博碩士論文 962210005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.227.235.71
姓名 吳如萍(Ju-Ping Wu)  查詢紙本館藏   畢業系所 生物物理研究所
論文名稱 Fluorescence study of lipid membranes containing sterol
(Fluorescence study of lipid membranes containing sterol)
相關論文
★ 用氘核磁共振儀研究含高濃度麥角脂醇的DPPC人造膜之分子交交互作用★ 含固醇的脂質雙層膜的形態及相行為的研究
★ The effects of composition and thermal history on the properties of supported lipid bilayers★ The effect of sterol on the POPE/DPPC membranes
★ 麥角固醇對含膽固醇的脂雙層膜的影響★ Deuterium NMR Study of the Effect of Stigmasterol on POPE Membranes
★ 運用氘核磁共振儀研究POPC/cholesterol膜之物理性質★ 模型細胞膜(含有相同碳鏈的PC/PE)存在或缺乏固醇類的物理性質
★ 運用氘核磁共振研究DPPC/POPE/sterol人造細胞膜之物理性質★ Phase Behavior and Molecular Interactions of Membranes Containing Phosphatidylcholines and Sterol: A Deuterium NMR Study
★ The physical properties of phytosterol-containing lipid bilayers★ An AFM Study on Supported Lipid Bilayers with and without Sterol
★ β-谷固醇對POPE膜物理特性的影響★ 固醇結構對PC膜物理特性的影響
★ 人造細胞膜的相行為及脂質-固醇交互作用之研究★ 非接觸式無機液晶配向與混合型液晶元件之 光電性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文利用飽和脂質、未飽和脂質及固醇做人造細胞膜,以微胞電製法長出大約直徑5到200μm的GUVs (Giant Unilamellar Vesicles),並使用C6-NBD-PC和NBD-DOPE做為螢光分子,利用螢光顯微鏡觀察GUVs隨溫度及成分所改變的表面形態。
結果顯示兩種成分所組成的細胞膜中,在相同溫度下,隨著飽和脂質比例增加,會增加細胞膜的液晶有序相(gel phase),在相同的組成成分下,隨著溫度升高,會增加細胞膜的液晶無序相(liquid-disorder phase),而且,無論是加入螢光分子C6-NBD-PC或NBD-DOPE,都會降低從膠相(gel phase)到液晶相(liquid crystalline phase)的相變溫度。然而,C6-NBD-PC的效應比NBD-DOPE的效應強,表示NBD位於sn-2鏈上比NBD位於脂質分子頭部所造成的效應更大。在三種成分所組成的細胞膜中,GUVs的表面形態會隨著固醇的加入後,和兩種成分所組成的細胞膜有所不同。最後,將會總結局部我們所觀察到的相圖。
摘要(英) We study the properties of GUVs (Giant Unilamellar Vesicles) model membranes composed of saturated lipid, unsaturated lipid and sterol. GUVs of 5 to 200μm in diameter were prepared by electroformation method. The morphology of GUVs were observed as a function of temperature and composition by fluorescence microscopy using C6-NBD-PC or NBD-DOPE as the fluorescent probe.
The results for binary mixtures containing saturated and unsaturated lipids show that membranes become more ordered as the concentration of saturated lipid increases. For a given composition, the membranes become more disordered with increasing temperature. Moreover, the addition of fluorescent probe, C6-NBD-PC or NBD-DOPE, to GUVs lowers the temperature of the gel-to-liquid crystalline phase transition, as compared to those without fluorescent probe. However, C6-NBD-PC has stronger effect than NBD-DOPE, suggesting that fluorescent probe with NBD at the acyl chain disturbs the membrane structure more strongly than that at the headgroup. The morphology of GUVs of ternary mixtures differs from that of binary mixtures. A partial phase diagram summarize our findings will be presented.
關鍵字(中) ★ POPC
★ NBD-DOPE
★ C6-NBD-PC
★ GUV
★ 螢光顯微鏡
★ DPPC
★ ergosterol
★ phase diagram
關鍵字(英) ★ ergosterol
★ DPPC
★ POPC
★ NBD-DOPE
★ C6-NBD-PC
★ GUV
★ fluorescence microscopy
★ phase diagram
論文目次 摘要 I
Abstract II
Acknowledgements III
Contents IV
List of Figures VI
Chapter 1 1
Introduction 1
Chapter 2 5
Materials and Methods 5
2.1 Materials 5
2.2 Sample Preparation 5
2.3 Giant Unilamellar Vesicles (GUVs) 6
2.4 Fluorescence Microscopy 7
2.4.1 The principle of Fluorescence Microscopy 7
2.4.2 Fluorescenct Probe 10
2.4.3 The principle of Fuorescence 11
2.4.4 Fluorescence microscopy technique 12
Chapter 3 14
Binary Mixtures 14
3.1 GUVs of POPC/DPPC containing NBD-DOPE 14
3.1.1 Bright-field and fluorescence micrographs 14
3.1.2 Effective area fraction of dark phase 19
3.2 GUVs of POPC/DPPC containing C6-NBD-PC 22
3.2.1 Bright-field and fluorescence micrographs 22
3.2.2 Effective area fraction of dark phase 26
3.2.3 Tmix and comparison with GUVs containing NBD-DOPE 26
Chapter 4 29
Ternary Mixtures 29
4.1 GUVs of (POPC/DPPC)+20mol% erg containing NBD-DOPE 29
4.1.1 Image of (POPC/DPPC)+20%erg 29
4.1.2 Effective area fraction of dark phase 32
4.2 GUVs of (POPC/DPPC)+30 mol% erg containing NBD-DOPE 34
4.2.1 Image of (POPC/DPPC)+30%erg 34
4.2.2 Effective area fraction of dark phase 37
4.2.3 Miscibility temperature (Tmix) of POPC/DPPC/Erg 37
4.2.4 Fluorescence and NMR spectrum 40
4.2.5 Miscibility temperature (Tmix) of (1:1 POPC/DPPC)+Erg 40
4.3 Partial phase diagram 42
Chapter 5 45
Conclusions 45
References 47
參考文獻 [1] Singer S. J. and Garth L. Nicolson. The fluid mosaic model of the structure of cell membranes. Science 175 (1972) 720-731.
[2] Deborah R. Fattal, David Andelman, and Avinoam Ben-Shaul. The Vesicle-Micelle Transition in Mixed Lipid-Surfactant Systems:A molecular Model. Langmuir 11 (1995) 1154-1161.
[3] Pierre-Alain monnard, and David W. Deamer. Membrane Self-Assembly Processes:Steps Toward the First Cellular Life. The anatomical record 268 (2002) 196-207.
[4] Rubenstein J. L., Smith B. A., and H. M. McConnell. Lateral diffusion in binary mixtures of cholesterol and phosphatidylcholines. Proc. Natl. Acad. Sci. U. S. A. 76 (1979) 15–18.
[5] Gennis Robert B. Biomembranes Molecular Structure and Function. (1989)
[6] Mouritsen, O. G., and Zuckermann, M. J. What’s so special about cholesterol? Lipids. 39 (2004)1101–1113.
[7] Yeagle, P. L., Albert, A. D., Boesze-Battaglia, Young, K. J. and Frye, J. Cholesterol dynamics in membranes. Biophys. J. 57 (1990) 413–424.
[8] Ya-Wei Hsueh, Kyle Gilbert, C. Trandum, M. Zuckermann, and Jenifer Thewalt. The Effect of Ergosterol on Dipalmitoylphosphatidylcholine Bilayers: A Deuterium NMR and Calorimetric Study. Biophys. J. 88 (2005) 1799-1808.
[9] Brown D.A., London E. Structure and Origin of Ordered Lipid Domains in Biological Membranes. J. Membrane Biol. 164 (1998) 103–114.
[10] Kai Simons, and Elina Ikonen. Functional rafts in cell membranes. Nature 387 (1997) 569-572.
[11] Mary Elizabeth Beattie, Sarah L. Veatch, Benjamin L. Stottrup, and Sarah L. Keller. Sterol Structure Determins Miscibility versus Melting Transitions in Lipid Vesicles. Biophys. J. 89 (2005) 1760-1768.
[12] Kai Simons, and Derek Toomre. Lipid rafts and signal transduction. Nature Reviews 1 (2000) 31-41.
[13] Kuebler, E., Dohlman H. G., and Lisanti M. P.. Identification of Triton X-100 insoluble membrane domains in the yeast Saccharomyces cerevisiae. J. Biol.Chem. 271 (1996) 32975-32980.
[14] Andrey Filippov, Greger Oradd, and Goran Lindblom. Lipid lateral diffusion in ordered and disordered phases in raft mixtures. Biophys. J. 86 (2004) 891-896.
[15] Wolfgang H. Binder, Veronique Barragan, and Fredric M. Menger. Domains and Rafts in Lipid Membranes. Angew. Chem. 42 (2003) 5802-5827.
[16] Tenchov B.G. Nonrandom lipid distributions in membranes. Prog. Surf. Sci. 20 (1985) 273-340.
[17] William Curatolo, Barry Sears and Leo J. Neuringer. A calorimetry and deuterium NMR study of mixed model membranes of 1-palmitoyl-2-oleylphosphatidylcholine and saturated phosphatidylcholines. Biochimica et Biophysica Acta 817 (1985) 261-270.
[18] Sarah L. Veatch and Sarah L. Keller. Miscibility Phase Diagrams of Giant Vesicles Containing Sphingomyelin. Physical Review Letters 94 (2005) 148101.
[19] Angela C. Brown, Kevin B. Towles, and Steven P. Wrenn. Measuring Raft Size as a Function of Membrane Composition in PC-Based Systems:Part II-Ternary Systems. Langmuir 23 (2007) 11188-11196.
[20] Kirsten Bacia, Jakob Schweizer. Practical Course:Giant Unilamellar Vesicles. 30th September 2005.
[21] Ken-ichiro HIGASHI, Shigeo SUZUKI, Hiroshi FUJII, and Yutaka KIRINO. Preparation and Some Properties of Giant Liposomes and Proteoliposomes. Biochemistry 101 (1987) 433-440.
[22] Angelova M.I, S. Solau, P. M’lard,J. F. Faucon,e eeP. Bothorel. Preparation of giant vesicles by external AC electric fields. Kinetics and applications. Colloid Polym.Sci 89 (1992) 127-131.
[23] Pier Luigi Luisi , Peter Walde. Giant Vesicles. (2000).
[24] http://www.avantilipids.com/
[25] Kuo-Hwei, Liao. Graduate Institute of Department of Physics, National Central University, Chung-li, Taiwan. Fluorescence microscopy study of binary phospholipid membranes and the effect of sterol. M.S. thesis (2008).
[26] Rodrigo F.M. de Almeida, Luis M.S. Loura, and Manuel Prieto. Membrane lipid domains and rafts: current applications of fluorescence lifetime spectroscopy and imaging. Chemistry and Physics of Lipids 157 (2009) 61-77.
[27] Luis M.S. Loura, Rodrigo F.M. de Almeida, Liana C. Silva, and Manuel Prieto. FRET analysis of domain formation and properties in complex membrane systems. Biochimica et Biophysica Acta 1788 (2009) 209-224.
[28] Ming-Yen, Kuo. Graduate Institute of Department of Physics, National Central University, Chung-li, Taiwan. Phase Behavior and Molecular Interactions of Membranes Containing Phosphatidylcholines and Sterol: A Deuterium NMR Study. M.S. thesis (2009).
[29] Veatch S. L., Polozov I. V., y K. Gawrisch, y and Keller S. L.. Liquid Domains in Vesicles Investigated by NMR and Fluorescence Microscopy. Biophys. J. 86 (2004) 2910-2922.
[30] Sarah L. Veatch and Sarah L. Keller. Separation of liquid phases in Giant Vesicles of Ternary Mixtures of Phospholipids and Cholesterol. Biophys. J. 85 (2003) 3074-3083.
[31] Mary Elizabeth Beattie, Sarah L. Veatch, Benjamin L. Stottrup, and Sarah L. Keller. Sterol Structure Determines Miscibility versus Melting Transitions in Lipid Vesicles. Biophys. J. 89 (2005) 1760-1768.
[32] Ya-Wei Hsueh, Kyle Gilbert, C. Trandum, M. Zuckermann, and Jenifer Thewalt. The Effect of Ergosterol on Dipalmitoylphosphatidylcholine Bilayers: A Deuterium NMR and Calorimetric Study. Biophys. J. 88 (2005) 1799-1808.
[33] Sarah L. Veatch and Sarah L. Keller. Miscibility Phase Diagrams of Giant Vesicles Containing Sphingomyelin. Physical Rewiew Letters. 94 (2005) 148101.
[34] Luis M.S. Loura, Fabio Fernandes, A,C, Fenandes, J.P. Prates Ramalho. Effects of fluorescent probe NBD-PC on the structure, dynamics and phase transition of DPPC. A molecular dynamics and differential scanning calorimetry study. Biochimica et Biophysica Acta 1778 (2008) 491-501.
指導教授 薛雅薇(Ya-Wei Hsueh) 審核日期 2010-1-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明