博碩士論文 962207008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:13.59.218.147
姓名 林雯菁(Wen-Jing Lin)  查詢紙本館藏   畢業系所 認知與神經科學研究所
論文名稱 全域型與局部型物體地標對人類空間巡行能力之貢獻
(The Contributions of Global and Local Object Landmarks in Human Wayfinding Behavior)
相關論文
★ 作業轉換能力之訓練與轉移效果探討★ 兒童早期至晚期疼痛同理心的神經發展: 事件相關電位研究
★ 同理心老化的認知神經機轉:功能性磁振造影研究★ 動作參數對於選擇性抑制的影響
★ 社會場景對於護理人員同理心之調控★ 泛自閉症障礙症候群處理情緒人聲的不典型表現:腦電波研究
★ 即時回饋類型對於雙手協調動作學習之影響★ Diversity and Commonality of Cognitive Profile among Static, Strategic and Interceptive Sports-Expertise
★ Application of a Brain Computer Interfacing System in Comparing Visual verses Haptic Induction of Motor Imaginary Task★ An FMRI Investigation of Malleable Numerical Representation
★ 動態照明在辦公環境應用之可行性評估與眼動儀偵測視覺疲勞之研究★ Difference and Relationship between Voluntary and Involuntary Inhibition in Elderly and Young Groups
★ 以簡單施力作業及重複效應檢驗動作意象與執行之對應關係★ 年輕與老年族群之控制化與自動化抑制交互影響的行為與事件相關電位特徵
★ 空間性及時間性資訊變化對序列學習影響之探討★ 運用VGG網絡對靜息態功能性磁振造影成分圖進行區分
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 空間巡行能力包括能夠辨識起點與終點、決定該走哪條路、以及辨認路上的地標,視覺訊息是人類在空間巡行能力中所仰賴的主要訊息類別之一,因此能夠再認與有效利用地標便成為一項重要的能力。由於虛擬實境能提供受試者足夠的視覺刺激產生移動覺,適合在實驗室中使用,搭配嚴謹的實驗程序控制,近年來在探討人類空間巡行能力之實驗中已廣泛被應用。本研究利用虛擬實境場景探討人類在複雜且不規則結構環境中,使用全域性地標及局部性地標來幫助形成空間表徵之效果是否有所差異,並試圖釐清造成該差異之真正原因。實驗一中,受試者分別執行全域性地標呈現、局部性地標呈現以及無地標呈現之三類實驗情況,受試者必須藉由實驗環境中可使用的地標來學習目標物所在的位置,透過在測試階段中受試者尋找目標物所需花費的時間、所行走的距離總和以及表現達到表現標準的所需學習次數反映受試者在不同實驗情況中的空間表徵形成完整性。實驗結果發現受試者在複雜結構環境中,局部性地標使受試者的表現顯著地優於在其他兩個實驗環境中的表現,而全域性地標並未使受試者的表現優於無地標呈現環境。實驗二、三、與四分別利用實驗操弄探討造成此項差異的原因是否是來自於受試者天生傾向使用某種空間表徵(自我中心或他物中心),或是因為不同的地標恰巧有助於人類形成不同類型的空間表徵,或是由於複雜不規則的環境結構阻擋路徑而致使受試者在使用全域性地標時無法有良好表現。實驗五將以腦電波技術探討人類在執行空間巡行作業時所運用的腦部區域。 總結而言,所有的實驗都顯示局部性地標確實能在不規則環境中最有效地提升人們的空間巡行表現,但在經過較長時間的練習之後,全域性地標同樣也能使人類表現提升。關於造成這兩項地標貢獻不同的可能原因,目前已經初步排除了幾項:人類使用空間表徵的偏好、不同類型地標導致不同類型空間表徵形成的容易度、以及環境結構規則度、複雜度的影響。至於真正的原因仍有待未來更多研究的釐清與探討。
摘要(英) The ability to recognize and use object landmarks is crucial for efficient wayfinding. However, the roles of different types of landmarks in wayfinding remain to be clarified. In the current study, we examined how global and local landmarks are utilized differentially in novel virtual maze environments, and aimed to clarify the causes of these differences. Three different experimental conditions were constructed: first, a global object landmark condition consisted of a virtual maze surrounded by high-rise architectures visible from almost everywhere inside; second, a local object landmark condition consisted of a virtual maze with cartoon pictures of common objects only visible from certain locations posted on some walls along the paths inside; finally, a control condition consisted of a virtual maze without any object landmarks. The participants learned the layout of the environment and the target positions through a series of learning trials. Their learning performance was assessed by traveling distance, time, and ratio of successfully found targets within time limits. The results of Experiment 1 demonstrated that participants learned to navigate most efficiently in the local landmark condition, while their performance did not differ between global and control conditions. Experiment 2, 3 and 4 aimed to verify these differences were caused by natural tendency of using different spatial representations, by different spatial representation using when different landmarks were available, or by the influence of the irregular geometric structures, respectively. Experiment 5 aimed to explore the neural mechanism when people performing wayfinding task with these object landmarks with electroencephalography. In conclusion, both local and global object landmarks could benefit people’s wayfinding behavior, but it takes a longer period of time for using global landmarks to reach the optimal performance. Natural tendency of using spatial representation, accessibility to different spatial representations, and regularity of geometric structures have been preliminarily ruled out. Further studies are needed to clarify the actual mechanisms underlying the differences in performance between the global and the local landmarks.
關鍵字(中) ★ 空間巡行
★ 地標
★ 物體地標
★ 空間表徵
★ 局部型地標
★ 全域型地標
關鍵字(英) ★ object landmark
★ local landmark
★ global landmark
★ landmark
★ wayfinding
★ spatial representation
論文目次 Abstract ............................................................................................................................................ I
中文摘要 ...................................................................................................................................... III
謝誌 ................................................................................................................................................ V
Table of Contents .......................................................................................................................... VI
List of figures .............................................................................................................................. XIII
List of tables ................................................................................................................................ XV
1. Introduction ............................................................................................................................. 1
1.1. Allocentric and Egocentric Spatial Representations and Human Wayfinding ........ 2
1.1.1. Issues of Orientation/Viewpoint Specificity ................................................... 3
1.1.2. Spatial updating ............................................................................................... 5
1.1.3. Configuration consistency of pointing to multiple objects .............................. 7
1.1.4. Route and survey knowledge ......................................................................... 11
1.2. Object Landmarks and Human Wayfinding .......................................................... 12
1.2.1. Benefit of landmarks to wayfinding behavior ............................................... 13
1.2.2. Geometric landmark and object landmark..................................................... 15
1.2.3. Global and local object landmark .................................................................. 22
1.3. Neural Mechanisms Underlying Wayfinding ........................................................ 24
1.3.1. Hippocampus ................................................................................................. 25
1.3.2. Parahippocampus ........................................................................................... 26
1.3.3. Parietal cortex ................................................................................................ 28
1.3.4. Retrosplenial cortex ....................................................................................... 30
1.4. Application of Virtual Reality in Studying Human Wayfinding Behavior ........... 31
1.5. The Aims of the Current Study ............................................................................. 33
2. Experiment 1: Differential wayfinding performance in virtual environments with local and
global object landmarks ................................................................................................................. 35
2.1. Method ................................................................................................................... 35
2.1.1. Participants .................................................................................................... 35
1.1.1. Apparatus and materials ................................................................................ 35
1.1.2. Procedures ..................................................................................................... 39
1.1.3. Data analysis .................................................................................................. 41
2.2. Results ................................................................................................................... 42
2.2.1. Mean travel time ............................................................................................ 42
2.2.2. Mean travel distance ...................................................................................... 44
2.2.3. Variance of travel time .................................................................................. 45
2.2.4. Variance of travel distance ............................................................................ 46
2.3. Discussion .............................................................................................................. 47
2.3.1. The differences between local and global object landmarks ......................... 48
2.3.2. No differences between global object landmark condition and control
condition 50
2.3.3. No interaction between gender and landmark conditions ............................. 53
3. Experiment 2: Influence of natural tendency in spatial representations on wayfinding
performance in environments with local and global object landmarks ......................................... 54
3.1. Method ................................................................................................................... 54
3.1.1. Participants .................................................................................................... 54
3.1.2. Apparatus and materials ................................................................................ 55
3.1.2.1. Virtual environments ..................................................................... 55
3.1.2.2. Heading task .................................................................................. 55
3.1.2.3. Questionnaires ............................................................................... 57
3.1.3. Procedures ..................................................................................................... 58
3.1.4. Data analysis .................................................................................................. 61
3.2. Results ................................................................................................................... 63
3.2.1. Number of trials needed to meet criterion in test trial ................................... 63
3.2.2. Mean travel time ............................................................................................ 64
3.2.3. Mean corrected path length ........................................................................... 66
The results of ANOVA of mean corrected path length revealed significant main
effect for landmark condition ( .............................................................................. 66
3.2.4. Ratio of goal-aparting data points ................................................................. 67
3.2.5. The correlation between the questionnaire and wayfinding performance ..... 70
3.3. Discussion .............................................................................................................. 71
3.3.1. The role of local object landmarks ................................................................ 71
3.3.2. The role of global object landmarks .............................................................. 72
3.3.3. The natural tendency in spatial representation .............................................. 73
3.3.4. Questionnaires ............................................................................................... 74
3.3.4.1. Sense of direction .......................................................................... 74
3.3.4.2. Wayfinding strategy ...................................................................... 75
3.3.4.3. Spatial anxiety ............................................................................... 75
3.3.4.4. Computer use frequency ................................................................ 76
4. Experiment 3: Accessibility to egocentric and allocentric representations from global and
local object landmarks ................................................................................................................... 77
4.1. Method ................................................................................................................... 79
4.1.1. Participants .................................................................................................... 79
4.1.2. Apparatus and materials ................................................................................ 80
4.1.2.1. Virtual Environment ...................................................................... 80
4.1.2.2. Map drawing task .......................................................................... 81
4.1.2.3. Direction pointing task .................................................................. 82
4.1.3. Procedures ..................................................................................................... 83
4.1.3.1. Wayfinding task ............................................................................. 83
4.1.3.2. Map drawing task .......................................................................... 84
4.1.4. Data analysis .................................................................................................. 85
4.1.4.1. Wayfinding behavior ..................................................................... 85
4.1.4.2. Distance error in map drawing task ............................................... 85
4.1.4.3. Mean pointing error in direction pointing task .............................. 86
4.2. Results ................................................................................................................... 86
4.2.1. Accuracy in test trial ...................................................................................... 86
4.2.2. Mean travel time and corrected path length .................................................. 87
4.2.3. Map drawing task .......................................................................................... 89
4.2.3.1. Performance of target position ...................................................... 89
4.2.3.2. Performance of landmarks ............................................................. 91
4.2.4. Direction pointing task .................................................................................. 92
4.2.5. Correlations between wayfinding performance and other tasks .................... 94
4.3. Discussion .............................................................................................................. 96
5. Experiment 4: Influence from regularity of geometric structures on wayfinding behavior 101
5.1. Method ................................................................................................................. 102
5.1.1. Participants .................................................................................................. 102
5.1.2. Apparatus and materials .............................................................................. 102
5.1.3. Procedure ..................................................................................................... 103
5.1.4. Data analysis ................................................................................................ 104
5.2. Results ................................................................................................................. 105
5.2.1. Mean travel time .......................................................................................... 105
5.2.1.1. Visible trial .................................................................................. 105
5.2.1.2. Probe trial .................................................................................... 108
5.2.2. Mean travel path length ............................................................................... 110
5.2.2.1. Visible trial .................................................................................. 110
5.2.2.2. Probe trial .................................................................................... 112
5.2.3. No-translation time ...................................................................................... 113
5.2.3.1. Visible trial .................................................................................. 113
5.2.3.2. Probe trial .................................................................................... 114
5.2.4. Slope of learning speed ............................................................................... 114
5.2.5. Mean travel time grouped by performance level ......................................... 115
5.2.5.1. Visible trial .................................................................................. 116
5.2.5.2. Probe trial .................................................................................... 117
5.3. Discussion ............................................................................................................ 119
6. Experiment 5: Differential brain electrophysiology of wayfinding in the global and local
landmark environment: An EEG study ....................................................................................... 125
6.1. Introduction of studies of theta oscillation .......................................................... 126
6.2. Method ................................................................................................................. 129
6.2.1. Participants .................................................................................................. 129
6.2.2. Apparatus and materials .............................................................................. 130
6.2.2.1. Virtual environments ................................................................... 130
6.2.2.2. EEG data recording and processing............................................. 130
6.2.3. Procedure ..................................................................................................... 134
6.2.3.1. Behavioral training ...................................................................... 134
6.2.3.2. EEG experiment .......................................................................... 134
6.3. Results ................................................................................................................. 137
6.3.1. Behavioral results ........................................................................................ 137
6.3.1.1. Behavioral pre-training ................................................................ 137
6.3.1.2. Behavioral results in EEG data recording ................................... 138
6.3.2. EEG results .................................................................................................. 141
6.3.2.1. ERSP ............................................................................................ 143
6.3.2.2. Permutation test ........................................................................... 145
6.3.2.3. Differences in the correlation between behavioral performance and
power of brain oscillation .................................................................................... 148
6.4. Discussion ............................................................................................................ 148
7. General Discussion .............................................................................................................. 151
7.1. Major findings of the current study ..................................................................... 151
7.1.1. Local object landmarks benefit people’s wayfinding performance most .... 151
7.1.2. Global object landmarks also facilitate wayfinding but were limited in some
situations 151
7.1.3. Underlying factors which have been ruled out: natural tendency of using
spatial representation, accessibility to different spatial representations, and regularity of
geometric structures ..................................................................................................... 152
7.2. Unresolved problems and future studies ............................................................. 155
7.2.1. Confounding factor in the current study ...................................................... 155
7.2.1.1. Participants might not have adopted the same spatial
representations as we expected ............................................................................ 155
7.2.1.2. The environment with regular structures in Experiment 4 was too
easy 157
7.2.2. Unresolved questions ................................................................................... 158
7.3. Conclusions ......................................................................................................... 164
References .................................................................................................................................. 166
APPENDICES ............................................................................................................................. 176
參考文獻 Aginsky, V., Harris, C., Rensink, R., & Beusmans, J. (1997). Two strategies for learning a route in a driving simulator. Journal of Environmental Psychology, 17(4), 317-331.
Aguirre, G. K., Detre, J. A., Alsop, D. C., & Desposito, M. (1996). The parahippocampus subserves topographical learning in man. Cerebral Cortex, 6(6), 823-829.
Albert, W. S., Rensink, R. A., & Beusmans, J. M. (1999). Learning relative directions between landmarks in a desktop virtual environment Spatial Cognition and Computation 1, 131-144.
Allen, G. L. (1999). Spatial abilities, cognitive maps, and wayfinding. In R. G. Golledge (Ed.), Wayfinding Behavior (pp. 46-80). Baltimore, Maryland: Johns Hopkins University Press.
Begega, A., Cienfuegos, S., Rubio, S., Santin, J. L., Miranda, R., & Arias, J. L. (2001). Effects of ageing on allocentric and egocentric spatial strategies in the Wistar rat. Behavioural Processes, 53(1-2), 75-85.
Bischof, W. F., & Boulanger, P. (2003). Spatial navigation in virtual reality environments: An EEG analysis. Cyberpsychology & Behavior, 6(5), 487-495.
Burgess, N. (2006). Spatial memory: how egocentric and allocentric combine. Trends in Cognitive Sciences, 10(12), 551-557.
Burgess, N., Maguire, E. A., & O'Keefe, J. (2002). The human hippocampus and spatial and episodic memory. Neuron, 35(4), 625-641.
Burgess, N., & O'Keefe, J. (2003). Neural representations in human spatial memory. Trends in Cognitive Sciences, 7(12), 517-519.
Burgess, N., Spiers, H. J., & Paleologou, E. (2004). Orientational manoeuvres in the dark: dissociating allocentric and egocentric influences on spatial memory. Cognition, 94(2), 149-166.
Buzsaki, G. (2005). Theta rhythm of navigation: Link between path integration and landmark navigation, episodic and semantic memory. Hippocampus, 15(7), 827-840.
Caduff, D., & Timpf, S. (2008). On the assessment of landmark salience for human navigation. Cognitive Processing, 9(4), 249-267.
Caplan, J. B., Madsen, J., Fried, I., Newman, E., & Kahana, M. (2002). Human theta oscillations during virtual taxi driving. Journal of Cognitive Neuroscience, F81.
Caplan, J. B., Madsen, J. R., Raghavachari, S., & Kahana, M. J. (2001). Distinct patterns of brain oscillations underlie two basic parameters of human maze learning. Journal of Neurophysiology, 86(1), 368-380.
Caplan, J. B., Madsen, J. R., Schulze-Bonhage, A., Aschenbrenner-Scheibe, R., Newman, E. L., & Kahana, M. J. (2003). Human theta oscillations related to sensorimotor integration and spatial learning. Journal of Neuroscience, 23(11), 4726-4736.
Cardillo, G. (2008). Rndttest: An alternative to Student t-test assessing difference in means.
Castelli, L., Corazzini, L. L., & Geminiani, G. C. (2008). Spatial navigation in large-scale virtual environments: Gender differences in survey tasks. Computers in Human Behavior, 24(4), 1643-1667.
Cheng, K. (1986). A purely geometric module in the rat's spatial representation. Cognition, 23(2), 149-178.
Cheng, K. (2008). Whither geometry? Troubles of the geometric module. Trends in Cognitive Sciences, 12(9), 355-361.
Cheng, K., & Newcombe, N. S. (2005). Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychonomic Bulletin & Review, 12(1), 1-23.
Cohen, R., & Sehuepfer, T. (1980). The Representation of Landmarks and Routes. Child Development, 51(4), 1065-1071.
Coluccia, E., Mammarella, I. C., De Beni, R., Ittyerah, M., & Cornoldi, C. (2007). Remembering object position in the absence of vision: Egocentric, allocentric, and egocentric decentred frames of reference. Perception, 36(6), 850-864.
Cornwell, B. R., Johnson, L. L., Holroyd, T., Carver, F. W., & Grillon, C. (2008). Human hippocampal and parahippocampal theta during goal-directed spatial navigation predicts performance on a virtual Morris water maze. Journal of Neuroscience, 28(23), 5983-5990.
Creem, S. H., & Proffitt, D. R. (1998). Two memories for geographical slant: Separation and interdependence of action and awareness. Psychonomic Bulletin & Review, 5(1), 22-36.
Creem, S. H., & Proffitt, D. R. (2001). Defining the cortical visual systems: "What", "Where", and "How". Acta Psychologica, 107(1-3), 43-68.
de Araujo, D. B., Baffa, O., & Wakai, R. T. (2002). Theta oscillations and human navigation: A magnetoencephalography study. Journal of Cognitive Neuroscience, 14(1), 70-78.
Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21.
Diwadkar, V. A., & McNamara, T. P. (1997). Viewpoint dependence in scene recognition.
Ekstrom, A. D., & Bookheimer, S. Y. (2007). Spatial and temporal episodic memory retrieval recruit dissociable functional networks in the human brain. Learning & Memory, 14(10), 645-654.
Ekstrom, A. D., Caplan, J. B., Ho, E., Shattuck, K., Fried, I., & Kahana, M. J. (2005). Human hippocampal theta activity during virtual navigation. Hippocampus, 15(7), 881-889.
Ekstrom, A. D., Kahana, M. J., Caplan, J. B., Fields, T. A., Isham, E. A., Newman, E. L., et al. (2003). Cellular networks underlying human spatial navigation. Nature, 425(6954), 184-187.
Epstein, R. (2008). Parahippocampal and retrosplenial contributions to human spatial navigation. Trends in Cognitive Sciences, 12(10), 388-396.
Epstein, R., Harris, A., Stanley, D., & Kanwisher, N. (1999). The parahippocampal place area: Recognition, navigation, or encoding? Neuron, 23(1), 115-125.
Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature, 392(6676), 598-601.
Epstein, R., Parker, W. E., & Feiler, A. M. (2007). Where am I now? Distinct roles for parahippocampal and retrosplenial cortices in place recognition. Journal of Neuroscience, 27(23), 6141-6149.
Fitting, S., Allen, G. L., & Wedell, D. H. (2006, Sep 24-28). Remembering places in space: A human analog study of the Morris water maze. Paper presented at the International Conference on Spatial Cognition, Bremen, GERMANY.
Fitting, S., Douglas, H., Wedell, D. H., & Allen, G. L. (2005). Memory for spatial location: Influences of environmental cues and task field rotation. In A. G. Cohn & D. M. Mark (Eds.), COSIT 2005, LNCS 3693 (pp. 459-474). Berlin: Springer-Verlag.
Fitting, S., Wedell, D. H., & Allen, G. L. (2007). Memory for spatial location: Cue effects as a function of field rotation. Memory & Cognition, 35(7), 1641-1658.
Fitting, S., Wedell, D. H., & Allen, G. L. (2009). Cue Effects on Memory for Location When Navigating Spatial Displays. Cognitive Science, 33(7), 1267-1300.
Gallistel, C. R. (1990). The organization of learning. Cambridge, MA: MIT Press.
Golledge, R. G., Ruggles, A. J., Pellegrino, J. W., & Gale, N. D. (1993). Integrating route knowledge in an unfamiliar neighborhood- along and across route experiments. Journal of Environmental Psychology, 13(4), 293-307.
Gramann, K., Muller, H. J., Eick, E. M., & Schonebeck, B. (2005). Evidence of separable spatial representations in a virtual navigation task. Journal of Experimental Psychology-Human Perception and Performance, 31(6), 1199-1223.
Gramann, K., Muller, H. J., Schonebeck, B., & Debus, G. (2006). The neural basis of ego- and allocentric reference frames in spatial navigation: Evidence from spatio-temporal coupled current density reconstruction. Brain Research, 1118, 116-129.
Hartley, T., Maguire, E. A., Spiers, H. J., & Burgess, N. (2003). The well-worn route and the path less traveled: Distinct neural bases of route following and wayfinding in humans. Neuron, 37(5), 877-888.
Hasselmo, M. E. (2005). What is the function of hippocampal theta Rhythm? Linking behavioral data to phasic properties of field potential and unit recording data. Hippocampus, 15(7), 936-949.
Hegarty, M., Richardson, A. E., Montello, D. R., Lovelace, K., & Subbiah, I. (2002). Development of a self-report measure of environmental spatial ability. Intelligence, 30(5), 425-447.
Hermer, L., & Spelke, E. S. (1994). A Geometric process for spatial reoreientation in young-children. Nature, 370(6484), 57-59.
Holmes, M. C., & Sholl, M. J. (2005). Allocentric Coding of Object-to-Object Relations in Overlearned and Novel Environments. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(5), 1069-1087.
Huttenlocher, J., Hedges, L. V., & Duncan, S. (1991). CATEGORIES AND PARTICULARS - PROTOTYPE EFFECTS IN ESTIMATING SPATIAL LOCATION. Psychological Review, 98(3), 352-376.
Iaria, G., Chen, J. K., Guariglia, C., Ptito, A., & Petrides, M. (2007). Retrosplenial and hippocampal brain regions in human navigation: complementary functional contributions to the formation and use of cognitive maps. European Journal of Neuroscience, 25(3), 890-899.
Iaria, G., Petrides, M., Dagher, A., Pike, B., & Bohbot, V. D. (2003). Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: Variability and change with practice. Journal of Neuroscience, 23(13), 5945-5952.
Jacobs, W. J., Laurance, H. E., & Thomas, K. G. F. (1997). Place learning in virtual space I: Acquisition, overshadowing, and transfer. Learning and Motivation, 28(4), 521-541.
Jansen-Osmann, P. (2002). Using desktop virtual environments to investigate the role of landmarks. Computers in Human Behavior, 18(4), 427-436.
Jansen-Osmann, P., & Fuchs, P. (2006). Wayfinding behavior and spatial knowledge of adults and children in a virtual environment - The role of landmarks. Experimental Psychology, 53(3), 171-181.
Jansen-Osmann, P., Schmid, J., & Heil, M. (2007). Wayfinding behavior and spatial knowledge of adults and children in a virtual environment: The role of the environmental structure. Swiss Journal of Psychology, 66(1), 41-50.
Janzen, G., & van Turennout, M. (2004). Selective neural representation of objects relevant for navigation. Nature Neuroscience, 7(6), 673-677.
Kahana, M. J. (2006). The cognitive correlates of human brain oscillations. Journal of Neuroscience, 26(6), 1669-1672.
Kahana, M. J., Seelig, D., & Madsen, J. R. (2001). Theta returns. Current Opinion in Neurobiology, 11(6), 739-744.
Kahana, M. J., Sekuler, R., Caplan, J. B., Kirschen, M., & Madsen, J. R. (1999). Human theta oscillations exhibit task dependence during virtual maze navigation. Nature, 399(6738), 781-784.
Kelly, J. W., McNamara, T. P., Bodenheimer, B., Carr, T. H., & Rieser, J. J. (2008). The shape of human navigation: How environmental geometry is used in maintenance of spatial orientation. Cognition, 109(2), 281-286.
Kelly, J. W., McNamara, T. P., Bodenheimer, B., Carr, T. H., & Rieser, J. J. (2009). Individual differences in using geometric and featural cues to maintain spatial orientation: Cue quantity and cue ambiguity are more important than cue type. Psychonomic Bulletin & Review, 16(1), 176-181.
Klatzky, R. L. (1998). Allocentric and Egocentric Spatial Representations: Definitions, Distinctions, and Interconnections. In C. Freksa, C. Habel & K. F. Wender (Eds.), Spatial Cognition: An Interdisciplinary Approach to Representing and Processing Spatial Knowledge: Springer.
Klatzky, R. L., Loomis, J. M., Beall, A. C., Chance, S. S., & Golledge, R. G. (1998). Spatial updating of self-position and orientation during real, imagined, and virtual locomotion. Psychological Science, 9(4), 293-298.
Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research Reviews, 29(2-3), 169-195.
Kumaran, D., & Maguire, E. A. (2005). The human hippocampus: Cognitive maps or relational memory? Journal of Neuroscience, 25(31), 7254-7259.
Laukka, S. J., Jarvilehto, T., Alexandrov, Y. I., & Lindqvist, J. (1995). Frontal midline- theta related to learning in a simulated driving task. Biological Psychology, 40(3), 313-320.
Lawton, C. A. (1994). Gender differences in way-finding strategies: relationship to spatial ability and spatial anxiety. Sex Roles, 30(11/12), 765-779.
Learmonth, A. E., Nadel, L., & Newcombe, N. S. (2002). Children's use of landmarks: Implications for modularity theory. Psychological Science, 13(4), 337-341.
Learmonth, A. E., Newcombe, N. S., & Huttenlocher, J. (2001). Toddlers' use of metric information and landmarks to reorient. Journal of Experimental Child Psychology, 80(3), 225-244.
Learmonth, A. E., Newcombe, N. S., Sheridan, N., & Jones, M. (2008). Why size counts: children's spatial reorientation in large and small enclosures. Developmental Science, 11(3), 414-426.
Lovden, M., Schellenbach, M., Grossman-Hutter, B., Kruger, A., & Lindenberger, U. (2005). Environmental topography and postural control demands shape aging-associated decrements in spatial navigation performance. Psychology and Aging, 20(4), 683-694.
Maguire, E. A. (1997). Hippocampal involvement in human topographical memory: evidence from functional imaging. Paper presented at the Philosophical transactions of the Royal Society of Lodon series B-Biological sciences.
Maguire, E. A., Burgess, N., Donnett, J. G., Frackowiak, R. S. J., Frith, C. D., & O'Keefe, J. (1998). Knowing where and getting there: A human navigation network. Science, 280(5365), 921-924.
Maguire, E. A., Burgess, N., & O'Keefe, J. (1999). Human spatial navigation: cognitive maps, sexual dimorphism, and neural substrates. Current Opinion in Neurobiology, 9(2), 171-177.
Maguire, E. A., Frackowiak, R. S. J., & Frith, C. D. (1996). Learning to find your way: A role for the human hippocampal formation. Proceedings of the Royal Society of London Series B-Biological Sciences, 263(1377), 1745-1750.
Maguire, E. A., Frackowiak, R. S. J., & Frith, C. D. (1997). Recalling routes around London: Activation of the right hippocampus in taxi drivers. Journal of Neuroscience, 17(18), 7103-7110.
Maguire, E. A., Frith, C. D., Burgess, N., Donnett, J. G., & O'Keefe, J. (1998). Knowing where things are: Parahippocampal involvement in encoding object locations in virtual large-scale space. Journal of Cognitive Neuroscience, 10(1), 61-76.
Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S. J., et al. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the United States of America, 97(8), 4398-4403.
Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164(1), 177-190.
Mitchell, D. J., McNaughton, N., Flanagan, D., & Kirk, I. J. (2008). Frontal-midline theta from the perspective of hippocampal "theta". Progress in Neurobiology, 86(3), 156-185.
Moffat, S. D., Elkins, W., & Resnick, S. M. (2006). Age differences in the neural systems supporting human allocentric spatial navigation. Neurobiology of Aging, 27(7), 965-972.
Moffat, S. D., Hampson, E., & Hatzipantelis, M. (1998). Navigation in a "virtual" maze: Sex differences and correlation with psychometric measures of spatial ability in humans. Evolution and Human Behavior, 19(2), 73-87.
Moffat, S. D., Kennedy, K. M., Rodrigue, K. M., & Raz, N. (2007). Extra hippocampal contributions to age differences in human spatial navigation. Cerebral Cortex, 17(6), 1274-1282.
Moffat, S. D., & Resnick, S. M. (2002). Effects of age on virtual environment place navigation and allocentric cognitive mapping. Behavioral Neuroscience, 116(5), 851-859.
Moffat, S. D., Zonderman, A. B., & Resnick, S. M. (2001). Age differences in spatial memory in a virtual environment navigation task. Neurobiology of Aging, 22(5), 787-796.
Montello, D. R., Hegarty, M., Richardson, A. E., & Waller, D. (2004). Spatial memory of real environments, virtual environments, and maps. In G. L. Allen (Ed.), Human spatial memory: Remembering where (pp. 251-285). Mahwah, New Jersey: LEA, Pulishers.
Morris, R. G. (1981). Spatial localization does not require the presence of local cues. Learning and Motivation, 12, 239-260.
Morris, R. G., Garrud, P., Rawlins, J. N., & O'Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681-683.
Mou, W. M., & McNamara, T. P. (2002). Intrinsic frames of reference in spatial memory. Journal of Experimental Psychology-Learning Memory and Cognition, 28(1), 162-170.
Mou, W. M., McNamara, T. P., Rump, B., & Xiao, C. (2006). Roles of Egocentric and Allocentric Spatial Representations in Locomotion and Reorientation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(6), 1274-1290.
Mou, W. M., McNamara, T. P., Valiquette, C. M., & Rump, B. (2004). Allocentric and Egocentric Updating of Spatial Memories. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(1), 142-157.
Mou, W. M., Xiao, C. L., & McNamara, T. P. (2008). Reference directions and reference objects in spatial memory of a briefly viewed layout. Cognition, 108(1), 136-154.
Mueller, S. C., Jackson, C. P. T., & Skelton, R. W. (2008). Sex differences in a virtual water maze: An eye tracking and pupillometry study. Behavioural Brain Research, 193(2), 209-215.
Newman, E. L., Caplan, J. B., Kirschen, M. P., Korolev, I. O., Sekuler, R., & Kahana, M. J. (2007). Learning your way around town: How virtual taxicab drivers learn to use both layout and landmark information. Cognition, 104(2), 231-253.
O'Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Clarendon press.
Parslow, D. M., Rose, D., Brooks, B., Fleminger, S., Gray, J. A., Giampietro, V., et al. (2004). Allocentric spatial memory activation of the hippocampal formation measured with fMRI. Neuropsychology, 18(3), 450-461.
Raghavachari, S., Kahana, M. J., Rizzuto, D. S., Caplan, J. B., Kirschen, M. P., Bourgeois, B., et al. (2001). Gating of human theta oscillations by a working memory task. Journal of Neuroscience, 21(9), 3175-3183.
Redhead, E. S., & Hamilton, D. A. (2007). Interaction between locale and taxon strategies in human spatial learning. Learning and Motivation, 38(3), 262-283.
Roskos-Ewoldsen, B., McNamara, T. P., Shelton, A. L., & Carr, W. (1998). Mental representations of large and small spatial layouts are orientation dependent. Journal of Experimental Psychology-Learning Memory and Cognition, 24(1), 215-226.
Ruddle, R. A., Payne, S. J., & Jones, D. M. (1997). Navigating buildings in 'desk-top' virtual environments: Experimental investigations using extended navigational experience. Journal of Experimental Psychology-Applied, 3(2), 143-159.
Sandstrom, N. J., Kaufman, J., & Huettel, S. A. (1998). Males and females use different distal cues in a virtual environment navigation task. Cognitive Brain Research, 6(4), 351-360.
Seubert, J., Humphreys, G. W., Muller, H. J., & Gramann, K. (2008). Straight after the turn: The role of the parietal lobes in egocentric space processing. Neurocase, 14(2), 204-219.
Shelton, A. L., & McNamara, T. P. (1997). Multiple views of spatial memory. Psychonomic Bulletin & Review, 4(1), 102-106.
Sholl, M. J. (1987). Cognitive maps as orientation schemata. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 615-628.
Siegel, A. W., & White, S. H. (1975). The development of spatial representations of large-scale environments. In H. W. Reese (Ed.), Advances in Child Development and Behavior. (Vol. 10). New York: Academic.
Simons, D. J., & Wang, R. X. F. (1998). Perceiving real-world viewpoint changes. Psychological Science, 9(4), 315-320.
Sorrows, M. E., & Hirde, S. C. (1999). The nature of landmarks for real and electronic spaces.
Spiers, H. J., Burgess, N., Maguire, E. A., Baxendale, S. A., Hartley, T., Thompson, P. J., et al. (2001). Unilateral temporal lobectomy patients show lateralized topographical and episodic memory deficits in a virtual town. Brain, 124, 2476-2489.
Spiers, H. J., & Maguire, E. A. (2006). Thoughts, behaviour, and brain dynamics during navigation in the real world. Neuroimage, 31(4), 1826-1840.
Spiers, H. J., & Maguire, E. A. (2007a). A navigational guidance system in the human brain. Hippocampus, 17(8), 618-626.
Spiers, H. J., & Maguire, E. A. (2007b). The neuroscience of remote spatial memory: A tale of two cities. Neuroscience, 149(1), 7-27.
Stankiewicz, B. J., & Kalia, A. A. (2007). Acquisition of structural versus object landmark knowledge. Journal of Experimental Psychology-Human Perception and Performance, 33(2), 378-390.
Steck, S. D., & Mallot, H. A. (2000). The role of global and local landmarks in virtual environment navigation. Presence-Teleoperators and Virtual Environments, 9(1), 69-83.
Suthana, N. A., Ekstrom, A. D., Moshirvaziri, S., Knowlton, B., & Bookheimer, S. Y. (2009). Human Hippocampal CA1 Involvement during Allocentric Encoding of Spatial Information. Journal of Neuroscience, 29(34), 10512-10519.
Vann, S. D., Aggleton, J. P., & Maguire, E. A. (2009). What does the retrosplenial cortex do? Nature Reviews Neuroscience, 10(11), 792-U750.
Waller, D., Beall, A. C., & Loomis, J. M. (2004). Using virtual environments to assess directional knowledge. Journal of Environmental Psychology, 24(1), 105-116.
Waller, D., & Lippa, Y. (2007). Landmarks as beacons and associative cues: Their role in route learning. Memory & Cognition, 35(5), 910-924.
Waller, D., Loomis, J. M., Golledge, R. G., & Beall, A. C. (2000). Place learning in humans: The role of distance and direction information Spatial Cognition and Computation, 2(4), 333-354.
Wang, R. X. F., Crowell, J. A., Simons, D. J., Irwin, D. E., Kramer, A. F., Ambinder, M. S., et al. (2006). Spatial updating relies on an egocentric representation of space: Effects of the number of objects. Psychonomic Bulletin & Review, 13(2), 281-286.
Wang, R. X. F., & Simons, D. J. (1999). Active and passive scene recognition across views. Cognition, 70(2), 191-210.
Wang, R. X. F., & Spelke, E. S. (2000). Updating egocentric representations in human navigation. Cognition, 77(3), 215-250.
Wang, R. X. F., & Spelke, E. S. (2002). Human spatial representation: Insights from animals. Trends in Cognitive Sciences, 6(9), 376-382.
Weidemann, C. T., Mollison, M. V., & Kahana, M. J. (2009). Electrophysiological correlates of high-level perception during spatial navigation. Psychonomic Bulletin & Review, 16(2), 313-319.
Weniger, G., & Irle, E. (2006). Posterior parahippocampal gyrus lesions in the human impair egocentric learning in a virtual environment. European Journal of Neuroscience, 24(8), 2406-2414.
Weniger, G., & Irle, E. (2008). Allocentric memory impaired and egocentric memory intact as assessed by virtual reality in recent-onset schizophrenia. Schizophrenia Research, 101(1-3), 201-209.
Weniger, G., Ruhleder, M., Wolf, S., Lange, C., & Irle, E. (2009). Egocentric memory impaired and allocentric memory intact as assessed by virtual reality in subjects with unilateral parietal cortex lesions. Neuropsychologia, 47(1), 59-69.
Weniger, G., Siemerkus, J., Schmidt-Samoa, C., Mehlitz, M., Baudewig, J. g., Dechent, P., et al. (in press). The human parahippocampal cortex subserves egocentric spatial learning during navigation in a virtual maze. Neurobiology of Learning and Memory, In Press, Accepted Manuscript.
Wilson, P. N., & Alexander, T. (2008). Blocking of Spatial Learning Between Enclosure Geometry and a Local Landmark. Journal of Experimental Psychology-Learning Memory and Cognition, 34(6), 1369-1376.
Wolbers, T., & Buchel, C. (2005). Dissociable retrosplenial and hippocampal contributions to successful formation of survey representations. Journal of Neuroscience, 25(13), 3333-3340.
Wolbers, T., Weiller, C., & Buchel, C. (2004). Neural foundations of emerging route knowledge in complex spatial environments. Cognitive Brain Research, 21(3), 401-411.
Xiao, C. L., Mou, W. M., & McNamara, T. P. (2009). Use of self-to-object and object-to-object spatial relations in locomotion. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(5), 1137-1147.
指導教授 張智宏(Erik Chihhung Chang) 審核日期 2010-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明