博碩士論文 962210007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.118.12.222
姓名 涂筱雯(Hsiao-wen Tu)  查詢紙本館藏   畢業系所 生物物理研究所
論文名稱 溫度及鈣動力學對離體心臟心率之影響
(The effects of temperature and calcium dynamics on cardiac interbeat intervals)
相關論文
★ The Rheological Properties of Invasive Cancer Cells★ Case study of an extended Fitzhugh-Nagumo model with chemical synaptic coupling and application to C. elegans functional neural circuits
★ 二維非彈性顆粒子之簇集現象★ 螺旋狀高分子長鏈在拉力下之電腦模擬研究
★ 顆粒體複雜流動之研究★ 高分子在二元混合溶劑之二維蒙地卡羅模擬研究
★ 帶電高分子吸附在帶電的表面上之研究★ 自我纏繞繩節高分子之物理
★ 高分子鏈在強拉伸流場下之研究★ 利用雷射破壞方法研究神經網路的連結及同步發火的行為
★ 最佳化網路成長模型的理論研究★ 神經膠細胞在神經同步活動及鈣離子波傳遞中之角色
★ 高分子鏈在交流電場或流場下的行為★ 驟放式發火神經元的數值模擬
★ 黏菌之運動模型研究★ 離子通道電流漲落的非線性行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 心臟心率是靠竇房節(SA node)控制,竇房節藉由細胞及細胞間的偶合產生同步之跳動。在離體老鼠全心臟的灌流系統中,我們利用藥物調控鈣離子濃度以研究鈣動力對竇房節心率之影響,我們亦探討溫度的影響。心臟細胞培養系統可用來模擬竇房節,在此系統下我們討論溫度及纖維母細胞濃度的效應。
心率的長條統計圖可以顯示平均的心率及心率變異性隨著溫度增加而上升。並且他們之間呈現冪次定理關係(power low relation)。心率之Poincare map和angle map也顯示在高溫時心率是相對規律的。溫度也許會影響細胞間偶合的強度導致 AV delay隨著溫度下降而變長。
我們在心臟細胞培養系統觀察到和離體心臟相似的結果,心率和傳導速度隨著溫上升而上升。在不同溫度下心率和傳導速率呈現線性關係,由此可看出波長是固定的。纖維母細胞會隨著培養天數而增生進而降低心率及傳導速度。
摘要(英) Cardiac interbeat interval (IBI) is regulated by sinoatrial (SA) node. The information of contraction provided by SA node propagates through inter-cell coupling; leading to synchronous contrac-
tion. To investigate the effect of calcium dynamics on the beat rate of SA node, the heart of rat in a Langendorff system is cannulated and perfused with different chemicals which tune the calcium dynamics. As for the temperature effect, we tune the temperature in both the whole heart system and the primary cardiac co-culture of rat. Temperature is used as a parameter to change system properties (intrinsic frequency and coupling strength) on heart rate. Co-cultures of cardiac myocytes and fibroblasts are used to model the SA node. In the whole heart system, the histogram of IBI shows that both the average IBI and the IBI variability decrease
with increasing temperature. The IBI variability and average IBI exhibit power law relation. The Poincare map of IBIs and the angle map also show more regular IBI at higher temperature. The longer atrioventricular (AV) delay with decreasing temperature may be caused by the temperature-dependent coupling. In the culture system, the beat frequency (BF) and conduction velocity (CV) increase with temperature; similar to the results of whole heart experiment. The linear relation between BF and CV suggests indicates a constant wavelength. The higher fibroblast density in cultures with longer culture time decreases both the BF and CV.
關鍵字(中) ★ 變異性
★ 心率
★ 鈣
★ 溫度
★ 心臟
關鍵字(英) ★ Interbeat interval
★ Calcium
★ Temperature
★ Heart
★ variability
論文目次 Contents
List of Figures vi
List of Tables xv
1 Introduction 1
1.1 Basic cardiac structure and function . . . . . . . . . . . . . . 1
1.2 Conduction system . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 The structure of SA node . . . . . . . . . . . . . . . . 3
1.2.2 Conduction . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Basic electrocardiogram (ECG) theory . . . . . . . . . . . . . 6
1.3.1 The ECG waveform of cardiac activation . . . . . . . 7
1.4 Cells in the heart . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.1 The action potential of cardiomyocyte cell . . . . . . . 7
1.4.2 Excitation-contraction (EC) coupling . . . . . . . . . . 10
1.4.3 The membrane potential of fibroblast . . . . . . . . . 12
1.4.4 Gap junction . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Cardiomyocyte . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6 Model of cardiac dynamics . . . . . . . . . . . . . . . . . . . 15
1.6.1 Excitable and unexcitable systems [17] . . . . . . . . . 15
1.6.2 Cell-Cell coupling . . . . . . . . . . . . . . . . . . . . 17
iiiContents
1.7 The motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.7.1 The effect of calcium . . . . . . . . . . . . . . . . . . . 18
1.7.2 The effect of temperature . . . . . . . . . . . . . . . . 19
1.7.3 The effect of fibroblast on co-culture [30] . . . . . . . . 21
1.8 The purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2 Methods and Experimental setup 23
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Isolated whole heart system . . . . . . . . . . . . . . . . . . . 24
2.2.1 Langendorff system . . . . . . . . . . . . . . . . . . . 24
2.2.2 Measurement system . . . . . . . . . . . . . . . . . . . 26
2.2.3 Sample preparation . . . . . . . . . . . . . . . . . . . 33
2.2.4 Noise reduction . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Culture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.1 Microscope system with a small incubator . . . . . . . 36
2.3.2 Phase contrast optics system . . . . . . . . . . . . . . 37
2.3.3 Primary cultures of dissociated cardiac cells . . . . . . 41
2.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3 Results 45
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Result of isolated whole heart . . . . . . . . . . . . . . . . . . 46
3.2.1 The pseudo-ECG data . . . . . . . . . . . . . . . . . . 46
3.2.2 Statistic properties of IBI . . . . . . . . . . . . . . . . 47
3.2.3 The Q 10 Temperature coefficient . . . . . . . . . . . . 49
3.2.4 The properties of Pressure . . . . . . . . . . . . . . . . 50
3.2.5 Delay time of signal propagation from SA node to ven-
tricular . . . . . . . . . . . . . . . . . . . . . . . . . . 51
ivContents
3.2.6 Poincare map and angle map . . . . . . . . . . . . . . 52
3.2.7 The temperature effect . . . . . . . . . . . . . . . . . 54
3.2.8 The effect of different drugs on isolated heart . . . . . 55
3.3 Cardiac culture . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.1 Microscopy of cardiac contraction . . . . . . . . . . . 57
3.3.2 Contraction wave . . . . . . . . . . . . . . . . . . . . . 59
4 Discussions 62
4.1 The temperature effect . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Effects of Ca handling on pacing making in isolated heart . . 63
4.3 The number of fibroblasts in cardiac culture . . . . . . . . . . 64
Bibliography 65
Appendix 70
參考文獻 Bibliography
[1] http://www.phaaustralia.com.au/content/what-pulmonary-arterial-
hypertension
[2] http://www.cvphysiology.com/Blood%20Flow/BF001.htm
[3] Leonard S. Lilly, “Pathophysiology of heart disease”
[4] M.R. Boyett, H. Honjo and I. Kodama, “The sinoatrial node, a het-
erogeneous pacemaker structure”, Cardiovascular Research 47, 658–687
(2000).
[5] Patrizia Camellitia, Thomas K. Borgb and Peter Kohla, “Structural
and functional characterisation of cardiac fibroblasts”, Cardiovascular
Research 65, 40–51 (2005)
[6] http://www.childrenscentralcal.org/HealthE/P01800/P01824/Pages/P01762.aspx
[7] Charles Fisch, “Centennial of the String Galvanometer and the Electro-
cardiogram”, Journal of the American College of Cardiology, Vol. 36,
No. 6, (2000)
[8] http://www.bem.fi/book/06/06.htm
[9] Hue-Teh Shih, “Anatomy of the Action Potential in the Heart”, Texas
Heart Institutejournal Volume 21, Number 1 (1994)
65Bibliography
[10] http://www.cvpharmacology.com/antiarrhy/cardiac_action_potentials.htm
[11] Stanley Nattel and Leif Carlsson, “Innovative approaches to anti-
arrhythmic drug therapy”, NATURE REVIEWS 1034 , DECEMBER
2006 ,VOLUME 5 (2006)
[12] Donald M. Bers, “Cardiac excitation–contraction coupling”, NATURE,
VOL 415, 10 JANUARY (2002).
[13] P. KOHL, A. G. KAMKIN, I. S. KISELEVA and D. NOBLE,
“Mechanosensitive fibroblasts in the sino-atrial node region of rat heart:
interaction with cardiomyocytes and possible role”, Experimental Phys-
iology, 79, 943-956 (1994)
[14] http://en.wikipedia.org/wiki/Gap_junction
[15] http://www.mcatzone.com/glosslet.php?letter=s
[16] http://www.tutorvista.com/content/biology/biology-iv/locomotion-
animals/movement-locomotion-animals.php
[17] Steven H. Strogatz, “Nonlinear dynamics and chaos”
[18] B. Lindner, J. Garca-Ojalvo, A. Neiman, L. Schimansky-Geier, “Effects
of noise in excitable systems”, Physics Reports 392, 321–424(2004)
[19] S. Kadar, J. Wang and K. Showalter “Noise-Supported Traveling Waves
in Subexcitable Media”, Nature 391, 700-702 (1998).
[20] J. Wang, S. Kadar, P. Jung and K. Showalter “Noise-Driven Avalanche
Behavior in Subexcitable Media”, Phys. Rev. Lett. 82, 855-858 (1999).
[21] PETER JUNG, ANN CORNELL-BELL, KATHLEEN SHAVER MAD-
DEN, AND FRANK MOSS4, “Noise-Induced Spiral Waves in Astrocyte
66Bibliography
Syncytia Show Evidence of Self-Organized Criticality”, J Neurophysiol,
79:1098-1101 (1998).
[22] Gil Bub, Alvin Shrier, and Leon Glass, “Global Organization of Dynam-
ics in Oscillatory Heterogeneous Excitable Media”, Phys. Rev. Lett. 94,
028105 (2005)
[23] DAISUKE SASAKI, HIDEAKI FUJITA, NORIO FUKUDA, SATOSHI
KURIHARA and SHIN’ICHI ISHIWATA, “Auto-oscillations of skinned
myocardium correlating with heartbeat”, Journal of Muscle Research
and Cell Motility, 26:93–101 (2005)
[24] Boyoung Joung, Liang Tang, Mitsunori Maruyama, Seongwook Han
, Zhenhui Chen, Marcelle Stucky, Larry R. Jones, Michael C. Fish-
bein, James N. Weiss, Peng-Sheng Chen, and Shien-Fong Lin, “Intra-
cellular Calcium Dynamics and the Acceleration of Sinus Rhythm by
b-Adrenergic Stimulation”, Circulation. February 17, 119(6), 788–796
(2009)
[25] Vadim V. Fedorov, Li Li, Alexey Glukhov, MSc, Irina Shishkina, MSc,
Rubin R. Aliev, Tatiana Mikheeva, MSc, Vladimir P. Nikolski, Leonid V.
Rosenshtraukh, Igor R. Efimov, “Hibernator Citellus undulatus main-
tains safe cardiac conduction and is protected against tachyarrhyth-
mias during extreme hypothermia: Possible role of Cx43 and Cx45 up-
regulation”, Heart Rhythm, Vol 2, No 9, September (2005)
[26] Vadim V. Fedorov, Alexey V. Glukhov, SA nodegita Sudharshan, Yuri
Egorov, , Leonid V. Rosenshtraukh, and Igor R. Efimov, ”Electrophys-
iological mechanisms of antiarrhythmic protection during hypothermia
67Bibliography
in winter hibernating versus nonhibernating mammals”, Heart Rhythm,
5(11): 1587–1596, 2008 November
[27] B.W. Johansson, “The hibernator heart-Nature’s model of resistance to
ventricular fibrillation” , Cardiovascular Research 31, 826-832 (1996)
[28] Stefan F. J. Langer, Manfred Lambertz, Peter Langhorst, Hanno D.
Schmidt, “Interbeat interval variability in isolated working rat hearts
at various dynamic conditions and temperatures”, Res Exp Med,
199:1–19(1999)
[29] J.C.HERVE, K.YAMAOKA, V. W. TWIST, T. POWELL, J. C. EL-
LORY, AND L. C. H. WANG, “Temperature dependence of electro-
physiological properties of guinea pig and ground squirrel myocytes”,
Am J Physiol Regulatory Integrative Comp Physiol, 263:177-184, 1992.
[30] Viviana Muñoz, Katherine Campbell and Junko, “Fibroblasts: modulat-
ingthe rhythm of the heart” ShibayamaJ Physiol 586.10, pp 2423–2424,
2008
[31] John P. Fahrenbach, Rafael Mejia-Alvarez and Kathrin Banach, “The
relevance of non-excitable cells for cardiac pacemaker function”, J Phys-
iol 585.2 pp, 565–578 (2007)
[32] Seong-min Hwang, Kwon-hae Yea, and Kyoung J. Lee, “Regular and
Alternant Spiral Waves of Contractile Motion on Rat Ventricle Cell Cul-
tures”, Phys. Rev. Lett. 92, 198103 (2004)
[33] Yoram Etzion, Michal Mor, Aryeh Shalev, Shani Dror, Ohad Etzion,
Amir Dagan, Ofer Beharier, Arie Moran, and Amos Katz, “New insights
into the atrial electrophysiology of rodents using a novel modality: the
68Bibliography
miniature-bipolar hook electrode”, Am J Physiol Heart Circ Physiol 295:
H1460–H1469 (2008).
[34] Tsu-Juey Wu, Shien-Fong Lin, James N. Weiss, Chih-Tai Ting, Peng-
Sheng Chen, “Two Types of Ventricular Fibrillation in Isolated Rabbit
Hearts”, Circulation, 106:1859-1866 (2002).
[35] D. Paganin et al., J. Microsc. 206, 33 (2002).
[36] Takahiro Harada, Akihiro Isomura, Kenichi Yoshikawa, “Contraction-
induced cluster formation in cardiac cell culture”, Preprint submitted to
Physica D, 22 November (2008)
[37] N B Janson1, A G Balanov, V S Anishchenko and P V E McClintock,
“Modelling the dynamics of angles of human R–Rintervals”, Physiol.
Meas. 22, 565–579, 2001
[38] Yuo-Hsien Shiau, “Does well-harmonized homeostasis exist in heart rate
fluctuations? Time series analysis and model simulations”, Autonomic
Neuroscience: Basic and Clinical 146, 62–69(2009)
指導教授 陳志強、黎璧賢
(Chi-keung Chan、Pik-yin Lai)
審核日期 2010-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明