博碩士論文 962210004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.145.69.255
姓名 林亞頡(YA CHIEH)  查詢紙本館藏   畢業系所 生物物理研究所
論文名稱 利用PDMS微流道做出三維的細胞培養
(3D Cell Cultured By PDMS Based Microfluidic Device)
相關論文
★ 液態乳膠中微粒子在含有高分子鏈油滴表面上的堆疊★ 以溶膠-凝膠法製備有機無機混成相轉移材料微膠囊
★ 長DNA的Janus粒子★ 新式細胞培養法:三維明膠鷹架
★ 使用微流道在高流速與高油分率的狀態下製造水包油乳化液★ Calibrating z distance for confocal microscope
★ 羽軸的微結構與力學性質研究★ Three-Dimensional Cellular Traction Force Measurement on a Flat Substrate
★ 囊性形态的定量研究及其在顶端收缩中的意义★ 在球形圓洞中單顆人類間葉幹細胞的細胞週期、形態特徵與牽引力之量化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 微流道現在是一個很新又熱門的科學,由於製程技術的進步,使得微流道的運用也越來越廣。利用PDMS微流道裝置來製作體積比例很高且大小一致的微小明膠泡泡,收集完利用低溫成膠在經過戊二醛的化學固定後,放入高真空箱,使內外環境的壓力差將氮氣排出後,便可以得到一個大小均一的中空六角形多邊形結構。藉由排出氣體的動作,使得大小均一的蜂窩狀明膠結構是開放式的空腔。由於明膠的材料可用在細胞培養,因此在植入細胞後,可以觀察到細胞的生長情況是健康的。最後再利用PDMS做出迷你的擴散裝置,來做毒物測試,此PDMS裝置能使明膠骨架中的一半細胞死亡,另一半則不受影響。藉由結果可以知道, PDMS裝置可以快速且穩定的製作泡泡,得到大小一致的空腔開放式結晶型明膠骨架。種入細胞後的骨架搭配迷你裝置在未來不管是做細胞分化的觀察以及人工組織的定量分析一定會有相當大的幫助。
摘要(英) Microfluidics has become widely popular in the past decade and shows many applications from PCR, Cell sorting, single cell analysis, and so on.
In this thesis, I show a new application to fabricate 3D ordered scaffolds for 3D cell cultures and to create a concentration gradient in such scaffolds.
Our strategy to create scaffolds is to generate monodisperse bubbles in gelatin and to collect them. At high gas fraction, monodisperse bubbles self-assemble into crystallized foam structures. Next we congeal the gelatin solution make solid foam by lowering the temperature and crosslink with glutaraldehyde before the coarsening of bubbles. Finally, we degas the solid gel foam by immersing foam in liquid media under vacuum. The facet between the cells in the solid foam will be burst due to the pressure difference inside the foam and the ambient. The open solid foam is readily to be served as scaffold and seeded with cells. Cells proliferate inside the scaffolds.
We also construct static reservoir systems to create a concentration gradient. We show the cells respond to the concentration gradient of surfactant triton-X100 by a dead-live assay.
關鍵字(中) ★ 利用PDMS微流道做出三維的細胞培養 關鍵字(英) ★ 3D Cell Cultured By PDMS Based Microfluidic Devi
論文目次 1. Introduction‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐1
2. Background ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐2
2.1. Lab on chip‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐2
2.2. Tissue engineering‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐3
2.3. Materials for manipulating scaffold‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐4
2.3.1. Gelatin‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐4
2.3.2. Alginate‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐5
2.3.3. Collagen‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐5
3. Experimental and Result‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐6
3.1. Microfluidic device design concept‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐6
3.1.1. Flow focusing channel design‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐6
3.1.2. Control valve channel design‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐8
3.1.3. Channel design on AUTOCAD‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐9
3.2. The processing for SU8 photoresist‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐11
3.2.1. Multilayer photoresist manufacture‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐16
3.3. Micro channel fabrication by PDMS‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐17
3.3.1. What is PDMS? ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐17
3.3.2. Replica molding of PDMS from the masters‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐18
3.4. Device setup and operation ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐19
3.4.1Materials ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐19
3.4.2 Fuidic device for cytotoxicity assay‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐20
3.5. Thermoelectric coolers ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐21
3.6 Emulsion generation ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐23
3.6.1 Collect in disassemble reservoir with crystallization‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐24
3.6.2 Emulsion gelled‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐25
3.7. Bubble generation‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐26
3.7.1. Collect in disassemble reservoir‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐27
3.7.2. Gel bubble crystal ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐28
3.7.3. Hollowed gelatin scaffold‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐30
3.7.4. Concentration gradient from center of channel‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐31
3.7.5. Cell seeding‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐33
3.7.6‐1 Cytotoxicity assay for HeLa and fibroblast ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐35
3.7.6‐2 Cytotoxicity assay of Fibroblast in minifluidic device‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐37
4. Conclusion and outlook‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐38
Reference ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐40
參考文獻 Reference
1) A. M. Ganan-Calvo and J. M. Gordillo, Phys. Rev. Lett. 87, 274501 (2001).
2) G. R. Yi, T. Thorsen, V. N. Manoharan, M. J. Hwang, S. J. Jeon, D. J. Pine, S. R. Quake, and S. M. Yang, Adv. Mater. Weinheim, Ger. 15, (2003).
3) T. Y. Gong, J. Y. Shen, Z. B. Hu, M. Marquez, and Z. D. Cheng, Langmuir 23, 2919 (2007).
4) S. L. Anna, N. Bontoux, and H. A. Stone, Appl. Phys. Lett. 82, 364 (2003).
6) Younan Xia and George M. Whitesides, “Soft Lithography”, Angew. Chem. 37, 550-575, (1998)
7) Younan Xia and George M. Whitesides, “Soft Lithography”, Annual Reviews.Science 28, 153-184, (1998)
8) Linear PolydimethylsiloxanesJoint Assessment of Commodity Chemicals26p. 1 (09.1994)
9) Anne M Taylor, Mathew Blurton-Jones, Seog Woo Rhee, David H Cribbs, Carl W ,Cotman & Noo Li Jeon, Nature Methods 2, 599 - 605 (2005)
10) A. J. Blake, T. M. Pearce, N. S. Rao, S. M. Johnson and J. C. Williams, Lab Chip, 2007, 7, 842 – 849 (2007)
11) Haejune Kim, Dawei Luo, Darren Link, Manuel Marquez, Zhengdong Cheng, David A. Weitz APPLIED PHYSICS LETTERS 91, 133106 (2007)
12) P. S. Dittrich and A. Manz, Nat. Rev. Drug Discovery 5, 210 ,(2006).
13) Rhutesh K. Shah a, Jin-Woong Kim ab, Jeremy J. Agresti a, David A. Weitz *ac and Liang-Yin Chu Soft Matter 2008 10.1039/b808653m
14) Stephan K. W. Dertinger, Xingyu Jiang, Zhiying Li, Venkatesh N.
Murthy and George M. Whitesides, 10.1073/pnas.192457199 (2002)
15) Christian H. J. Schmitz, Amy C. Rowat,‡ Sarah Ko‥ster and David A.
Weitz, lab on chip ,10.1039/b809670h (2008)
16) Petra Eiselt, Julia Yeh, Rachel K. Latvala, Lonnie D. Shea, David J.
Mooney, Biomaterials 21 1921-1927 (2000)
17) Langer R, Vacanti JP. Tissue engineering. Science; 260:920-6. (1993)
18) Ward, A.G.; Courts, A. The Science and Technology of Gelatin. (1977)
19) Gloria A. Di LulloDagger , Shawn M. Sweeney, Jarmo Körkkö, Leena Ala-Kokko, and James D. San Antonio; J. Biol. Chem., Vol. 277, Issue 6, 4223-4231, (2002)
20) Minseok S. Kim ‧ Ju Hun Yeon ‧ Je-Kyun Par, Biomed Microdevices 9:25–34, (2007)
指導教授 林耿慧(KENG HUI LIN) 審核日期 2009-10-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明