博碩士論文 962211009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.15.202.214
姓名 陳寶興(CHAN BAO)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 利用微陣列蛋白質晶片帥選GNRA tetraloop結合蛋白
(Identification of GNRA tetraloop using proteome arrays)
相關論文
★ 以生物資訊分析與實驗驗證探討大腸桿菌蛋白質體晶片找出的乳鐵胜肽B胞內目標蛋白★ 結合奈米脂粒與抗體微陣列晶片的高通量快速檢測系統之發展並應用於婦女子宮頸炎病因之診斷與研究
★ 蛋白質 G 與具硫基反應性的釕複合物之生物接合作為螢光免疫試驗的通用試劑★ 利用大腸桿菌蛋白質體晶片分析新生兒血液中的免疫球蛋白
★ 利用大腸桿菌蛋白質體晶片找出參與第一型線毛表現之細菌蛋白質★ 利用人類蛋白質體微陣列晶片探究C型肝炎病毒非轉譯區與宿主之交互作用
★ 利用大腸桿菌蛋白體微陣列晶片系統性探討抗菌肽的胞內作用目標★ 利用大腸桿菌蛋白質體晶片找出與2-氧基組胺酸交互作用之蛋白質
★ 發展微珠式96孔過濾盤競爭型免疫分析法偵測硫酸紫菌素★ 異質性核醣核酸蛋白K (hnRNP K) 抑制成熟miRNA-122轉錄後調控機制之研究
★ 利用酵母菌蛋白質體晶片找出與前信使核糖核酸加 工因子19泛素連接?經泛素化作用之受質★ 腸道共生黴菌與酒精性肝病的相關性
★ 在大腸桿菌與酵母菌蛋白質體晶片中量化其蛋白質的濃度★ 應用大腸桿菌與酵母菌蛋白質體晶片系統性分析抗菌肽及抗生素作用之目標蛋白質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 微陣列晶片已經成為重要的研究工具,它已經被應用在系統性研究及高通量生物分析。由於越來越多生物體完成基因體的定序,現在已經可以做到把超過18000個人類蛋白質、5000個酵母菌蛋白質或4000 個大腸桿菌蛋白質利用精確的晶片點製手臂將這些個體的蛋白質體點印在一般大小及不同表面化學處理的載玻片上,利用這個高密度及涵蓋整體蛋白質的晶片來研究相關的生物議題,例如蛋白質與蛋白之間的交互作用、蛋白質與脫氧核醣核酸的交互作用、蛋白質與核醣核酸交互作用或蛋白質與化學分子交互作用的研究。我們利用化學的方法合成了常見的四種髮夾核醣核酸,這四個髮夾核醣核酸之間分別只有在第二個核甘酸不一樣,藉此探討出不一樣序列的髮夾核醣核酸有什麼不用的結合蛋白。在本論文的研究上我們以C型肝炎的髮夾核醣核酸來與大腸桿菌K-12的蛋白質體微陣列晶片來做反應,藉此找出大腸桿菌與C型肝炎的髮夾核醣核酸反應的蛋白質,後續再討論這些蛋白質在病毒入侵與宿主的免疫機制之間的關係。本研究對人類醫學上常見的病毒-C型肝炎病毒,利用高通量及系統性、及分子層次上的分析,可以發現生物標記與相關疾病的致病機轉。
摘要(英) Microarray has become an important technology for large-scale and high-throughput biology. More than 18000 human proteins, 5000 yeast proteins or 4000 E. coli proteins have been printed on different surface modified slides and implemented in research of protein-RNA interaction. RNA serves several essential functions for all life processes. Identifying proteins that preferentially bind to a hepatitis C virus (HCV) RNA hairpin may help explore functions involved in RNA viral activities or pathway of infection in the host. In our experiment, four synthesized RNA hairpin structures each with nucleotide(s) differences were probed with either yeast or E.coli proteome chip. By using anti-his antibody which was labeled with Cy3 or Cy5 to probe with the proteome chip, we estimated the amount of each protein on certain slides. This approach helps to identify and classify the cellular proteins that can recognize with the RNA hairpins exist in HCV, an important human pathogen. By using this miniature and high-throughput platform, we are able to discovery new biomarker that related to certain diseases.
關鍵字(中) ★ 微陣列蛋白質晶片 關鍵字(英) ★ microarray
論文目次 TABLE OF CONTENT
Preface and acknowledgement ……………………………………………………… i
中文摘要......................................................................................................................ii
Abstract ..………………………………………………..…………………………..iii
CHAPTER 1 INTRODUCTION 1
1–1 Protein microarray technology 1
1–2 Types of protein microarrays 2
1–2–1 Analytical microarray 3
1–2–2 Functional protein microarray 4
1–3 Proteome libraries 5
1–3–1 Strategies of re-combinational cloning 5
1–3–2 Gateway cloning for Human ORFome collection 6
1–4 E. coli K-12 proteome and chip production 7
1–5 Microarray printing platforms 8
1–6 Different slide surfaces to print E. coli K-12 proteome 8
1–7 Quality of protein chip 9
1–8 Aim 9
CHAPTER 2 MATERIALS AND METHODS 11
2–1 Chemicals, reagents and materials 11
2–2 Cell culture and over-expression 11
2–3 Protein purification 12
2–3–1 Protein purification procedure. 13
2–4 Protein array assay 14
2–4–1 Probing protein chips with dual color anti-His antibodies. 14
2–4–2 Probing E. coli K-12 proteome chip with GNRA tetraloops 14
2–5 HS-4800 automatic hybridization chamber 15
2–6 Protein chip image analysis and data analysis 15
CHAPTER 3 RESULTS 16
3–1 GNRA tetraloop 17
3–2 Choosing the slide surfaces and probe concentration 18
3–3 RNA probing with the proteome chip 19
3–4 Optimization of TL2 concentration 20
3–4–1 Proteins that recognize TL2 tetraloop 21
3–4–2 TL2 binding protein on human proteome chip 24
3–5 Purification of candidate proteins 27
CHAPTER 4 CONCLUSION AND DISCUSSION 29
CHAPTER 5 REFERENCES 33
參考文獻 Bell, J.K., Askins, J., Hall, P.R., Davies, D.R., Segal, D.M., 2006. The dsRNA binding site of human Toll-like receptor 3. Proc Natl Acad Sci U S A 103, 8792-8797.
Bertone, P., Snyder, M., 2005. Advances in functional protein microarray technology. FEBS J 272, 5400-5411.
Blattner, F.R., Plunkett, G., 3rd, Bloch, C.A., Perna, N.T., V, B., Riley, M., Collado-Vides, J., Glasner, J.D., Rode, C.K., Mayhew, G.F., Gregor, J., Davis, N.W., Kirkpatrick, H.A., Goeden, M.A., Rose, D.J., Mau, B., Shao, Y., 1997. The complete genome sequence of Escherichia coli K-12. Science 277, 1453.
Chen, C.S., Korobkova, E., Chen, H., Zhu, J., Jian, X., Tao, S.C., He, C., Zhu, H., 2008. A proteome chip approach reveals new DNA damage recognition activities in Escherichia coli. Nat.Methods 5, 69.
Chen, C.S., Sullivan, S., Anderson, T., Tan, A.C., Alex, P.J., Brant, S.R., Cuffari, C., Bayless, T.M., Talor, M.V., Burek, C.L., Wang, H., Li, R., Datta, L.W., Wu, Y., Winslow, R.L., Zhu, H., Li, X., 2009. Identification of novel serological biomarkers for inflammatory bowel disease using Escherichia coli proteome chip. Mol Cell Proteomics 8, 1765-1776.
Deleris, A., Gallego-Bartolome, J., Bao, J., Kasschau, K.D., Carrington, J.C., Voinnet, O., 2006. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313, 68-71.
Gelperin, D.M., White, M.A., Wilkinson, M.L., Kon, Y., Kung, L.A., Wise, K.J., Lopez-Hoyo, N., Jiang, L., Piccirillo, S., Yu, H., Gerstein, M., Dumont, M.E., Phizicky, E.M., Snyder, M., Grayhack, E.J., 2005. Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev. 19, 2816.
Hall, D.A., Zhu, H., Zhu, X., Royce, T., Gerstein, M., Snyder, M., 2004. Regulation of gene expression by a metabolic enzyme. Science 306, 482-484.
Hartley, J.L., Temple, G.F., Brasch, M.A., 2000. DNA cloning using in vitro site-specific recombination. Genome Res 10, 1788-1795.
Hu, S., Xie, Z., Onishi, A., Yu, X., Jiang, L., Lin, J., Rho, H.S., Woodard, C., Wang, H., Jeong, J.S., Long, S., He, X., Wade, H., Blackshaw, S., Qian, J., Zhu, H., 2009. Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell 139, 610-622.
Huang, J., Zhu, H., Haggarty, S.J., Spring, D.R., Hwang, H., Jin, F., Snyder, M., Schreiber, S.L., 2004. Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proc Natl Acad Sci U S A 101, 16594-16599.
Kung, L.A., Tao, S.C., Qian, J., Smith, M.G., Snyder, M., Zhu, H., 2009. Global analysis of the glycoproteome in Saccharomyces cerevisiae reveals new roles for protein glycosylation in eukaryotes. Mol Syst Biol 5, 308.
Nudler, E., 2006. Flipping riboswitches. Cell 126, 19-22.
Perna, N.T., Plunkett, G., 3rd, V, B., Mau, B., Glasner, J.D., Rose, D.J., Mayhew, G.F., Evans, P.S., Gregor, J., Kirkpatrick, H.A., Posfai, G., Hackett, J., Klink, S., Boutin, A., Shao, Y., Miller, L., Grotbeck, E.J., Davis, N.W., Lim, A., Dimalanta, E.T., Potamousis, K.D., Apodaca, J., Anantharaman, T.S., Lin, J., Yen, G., Schwartz, D.C., Welch, R.A., Blattner, F.R., 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529.
Phizicky, E., Bastiaens, P.I., Zhu, H., Snyder, M., Fields, S., 2003. Protein analysis on a proteomic scale. Nature 422, 208.
Ptacek, J., Devgan, G., Michaud, G., Zhu, H., Zhu, X., Fasolo, J., Guo, H., Jona, G., Breitkreutz, A., Sopko, R., McCartney, R.R., Schmidt, M.C., Rachidi, N., Lee, S.J., Mah, A.S., Meng, L., Stark, M.J., Stern, D.F., De Virgilio, C., Tyers, M., Andrews, B., Gerstein, M., Schweitzer, B., Predki, P.F., Snyder, M., 2005. Global analysis of protein phosphorylation in yeast. Nature 438, 679.
Reboul, J., Vaglio, P., Rual, J.F., Lamesch, P., Martinez, M., Armstrong, C.M., Li, S., Jacotot, L., Bertin, N., Janky, R., Moore, T., Hudson, J.R., Jr., Hartley, J.L., Brasch, M.A., Vandenhaute, J., Boulton, S., Endress, G.A., Jenna, S., Chevet, E., Papasotiropoulos, V., Tolias, P.P., Ptacek, J., Snyder, M., Huang, R., Chance, M.R., Lee, H., Doucette-Stamm, L., Hill, D.E., Vidal, M., 2003. C. elegans ORFeome version 1.1: experimental verification of the genome annotation and resource for proteome-scale protein expression. Nat Genet 34, 35-41.
Reichow, S., Varani, G., 2006. Structural biology: RNA switches function. Nature 441, 1054-1055.
Riley, M., Abe, T., Arnaud, M.B., Berlyn, M.K., Blattner, F.R., Chaudhuri, R.R., Glasner, J.D., Horiuchi, T., Keseler, I.M., Kosuge, T., Mori, H., Perna, N.T., Plunkett, G., 3rd, Rudd, K.E., Serres, M.H., Thomas, G.H., Thomson, N.R., Wishart, D., Wanner, B.L., 2006. Escherichia coli K-12: a cooperatively developed annotation snapshot--2005. Nucleic acids research 34, 1.
Rual, J.F., Hill, D.E., Vidal, M., 2004a. ORFeome projects: gateway between genomics and omics. Curr Opin Chem Biol 8, 20-25.
Rual, J.F., Hirozane-Kishikawa, T., Hao, T., Bertin, N., Li, S., Dricot, A., Li, N., Rosenberg, J., Lamesch, P., Vidalain, P.O., Clingingsmith, T.R., Hartley, J.L., Esposito, D., Cheo, D., Moore, T., Simmons, B., Sequerra, R., Bosak, S., Doucette-Stamm, L., Le Peuch, C., Vandenhaute, J., Cusick, M.E., Albala, J.S., Hill, D.E., Vidal, M., 2004b. Human ORFeome version 1.1: a platform for reverse proteomics. Genome Res 14, 2128-2135.
Sreekumar, A., Nyati, M.K., Varambally, S., Barrette, T.R., Ghosh, D., Lawrence, T.S., Chinnaiyan, A.M., 2001. Profiling of cancer cells using protein microarrays: discovery of novel radiation-regulated proteins. Cancer Res 61, 7585-7593.
Tamura, M., Hendrix, D.K., Klosterman, P.S., Schimmelman, N.R., Brenner, S.E., Holbrook, S.R., 2004. SCOR: Structural Classification of RNA, version 2.0. Nucleic Acids Res 32, D182-184.
Well, L., Hart, G.W., 2003. O-GlcNAc turns twenty: functional implications for post-translational modification of nuclear and cytosolic proteins with a sugar. FEBS Lett 546, 154-158.
Yang, X.L., Otero, F.J., Ewalt, K.L., Liu, J., Swairjo, M.A., Kohrer, C., RajBhandary, U.L., Skene, R.J., McRee, D.E., Schimmel, P., 2006. Two conformations of a crystalline human tRNA synthetase-tRNA complex: implications for protein synthesis. EMBO J 25, 2919-2929.
Zhu, H., Bilgin, M., Bangham, R., Hall, D., Casamayor, A., Bertone, P., Lan, N., Jansen, R., Bidlingmaier, S., Houfek, T., Mitchell, T., Miller, P., Dean, R.A., Gerstein, M., Snyder, M., 2001. Global analysis of protein activities using proteome chips. Science 293, 2101.
Zhu, H., Bilgin, M., Snyder, M., 2003. Proteomics. Annu Rev Biochem 72, 783.
Zhu, H., Klemic, J.F., Chang, S., Bertone, P., Casamayor, A., Klemic, K.G., Smith, D., Gerstein, M., Reed, M.A., Snyder, M., 2000. Analysis of yeast protein kinases using protein chips. Nat Genet 26, 283.
Zhu, H., Snyder, M., 2001. Protein arrays and microarrays. Curr Opin Chem Biol 5, 40.
Zhu, J., Gopinath, K., Murali, A., Yi, G., Hayward, S.D., Zhu, H., Kao, C., 2007. RNA-binding proteins that inhibit RNA virus infection. Proc Natl Acad Sci U S A 104, 3129-3134.
指導教授 陳健生、高家誠
(Chien-Sheng Chen、Chia-Cheng Kao)
審核日期 2010-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明