透鏡陣列積分器光學系統研製★ 發光二極體色溫控制技術及其於色序式微型投影機之應用
★ 具45˚矽基反射面高分子聚合物波導之10-Gbps晶片內部光學連接收發模★ 在陶瓷基板實現高速穿孔架構之5-Gbps光學連接模組
★ 具垂直分岔光路之10-Gbps雙輸出矽基光學連接模組★ 利用光展量概念之微型投影機光學設計方法與實作
★ 以1 × 2垂直分岔高分子聚合物光路實現單晶片20-Gbps矽基光學連接模組★ 利用三維矽波導光路實現10-Gbps單晶片光學連接模組
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於SOI晶片與微電子技術的高度相容性,SOI逐漸成為平面光路的主要應用平臺。然而受制於矽材與空氣、二氧化矽之折射率反差過大,SOI平板波導在紅外光波段之單模孔徑僅達0.3微米,如此,在光纖與平板波導間會造成極嚴重的耦合問題。因此,我們利用脊形波導結構的特性,在較大的結構尺寸下,仍然可以抑制高階波導模態的產生,經由設計我們製作出一個具有2.5 × 2 平方微米孔徑之脊形波導,其與透鏡型單模光纖的直接耦合效率可達 -4.2 dB,根據此結果,單模脊形波導已具備可以與光纖連結之特性。在此篇論文中,我們以黃光製程技術將光學元件包括彎曲與濾波結構設計在單模脊形波導上,並以此為出發點進行研究。 為了實現將積體光學元件高密度化的目標,將光路彎曲具有其必要性,然而若要在很小的尺度內將光路彎曲,因折射率反差所造成的光強損耗將無可避免。在本篇論文中,我們提出用相位補償的方式,在波導彎曲處以電感耦合電漿式反應性離子蝕刻製作出空氣柱,並經由在空氣柱中填入聚醯亞銨或環苯丁烷(BCB)後所形成的微透鏡,讓波導之特徵模態得以維持,也希望減少在彎曲處因繞射所造成的損耗。我們以10.46微米之彎曲半徑設計了幾組不同的彎折角度包括10,30,40,48,55以及60度,其平均彎曲效率約為10 dB.
另外因應光通訊之分波的需要,我們也提出了在脊形波導上製作出結合Fabry-Perot共振腔與分佈式布拉格反射器(DBR)所形成之濾波器,以分佈式布拉格反射器當作此共振腔的反射層,並藉由改變布拉格反射器中矽與空氣層的層數,調制此濾波器的濾波帶寬,進而達到微型化晶片內濾波波導的設計。此濾波波導的製作是先用電感耦合電漿式反應性離子蝕刻出寬度1.5微米脊形波導,再蝕刻出布拉格反射器中的空氣槽。假使我們稱一層空氣層加上一層矽層稱為一對式布拉格反射器,那麼由模擬可計算出在兩對式布拉格反射式濾波波導中,我們可以得到一個穿透效率為0.96且頻寬為5奈米的穿透光光譜。
由以上的轉彎以及濾波技術,在實驗室將來的研究中,希望得以發展出在單一矽晶片內的分波收發模組,更使此研究成果具有應用性。
摘要(英) Silicon-on-insulator (SOI) material has received much attention as a platform for planar lightwave circuits (PLCs) due to the compatibility with complementary metal oxide semiconductor (CMOS) technologies and high possibility to integrate other optoelectronic devices within a single chip. SOI’s intrinic high index contrast between silicon and oxide/air causes single-mode core size less than 0.3 μm for a simple slab-type waveguide, and then serious coupling loss from fibers is inevitable. Therefore, rib-type waveguide is usually adopted not only to provide a larger core size but also to maintain single-mode operation. Furthermore, PLCs-related devices such as bends, beam splitters, or filters based on SOI-based rib waveguide have become essentional research issues in these years. In this thesis, we focus on both waveguide bending and filtering applications with ultra-compact and monolithic characteristics. The individual detail for both devices is briefed as follows:
Ultra-compact waveguide bend is very important to achieve devices with high-density integration. SOI-based rib waveguide is a great platform to perform a wild-angle bending with high bending efficiency via reflection mirror, corner mirror technologies. However, these technologies for waveguide bends are short of an efficiently optimal design rule for arbitrary bending angles. Here, a compact SOI rib waveguide bends with benzocyclobutene (BCB) microprisms are proposed. The microprism is designed by using the phase compensation rule and monolithically integrated in the bending area of an optical waveguide to correctly tilt the wavefront of eigen-mode and suppress the radiation loss. The microprism can be realized by dry-etching an air trench in the bent corner and filling it with the BCB polymer material. A very compact bending radius of 10.46 μm is implemented to various bending angles including 10, 30, 40, 48, 55, and 60 degrees with averaged experimental bending loss of 10.48 dB. In addition, the core size of this rib waveguide can be expanded to 2.5 × 2 μm2, resulting in coupling loss less than 4.2 dB.
Wavelength-Division Multiplexer plays an important role in optical communication, which converge signals carried by different wavelength, and then separates it into different terminations. Different kinds of optical filters such as thin film filters and grating filters were broached to serve the demand of multiplexer. However, these technologies are deficient in large working area or the huge packaged size. Therefore, a compact SOI-based rib waveguide with distributed-Bragg-reflector (DBR) structures are also proposed, the DBR layers from one to three pairs are designed for incident wave to resonate and filter through a narrow bandwidth and high transmission efficiency of transmitted wave. The transmission efficiency is as high as 0.96 with FWHM (full width half maximum) of 5 nm, which is achieved by two-pair air trench of DBR filter.
According to the bending and filtering technique as mentioned above, the approach to a compact intra-chip wavelength division multiplexer would be expected, and makes the research more applicable.
關鍵字(中) ★ 轉折
★ 濾波
★ 波導
關鍵字(英) ★ filter
★ waveguide
★ bend
論文目次 Abstract i
摘要 iv
Acknowledgement v
Contents vi
Table Captions viii
Figure Captions ix
Chapter 1 Introduction 1
1.1 Intra-chip Optical Interconnect Application 1
1.2 Current SOI-Based Waveguide Bending Approaches and Our Proposed Solution 3
1.3 Current SOI-Based Waveguide Filtering Approaches and Our Proposed Solution 5
Chapter 2 Design and Simulation of SOI-Based Rib Waveguide Bends with Polymer Microprism 8
2.1 SOI-Based Rib Waveguide 9
2.2 Ideal Waveguide Bending Structure and Polymer Microprism for Waveguide Bend 12
2.3 Simulated Results and Discussion 14
Chapter 3 Fabrication and Measurement of SOI-Based Rib Waveguide Bends with Polymer Microprism 17
3.1 Fabrication Flow of SOI-Based Rib Waveguide Bends with
Polymer Microprism 18
3.2 Measurement Setup and Results 21
3.3 Comparison and Discussion 28
Chapter 4 Design and Simulation of SOI-Based Rib Waveguide with DBR Filters 30
4.1 Working Principle of DBR Filter and Primary Simulation 31
4.2 Simulation of Monolithically Integrated SOI-Based Rib Waveguide with DBR Filter 36
4.3 Simulated Results and Discussion 39
Chapter 5 Fabrication and Measurement of SOI-Based Rib Waveguide with DBR Filters 40
5.1 Fabrication Flow of SOI-Based Rib Waveguide with DBR Filters 41
5.2 Measurement Setup and Results 44
5.3 Comparison and Discussion 45
Chapter 6 Conclusion and Prospect 47
Bibliography 48
參考文獻 [1] S.E. Miller, “Integrated optics: an introduction, ”Bell System Technol. J., 48, 2059 (1969)
[2] G. Tosik, F. Gaffiot, Z. Lisik, I. O'Connor, and F. Tissafi-Drissi, “Power dissipation in optical and metallic clock distribution networks in new VLSI technologies,” Electron. Lett. 40, 198-200(2004)
[3]Y. Qian, S. Kim, J. Song, and G. Nordin, “Compact and low loss silicon-on-insulator rib waveguide 90° bend,” Opt. Express 14,6020-6028 (2006)
[4] B. E. Little, S. T. Chu, H. A. Haus, J. Foresi and J-P. Laine, “Micro ring resonator channel dropping filters,” J. Lightwave Technol. 15,998-1005 (1997)
[5] Chia-Chi Chang, Hsiao-Chin Lan, Ming-Hao Chung, and Mount-Learn Wu, “Monolithically Integrated Sub-Wavelength Grating Filter on SOI-based Waveguide for 1310/1550 nm Wavelength-Division Multiplexer,” 6thInternational Conference on Optics-photonics Design & Fabrication, 361-362 (2008)
[6] P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis and P. T. Ho, “Compact micro ring notch filters,” IEEE Photon. Technol.Lett. 12, 398-400 (2000).
[7] Alain Morand, Yang Zhang, Bruno Martin, KienPhanHuy, David Amans, Pierre Benech, Jeremy Verbert , Emmanuel Hadji, and Jean-Marc Fedeli, “Ultra-compact micro disk resonator filters on SOI substrate,” Opt. Express 14, 12814-12821(2006).
[8] H. B. Lin, J.Y. Su, P. K. Wei, and W.S. Wang, “Design and application of very low-loss bends in optical waveguides,” IEEE J. Quantum Electron., vol. 30, pp. 2827–2835, Dec. 1994
[9] Y. Z. Tang, W. H. Wang, T. Li, and Y. L. Wang, “Integrated waveguide turning mirror in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 68-70 (2002).
[10] J. Liu, J. Yu, S. Chen, and Z. Li, “Integrated folding 4 X 4 optical matrix switch with total internal reflection mirrors on SOI by anisotropic chemical etching,” IEEE Photon. Technol. Lett. 17, 1187-1189 (2005).
[11] S. Ladenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, and L. Mollard, “Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors,” Opt. Lett. 28, 1150-1152 (2003).
[12] R. U. Ahmad, F. Pizzuto, G. Camarda, R. L. Espinola, H. Rao, R. M. Osgood, Jr., “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65-67 (2002).
[13] R. L. Espinola, R. U. Ahmad, F. Pizzuto, M. J. Steel and R. M. Osgood, Jr., “A study of high-index-contrast 90◦ waveguide bend structures,” Opt. Express 8, 517-528 (2001).
[14] M. Popovic, K. Wada, S. Akiyama, H. A. Haus, and J. Michel, “Air Trenches for Sharp Silica Waveguide Bends,” IEEE J. Lightwave Technol. 20, 1762 - 1772 (2002).
[15] Y. Qian, J. Song, S. Kim, W. Hu, and G. P. Nordin, “Compact waveguide splitter networks,” Opt. Express 16, 4981-4990 (2008).
[16] M. L. Wu, P. L. Fan, J. M. Hsu, and C. T. Lee, “Design of Ideal Structures for Lossless Bends in Optical Waveguides by Conformal Mapping,"IEEE J. Lightwave Technol. 14, 2604-2614 (1996).
[17]C. T. Lee and M. L. Wu, “Apexes-Linked Circle Gratings for Low-Loss Waveguide Bends,” IEEE Photon. Technol. Lett., vol. 13, pp. 597–599, Jun. 2001.
[18] T. E. M urphy, J. T. Hastings, and H. I. Smith, “Fabrication and Characterization of Narrow-Band Bragg-Reflection Filters in Silicon-on-Insulator Ridge Waveguides,” J. Lightwave Technol. 19, 1938-1942 (2001).
[19]Ariel Lipson, Eric M. Yeatman, “Low-loss one-dimensional photonic bandgap filter in (110) silicon,” Optics Letters, Vol. 31, No. 3, (2006)
[20] P. D. Trinh. S. Yegnanarayanan, and B. Jalali, “5×9 Integrated Optical Star Coupler in Silicon-on-Insulator Technology,” IEEE Photon. Technol. Lett., 8, 794, 1996
[21] P. D. Trinh. S. Yegnanarayanan, and B. Jalali, “Integrated optical directional coupler in silicon-on-insulator,” Electron. Lett., 31, 2097, 1995
[22] A. G. Rickman, G. T. Reed, and F. Namavar, “Silicon-on-insulator optical rib waveguide circuits for fiber optic sensors,” in Pric. SPIE, Distributed and Multiplexed Fiber Optic Sensors III, 2071, 190, 1993
[23] A. G. Rickman, G. T. Reed, and F. Namavar, “Silicon-on-insulator optical rib waveguide loss and mode characteristics,” J. Lightwave Technol., 12, 1771, 1994
[24] P. D. Trinh, S. Yegnanarayanan, and B. Jalali, “Guided-wave optical circuits in silicon-on-insulator technology,” in Tech. Dig. Integrated Phonoics Res. Conf., 273, 1996
[25] Y. Tang, W. Wang, Y. Wu, J. Yang, Y. Wang, "Design and fabrication of multimode interference coupler with strong confinement structure on silicon-on-insulator," Optical Engineering - Bellingham, 43, 2495, 2004
[26]S. P. Pogossian, L. Vescan, and A. Vonsovici,“The Single-mode condition for semiconductor rib wavegude with large cross section,” J. Light wave Technol, VOL. 16, NO.10, 1851 ( 1998)
[27] C. T. Lee and J. M. Hsu, “Systematic design of full phase compensation microprism-type low-loss bent waveguides,” Appl. Opt., 37, 507-509 (1998)
指導教授 伍茂仁(Mount-learn Wu) 審核日期 2009-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明