博碩士論文 962402006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.232.99.123
姓名 何彥政(Yen-cheng Ho)  查詢紙本館藏   畢業系所 物理學系
論文名稱 發展在電漿波導式雷射電漿波電子加速器中誘發電子注入與X 光產生之技術
(Induction of electron injection and X-ray generation in a plasma -waveguide -based laser wakefield electron accelerator)
相關論文
★ GW準粒子於Mn3O4和GaN的激發態性質計算★ 混合物種與低溫冷凍原子團簇噴流的發展
★ 以雷射脈衝對磁性薄膜進行超快磁轉化及其動態時間解析★ 以脈衝雷射沈積製造FeBO3薄膜
★ 共焦拉曼與螢光顯微鏡之發展及其在材料診斷上之應用★ 以光激發黑色素來清除細胞環境中之活性氧之探討
★ 莫斯堡光譜儀的建造以及其應用到FeCO3薄膜的診斷★ 發展利用另一道脈衝雷射在脈衝雷射沉 積技術中成長碳薄膜的雷射同步過程進 行碳薄膜晶向之控制
★ 研究以雷射進行基板之前置處理來達到控制脈衝雷射沉積的矽鍺量子點的尺寸分布的可行性★ 以超短脈衝雷射沉積技術製作鍺/矽薄膜之研究
★ 一百兆瓦雷射系統之建造與在結構化電漿波導之應用★ 以基質輔助脈衝雷射蒸鍍法製備聚3-己基噻酚/(6,6)-苯基-C61-丁酸甲酯有機太陽能電池
★ 藥物劑量與復原時間影響光動力療法疫苗之功效的系統性研究★ 光控制實用的材料製程在PEM燃料電池及光電元件上的應用
★ 以脈衝雷射沉積與脈衝雷射退火製造鍺/矽量子點與成長鍺薄膜於單晶矽上並應用於光偵測器的研究★ 以工程技術調控SnSe和CaZn2Sb2熱電材料於廢回收之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 雷射激發的尾跡場 (wakefield) 可支撐強度達1GV/cm 的電場,非常有機會成為下一代的主流加速器。線性啾頻脈衝放大技術 (chirp pulse amplification) 的引入讓雷射脈衝的尖峰功率達到兆瓦 (TW) 或甚至拍瓦 (PW),而聚焦後高強度雷射脈衝的縱向光壓可以激發一個大振幅的電漿尾跡場來加速電子。此技術已經達成在公分尺度的距離將電子加速到GeV 的能量,並開始研發如何以此電子束激發產生頻譜落在兆赫茲到X 光的高亮度的光子源。此領域最重要的議題就是電漿尾跡場中的電子注入和加速過程,他們會影響產生電子的品質和發與發之間電子參數的穩定度以及此加速器可達到的最高電子能量。此論文報告了本人發展在電漿波導中實現雷射尾跡場電子加速以及利用電子迴旋器振盪 (betatron oscillation) 輻射出X 光的研發成果。第一部分的工作,主要是用系統性的實驗方法研究利用氣態靶摻入特殊氣體的游離引發電子在雷射尾跡場加速器的注入。以摻入少量氬氣的氫氣當作氣態靶,可將產生單能電子束所需的主雷射脈衝能量閥值降低許多,並有效抑制低能量電子背景的產生。我們也成功的在以圓錐透鏡結合點火加熱機制 (axicon-ignitor-heater scheme) 產生的電漿波導中以雷射激發的電漿尾跡場加速電子,若一樣以摻入少量氬氣的氫氣作氣態靶,同樣可降低在電漿波導中注入電子的主雷射脈衝能量閥值。在第二部分的工作,我們先發展產生可調式三維結構電漿波導的技術,主要是利用從側向疊加一道橫向加熱脈衝到圓錐透鏡結合點火加熱機制產生的電漿來達成。利用此技術,我們可以在此電漿波導中以雷射激發的電漿尾跡場加速產生能散極小的單能電子束,此注入電子的機制和一段橫截面膨脹電漿波導有關。除此之外,我們也可以在電漿波導中製造一段橫向位移的橫截面結構,成功的增加電子迴旋器振盪振福,大幅提高輻射出的X 光強度。此技術開啟了實現超小型X 光脈衝光源的新方向。
摘要(英) Laser driven wakefield is capable of sustaining field in excess of 1 GV/cm, making it a promising candidate for the next-generation electron accelerator. The development of chirp pulse amplification boosts the power of laser pulse to terawatt (TW) or even petawatt (PW) level, making it possible to drive a large-amplitude plasma wave to accelerate electrons by the poderomotive force of the intense focused laser pulse. This technique has achieved GeV electron energy in centimeter scale and is being investigated as a driver for generating bright photons with spectrum ranging from THz to X-rays. The most important issues in this field are injection and acceleration process in the driven plasma wave, which determines the quality and shot-to-shot stability of the electron beam and the highest energy gain one can obtain from the accelerator. This thesis reports the efforts and accomplishments on the development of a plasma-waveguide-based Laser wakefield accelerator with two kinds of new electron injection scheme and channel betatron radiated X-ray source. In the first part of my work, a systematic experimental study on injection of electrons in a gas-jet-based laser wakefield accelerator via ionization of dopant was conducted. The pump-pulse threshold energy for producing a quasimonoenergetic electron beam was significantly reduced by doping the hydrogen gas jet with argon atoms, resulting in a much better spatial contrast of the electron beam. Furthermore, laser wakefield electron acceleration in an optically preformed plasma waveguide based on the axicon-ignitor-heater scheme was achieved. It was found that doping with argon atoms can also lower the pump-pulse threshold energy in the case with a plasma waveguide. In the second part of my work, a variable three-dimensionally structured plasma waveguide was fabricated by adding a transverse heater pulse into the axicon-ignitor-heater-scheme. With this technique, induction of electron injection in a plasma-waveguide-based laser wakefield accelerator was achieved and resulted in production of a monoenergetic electron beam. The injection is correlated with a section of expanding cross-section in the plasma waveguide. Moreover, the intensity of the X-ray beam produced by the electron bunch in betatron oscillation was greatly enhanced with a transversely shifted section in the plasma waveguide. The technique opens the route to a compact hard x-ray pulse source.
關鍵字(中) ★ 雷射電漿波電子加速器
★ 電漿波
★ 電漿波導
關鍵字(英) ★ Laser wake field accelerator
★ Plasma wave
★ Betatron oscillation
★ Bubble regime
★ Plasma waveguide
論文目次 Abstract v
Publication vii
List of Figures ix
1 Introduction 1
1.1 Laser wakefield accelerator . . . . . . . . . . . . . . . . 1
1.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 High power laser and laser driven plasma waves 3
1.1.3 Maximum attainable field and wave-breaking . . 5
1.1.4 Electron acceleration and dephasing . . . . . . . 5
1.1.5 Diffraction and depletion of laser pulse in a plasma 8
1.2 The bubble regime: self-injection . . . . . . . . . . . . 9
1.3 Controlled injection . . . . . . . . . . . . . . . . . . . . 11
1.3.1 Ramp injection scheme . . . . . . . . . . . . . . 11
1.3.2 Ionization injection scheme . . . . . . . . . . . . 12
1.3.3 Optical injection scheme . . . . . . . . . . . . . 14
1.4 About the thesis . . . . . . . . . . . . . . . . . . . . . 16
2 High power laser system 19
2.1 Chirped pulse amplification . . . . . . . . . . . . . . . 20
2.2 100-TW laser system in NCU . . . . . . . . . . . . . . 21
3 Laser wakefield electron acceleration in a plasma waveguide…27
3.1 Plasma waveguide . . . . . . . . . . . . . . . . . . . . . 27
3.1.1 Methods for producing plasma waveguide . . . . 29
3.1.2 Guiding conditions for plasma waveguide . . . . 33
3.1.3 Axicon-Ignitor-Heater Scheme . . . . . . . . . . 35
3.1.4 Improvements of pump pulse coupling . . . . . 39
3.2 Enhancement of injection and acceleration of electrons by using an argon-doped hydrogen gas . . . . . . . . . 42
3.2.1 Experimental arrangement . . . . . . . . . . . . 42
3.2.2 Experimental results and discussion . . . . . . . 44
3.3 Experiment with an optically preformed plasma waveguide. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.1 Experimental Results and Discussion . . . . . . 49
4 Induction of electron injection and betatron oscillation
in a plasma-waveguide-based laser wakefield accelerator
by modification of waveguide structure 55
4.1 Induction of electron injection in a three-dimensionally structured plasma waveguide . . . . . . . . . . . . . . . 55
4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . 55
4.1.2 Experimental arrangement . . . . . . . . . . . . 56
4.1.3 Experimental results and discussion . . . . . . . 59
4.2 Enhancement of betatron oscillation of electron in a three-dimensionally structured plasma waveguide . . . 66
4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . 66
4.2.2 Experimental results and discussion . . . . . . . 67
5 Conclusion and perspective 73
Bibliography 75
參考文獻 [1] J. D. Cockcroft and E. T. S. Walton. Experiments with high velocity positive ions. ii. The disintegration of elements by high velocity protons. Proc. R. Soc. Lond. A 137, 229 (1932).
[2] L. Evans and P. Bryant. LHC machine, (2008).
[3] A. W. Chao and M. Tigner. Handbook of Accelerator Physics and Engineering. World Scientific Pub. Co. (1998).
[4] SSC . The Superconduncting Super Collider Project. URL http://www.hep.net/ssc/.
[5] J. Mervis and C. Seife, Science, 302, 38 (2003).
[6] A. Cho. International team releases design, cost for next great particle smasher. Science, 315, 746 (2007).
[7] J. M. Dawson, Phys. Rev. 113, 383 (1959).
[8] D. Gordon, et al., Phys. Rev. Lett. 80, 2133 (1998).
[9] V. Malka, et al., Science 298, 1596 (2002).
[10] O. Lundh, J. Lim, C. Rechatin, L. Ammoura, A. Ben-Ismail, X. Davoine, G. Gallot, J. Goddet, E. Lefebvre, V. Malka, and J. Faure, Nat. Phys. 7, 219 (2011).
[11] A. Buck, M. Nicolai, K. Schmid, C. M. S. Sears, A. Svert, J. M. Mikhailova, F. Krausz, M. C. Kaluza, and L. Veisz, Nat. Phys. 7, 543 (2011).
[12] A. Pukhov and Meyer-Ter-Vehn, Appl. Phys. B 74, 355 (2002).
[13] W. Lu, M. Tzoufras, C. Joshi, F. S. Tsung, W. B. Mori, J. Vieira, R. A. Fonseca, and L. O. Silva, Phys. Rev. ST Accel. Beams 10, 061301 (2007).
[14] XiaomingWang, Rafal Zgadzaj, Neil Fazel, Zhengyan Li, S. A. Yi, Xi Zhang,Watson Henderson, Y.-Y. Chang, R. Korzekwa1 H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer , E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire ,and M. C. Downer, Nature Commun. 4, 1988 (2013).
[15] C. G. R. Geddes, Cs. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, Nature (London) 431, 538 (2004).
[16] J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy, and V. Malka, Nature (London) 431, 541 (2004).
[17] S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, Nature (London) 431, 535 (2004).
[18] W. P. Leemans, B. Nagler, A. J. Gonsalves, Cs. Toth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, Nat. Phys. 2, 696 (2006).
[19] S. Y. Kalmykov, A. Beck, A. Yi, V. N. Khudik, M. C. Downer, E. Lefebvre, B. A. Shadwick, and D. P. Umstadter, Phys. Plasmas 18, 056704 (2011).
[20] S. Bulanov, N. Naumova, F. Pegoraro, and J. Sakai, Phys. Rev. E 58, R5257 (1998); R. G. Hemker, N. M. Hafz, and M. Uesaka, Phys. Rev. ST Accel. Beams5, 041301 (2002).
[21] H. Suk, N. Barov, J. B. Rosenzweig, and E. Esarey, Phys. Rev. Lett. 86, 1011 (2001);H. Suk, J. Appl. Phys. 91, 487 (2002); R. J. England, J. B. Rosenzweig, and N. Barov, Phys. Rev. E 66, 016501 (2002); M. C. Thompson, J. B. Rosenzweig, and H. Suk, Phys. Rev. ST Accel. Beams 7, 011301 (2004).
[22] H. Suk, H. J. Lee, and I. S. Ko, J. Opt. Soc. Am. B 21, 1391 (2004).
[23] J. U. Kim, N. Hafz, and H. Suk, Phys. Rev. E 69, 026409 (2004).
[24] T.-Y. Chien, C.-L. Chang, C.-H. Lee, J.-Y. Lin, J. Wang, and S.-Y. Chen, Phys. Rev. Lett. 94, 115003 (2005).
[25] J. Faure, C. Rechatin, O. Lundh, L. Ammoura, and V. Malka, Phys. Plasmas 17, 083107 (2010).
[26] A. V. Brantov, T. Zh. Esirkepov, M. Kando, H. Kotaki, V. Yu. Bychenkov, and S. V. Bulanov, Phys. Plasmas 15, 073111 (2008).
[27] C. G. R. Geddes, K. Nakamura, G. R. Plateau, Cs. Toth, E. Cormier-Michel, E. Esarey, C. B. Schroeder, J. R. Cary, and W. P. Leemans, Phys. Rev. Lett. 100, 215004 (2008).
[28] G. Fubiani, E. Esarey, C. B. Schroeder, and W. P. Leemans, Phys. Rev. E 73, 026402 (2006).
[29] E. Oz, S. Deng, T. Katsouleas, P. Muggli, C. D. Barnes, I. Blumenfeld, F. J. Decker, P. Emma, M. J. Hogan, R. Ischebeck, R. H. Iverson, N. Kirby, P. Krejcik, C. O’Connell, R. H. Siemann, D. Walz, D. Auerbach, C. E. Clayton, C. Huang, D. K. Johnson, C. Joshi, W. Lu, K. A. Marsh, W. B. Mori, and M. Zhou, Phys. Rev. Lett. 98, 084801 (2007).
[30] T. P. Rowlands-Rees, C. Kamperidis, S. Kneip, A. J. Gonsalves, S. P. D. Mangles, J. G. Gallacher, E. Brunetti, T. Ibbotson, C. D. Murphy, P. S. Foster, M. J. V. Streeter, F. Budde, P. A. Norreys, D. A. Jaroszynski, K. Krushelnick, Z. Najmudin, and S. M. Hooker, Phys. Rev. Lett. 100, 105005 (2008).
[31] C. McGuffey, A. G. R. Thomas, W. Schumaker, T. Matsuoka, V. Chvykov, F. J. Dollar, G. Kalintchenko, V. Yanovsky, A. Maksimchuk, K. Krushelnick, V. Yu. Bychenkov, I. V. Glazyrin, and A. V. Karpeev, Phys. Rev. Lett. 104, 025004 (2010).
[32] A. Pak, K. A. Marsh, S. F. Martins, W. Lu, W. B. Mori, and C. Joshi, Phys. Rev. Lett. 104, 025003 (2010).
[33] C. E. Clayton, J. E. Ralph, F. Albert, R. A. Fonseca, S. H. Glenzer, C. Joshi, W. Lu, K. A. Marsh, S. F. Martins, W. B. Mori, A. Pak, F. S. Tsung, B. B. Pollock, J. S. Ross, L. O. Silva, and D. H. Froula, Phys. Rev. Lett. 105, 105003 (2010).
[34] B. B. Pollock, C. E. Clayton, J. E. Ralph, F. Albert, A. Davidson, L. Divol, C. Filip, S. H. Glenzer, K. Herpoldt, W. Lu, K. A. Marsh, J. Meinecke, W. B. Mori, A. Pak, T. C. Rensink, J. S. Ross, J. Shaw, G. R. Tynan, C. Joshi, and D. H. Froula, Phys. Rev. Lett. 107, 045001 (2011).
[35] D. Umstadter, J. K. Kim, and E. Dodd, Phys. Rev. Lett. 76, 2073 (1996).
[36] E. Esarey, R. F. Hubbard, W. P. Leemans, A. Ting, and P. Sprangle, Phys. Rev. Lett. 79, 2682 (1997).
[37] G. Fubiani, E. Esarey, C. B. Schroeder, and W. P. Leemans, Phys. Rev. E 70, 016402 (2004).
[38] H. Kotaki, S. Masuda, M. Kando, J. K. Koga, and K. Nakajima, Phys. Plasmas 11, 3296 (2004).
[39] C. Rechatin, J. Faure, A. Lifschitz, V. Malka, and E. Lefebvre, Phys. Plasmas 14, 060702 (2007).
[40] J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka, Nature (London) 444, 737 (2006).
[41] C. Rechatin, J. Faure, A. Ben-Ismail, J. Lim, R. Fitour, A. Specka, H. Videau, A. Tafzi, F. Burgy, and V. Malka, Phys. Rev. Lett. 102, 164801 (2009).
[42] C.-H. Pai, S.-Y. Huang, C.-C. Kuo, M.-W. Lin, J. Wang, S.-Y. Chen, C.-H. Lee, and J.-Y. Lin, Phys. Plasmas 12, 070707 (2005).
[43] M.-W. Lin, Y.-M. Chen, C.-H. Pai, C.-C. Kuo, K.-H. Lee, J. Wang, S.-Y. Chen, and J.-Y. Lin, Phys. Plasmas 13, 110701 (2006).
[44] Y.-F. Xiao, H.-H. Chu, H.-E. Tsai, C.-H. Lee, J.-Y. Lin, J. Wang, and S.-Y. Chen, Phys. Plasmas 11, L21 (2004).
[45] Y.-C. Ho, T.-S. Hung, C.-P. Yen, S.-Y. Chen, H.-H. Chu, J.-Y. Lin, J. Wang, and M.-C. Chou, Phys. Plasmas 18, 063102 (2011).
[46] G. Mourou and D. Umstadter, Phys. Fluids B 4, 7 (1992).
[47] G. Mourou, C. P. J. Barty and M. D. Perry, Phys. Today 51, 22 (1998).
[48] D. Umstadter, Phys. Plasmas 8, 1774 (2001).
[49] K. Yamanouchi, Science 295, 1659 (2002).
[50] K. W. D. Ledingham, P. Mckenna and R. P. Singhal, Science 300, 1107 (2003).
[51] B. A. Remington,D. Arnett, R. P. Drake, and H. Takabe, Science 284, 1488 (1999).
[52] P. Maine, D. Strickland,P. Bado, M. Pessot and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[53] D. Strickland and G. Mourou, Opt. Commun. 56, 219(1985).
[54] ELI . Light Infrastructure. URL http://www.eli-beams.eu/.
[55] J. Wang, M. Weinelt, and T. Fauster, Appl. Phys. B 82, 571 (2006).
[56] T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979).
[57] P. Sprangle, E. Esarey, A. Ting, and G. Joyce, Appl. Phys. Lett. 53, 2146 (1988).
[58] C. G. R. Geddes, Cs. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, J. Cary, and W. P. Leemans, Phys. Rev. Lett. 95, 145002 (2005)
[59] H. M. Milchberg, C. G. Durfee III and J. Lynch, J. Opt. Soc. Am. B 12, 731 (1995).
[60] A. Butler, A. J. Gonsalves, C. M. McKenna, D. J. Spence, S. M. Hooker, S. Sebban, T. Mocek, I. Bettaibi, and B. Cros, Phys. Rev. Lett. 91, 205001 (2003).
[61] T. Mocek, C. M. McKenna, B. Cros, S. Sebban, D. J. Spence , G. Maynard, I. Bettaibi, V. Vorontsov, A. J. Gonsavles, and S. M. Hooker, Phys. Rev. A 71, 013804 (2005).
[62] H. M. Milchberg, T. R. Clark, C. G. Durfee III, T. M. Antonsen and P. Mora, Phys. Plasmas 3, 2149 (1995).
[63] E. A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I. P. Christov, A. Aquila, E. M. Gullikson, D. T. Attwood, M. M. Murnane and H. C. Kapteyn, Science 302, 95 (2003).
[64] H. M. Milchberg, C. G. Durfee III and T. J. McIlrath, Phys. Rev. Lett. 75 2494 (1995).
[65] C. G. Durfee III, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 83 2187 (1999).
[66] X. S. Zhang, A. L. Lytle, T. Popmintchev, X. Zhou, H. C. Kapteyn, M. M. Murnane, and O. Cohen, Nat. Phys. 3 270 (2007).
[67] P. E. Young, H. A. Baldis, R. P. Drake, E. M. Campbell, and K. G. Estabrook, Phys. Rev. Lett. 61 2336 (1988).
[68] A. Braun, G. Korn, X. Liu, D. Du, J. Squier and G. Mourou, Opt. Lett. 20 73 (1995).
[69] P. Monot, T. Auguste, L. A. Lompr’e, G. Mainfray, and C. Manus, J. Opt. Soc. Am. B 9 1679 (1992).
[70] E. Esarey, P. Sprangle, J. Krall and A. Ting, IEEE J. Quantum Electron. 33 1879 (1997).
[71] S.-Y. Chen, G. S. Sarkisov, A. Maksimchuk, R. Wagner and D. Umstadter, Phys. Rev. Lett. 80 2610 (1998).
[72] S. Jackel, R. Burris, A. Ting, C. Manka, K. Evans, and J. Kosakowskii, Opt. Lett. 20 1086 (1995).
[73] F. Dorchies, J. R. Marqu`es, G. Matthieussent, C. Courtois , T. V’elikoroussov, P. Audebert, J. P. Geindre, S. Rebibo, G. Hamoniaux, and F. Amiranoff, Phys. Rev. Lett. 82 4655 (1999).
[74] Y. Ehrlich, C. Cohen, A. Zigler, J. Krall, P. Sprangle, and E. Esarey, Phys. Rev. Lett. 77 4186 (1996).
[75] T. Hosokai, M. Kando, H. Dewa, H. Kotaki, S. Kondo, N. Hasegawa, K. Nakajima, and K. Horioka, Opt. Lett. 25 10 (2000).
[76] A. Butler, D. J. Spence, and S. M. Hooker, Phys. Rev. Lett. 89 185003 (2002).
[77] K. Nakamura, B. Nagler, Cs. T’oth, C. G. R. Geddes, C. B. Schroeder, E. Esarey, W. P. Leemans, A. J. Gonsalvese, and S. M. Hooker, Phys. Plasmas 14, 056708 (2007).
[78] C. G. Durfee III, J. Lynch, and H. M. Milchberg, Phys. Rev. E. 51 2368 (1995).
[79] C. G. Durfee III, and H. M. Milchberg, Phys. Rev. Lett. 71 2049 (1993).
[80] T. R. Clark and H. M. Milchberg, Phys. Rev. Lett. 78 2373 (1997).
[81] P. Volfbeyn, E. Esarey, and W. P. Leemans, Phys. Plasmas 6 2269 (1999).
[82] Y.-F. Xiao, H.-H. Chu, H.-E. Tsai, C.-H. Lee, J.-Y. Lin, J. Wang, and S.-Y. Chen, Phys. Plasmas 11 L21 (2004).
[83] C. G. Durfee III, J. Lynch, and H. M. Milchberg, Opt. Lett. 19 1937 (1994).
[84] V. V. Korobkin, L. Y. Polonskii, V. P. Poponin, and L. N. Pyatnitskii, Sov. J. Quantum Electron. 16 178 (1986).
[85] A. G. Sedukhin, J. Opt. Soc. Am. A 15 3057 (1998).
[86] P. B. Corkum, N. H. Burnett, and F. Brunel, Phys. Rev. Lett. 62 1259 (1989).
[87] L. V. Keldysh, Sov. Phys. JETP 20 1037 (1965).
[88] S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin and J. H. Eberly, Phys. Rev. Lett. 63 2212 (1989).
[89] W. P. Leemans, C. E. Clayton, W. B. Mori, K. A. Marsh, P. K. Kaw, A. Dyson, C. Joshi, and J. M. Wallance, Phys. Rev. A 46 1091 (1992).
[90] W. L. Kruer, The physics of laser plasma interactions, Addison-Wesley (1998).
[91] S. Y. Chen et al. ”Development of laser wakfield electron accelerator and its derivatives of photon sources”, OCPA6 (2009, Lanzhou, China).
[92] I. Kostyukov, A. Pukhov, and S. Kiselev, Phys. Plasmas 11, 5256 (2004).
[93] F. S. Tsung, Ritesh Narang, W. B. Mori, C. Joshi, R. A. Fonseca, and L. O. Silva, Phys. Rev. Lett. 93, 185002 (2004).
[94] P. Bertrand, A. Ghizzo, S. J. Karttunen, T. J. H. Pattikangas, R. R. E. Salomaa, and M. Shoucri, Phys. Rev. E 49, 5656 (1994); C. I. Moore et al., Phys. Rev. Lett. 79, 3909 (1997).
[95] C.-T. Hsieh, C.-M. Huang, C.-L. Chang, Y.-C. Ho, Y.-S. Chen, J.-Y. Lin, J. Wang, and S.-Y. Chen, Phys. Rev. Lett. 96, 095001 (2006).
[96] C.-L. Chang, C.-T. Hsieh, Y.-C. Ho, Y.-S. Chen, J.-Y. Lin, J. Wang, and S.-Y. Chen, Phys. Rev. E 75, 036402 (2007).
[97] C. Rechatin, X. Davoine, A. Lifschitz, A. Ben Ismail, J. Lim, E. Lefebvre, J. Faure, and V. Malka, Phys. Rev. Lett. 103, 194804 (2009).
[98] M.-C. Chou, P.-H. Lin, C.-A. Lin, J.-Y. Lin, J. Wang, and S.-Y. Chen, Phys. Rev. Lett. 99, 063904 (2007).
[99] N. E. Andreev, S. V. Kuznetsov, and I. V. Pogorelsky, Phys. Rev. ST Accel. Beams 3, 021301 (2000).
[100] E. Esarey, C. B. Schroeder, and W. P. Leemans, Rev. Mod. Phys. 81, 1229 (2009).
[101] V. Malka, Phys. Plasmas 19, 055501 (2012).
[102] S. Kneip, S. R. Nagel, S. F. Martins, S. P. D. Mangles, C. Bellei, O. Chekhlov, R. J. Clarke, N. Delerue, E. J. Divall, G. Doucas, K. Ertel, F. Fiuza, R. Fonseca, P. Foster, S. J. Hawkes, C. J. Hooker, K. Krushelnick, W. B. Mori, C. A. J. Palmer, K. Ta Phuoc, P. P. Rajeev, J. Schreiber, M. J.V. Streeter, D. Urner, J. Vieira, L. O. Silva, and Z. Najmudin, Phys. Rev. Lett. 102, 175003 (2009).
[103] P. Dong, S. A. Reed, S. A. Yi, S. Kalmykov, G. Shvets, M. C. Downer, N. H. Matlis, W. P. Leemans, C. McGuffey, S. S. Bulanov, V. Chvykov, G. Kalintchenko, K. Krushelnick, A. Maksimchuk, T. Matsuoka, A. G. R. Thomas, and V. Yanovsky, Phys. Rev. Lett. 104, 134801 (2010).
[104] A. J. Gonsalves, K. Nakamura, C. Lin, D. Panasenko, S. Shiraishi, T. Sokollik, C. Benedetti, C. B. Schroeder, C. G. R. Geddes, J. van Tilborg, J. Osterhoff, E. Esarey, C. Toth, and W. P. Leemans, Nat. Phys. 7, 862 (2011).
[105] T.-S. Hung, Y.-C. Ho, Y.-L. Chang, S.-J. Wong, H.-H. Chu, J.-Y. Lin, J. Wang, and S.-Y. Chen, Phys. Plasmas 19, 063109 (2012).
[106] P.-C. Wang and G. S. Cargill III, J. Appl. Phys. 81, 1031 (1997).
[107] S. M. Gruner, M. W. Tate, and E. F. Eikenberry, Rev. Sci. Instrum. 73, 2815 (2002).
[108] S. Kneip, Ph. D. thesis, University of London, Imperial College, 2010.
[109] E. Brunetti, R. P. Shanks, G. G. Manahan, M. R. Islam, B. Ersfeld, M. P. Anania, S. Cipiccia, R. C. Issac, G. Raj, G. Vieux, G. H. Welsh, S. M. Wiggins, and D. A. Jaroszynski, Phys. Rev. Lett. 102, 215007 (2010).
[110] S. Banerjee, N. D. Powers, V. Ramanathan, I. Ghebregziabher, K. J. Brown, C. M. Maharjan, S. Chen, A. Beck, E. Lefebvre, S. Y. Kalmykov, B. A. Shadwick, and D. P. Umstadter, Phys. Plasmas 19, 056703 (2012).
[111] B. W. J. McNeil and N. R. Thompson, Nat. Photon. 4, 814 (2010).
[112] A. R. Maier, A. Meseck, S. Reiche, C. B. Schroeder, T. Seggebrock, and F. Gruner, Phys. Rev. X 2, 031019 (2012).
[113] S. Kneip, C. McGuffey, J. L. Martins, S. F. Martins, C. Bellei, V. Chvykov, F. Dollar, R. Fonseca, C. Huntington, G. Kalintchenko, A. Maksimchuk, S. P. D. Mangles, T. Matsuoka, S. R. Nagel, C. A. J. Palmer, J. Schreiber, K. T. Phuoc, A. G. R. Thomas, V. Yanovsky, L. O. Silva, K. Krushelnick, and Z. Najmudin, Nat. Phys. 6, 980 (2010).
[114] S. Cipiccia, M. R. Islam, B. Ersfeld, R. P. Shanks, E. Brunetti, G. Vieux, X. Yang, R. C. Issac, S. M. Wiggins, G. H. Welsh, M.-P. Anania, D. Maneuski, R. Montgomery, G. Smith, M. Hoek, D. J. Hamilton, N. R. C. Lemos, D. Symes, P. P. Rajeev, V. O. Shea, J. M. Dias, and D. A. Jaroszynski, Nat. Phys. 7, 867 (2011).
[115] P. Kirkpatrick, Rev. Sci. Instrum. 10, 186 (1939).
[116] J. Ju, K. Svensson, A. D‥opp, H. E. Ferrari, K. Cassou, O. Neveu, G. Genoud, F. Wojda, M. Burza, A. Persson, O. Lundh, C.-G. Wahlstrom, and B. Cros, Appl. Phys. Lett. 100, 191106 (2012).
[117] A. J. Reitsma and D. A. Jaroszynski, Phys. Plasmas 14, 053104 (2007).
[118] A. Reitsma and D. Jaroszynski, IEEE Trans. Plasma Sci. 36, 1738 (2008).
[119] A. G. R. Thomas, Z. Najmudin, S. P. D. Mangles, C. D. Murphy, A. E. Dangor, C. Kamperidis, K. L. Lancaster, W. B. Mori, P. A. Norreys, W. Rozmus, and K. Krushelnick, Phys. Rev. Lett. 98, 095004 (2007).
[120] A. Popp, J. Vieira, J. Osterhoff, Zs. Major, R. Horlein, M. Fuchs, R. Weingartner, T. P. Rowlands-Rees, M. Marti, R. A. Fonseca, S. F. Martins, L. O. Silva, S. M. Hooker, F. Krausz, F. Gruner, and S. Karsch, Phys. Rev. Lett. 105, 215001 (2010).
[121] S. Y. Kalmykov, S. A. Yi, A. Beck, A. F. Lifschitz, X. Davoine, E. Lefebvre, V. Khudik, G. Shvets, and M. C. Downer, Plasma Phys. Control. Fusion 53, 014006 (2011).
[122] W. Rittershofer, C. B. Schroeder, E. Esarey, F. J. Gruner, and W. P. Leemans, Phys. Plasmas 17, 063104 (2010).
[123] K. Ta Phuoc, E. Esarey, V. Leurent, E. Cormier-Michel, C. G. R. Geddes, C. B. Schroeder, A. Rousse, and W. P. Leemans, Phys. Plasmas 15, 063102 (2008).
[124] K. Nakajima, M. Kando, T. Kawakubo, T. Nakanishi, and A. Ogata, Nucl. Instrum. Methods Phys. Res. A 375, 593 (1996).
[125] S. Chen, N. D. Powers, I. Ghebregziabher, C. M. Maharjan, C. Liu, G. Golovin, S. Banerjee, J. Zhang, N. Cunningham, A. Moorti, S. Clarke, S. Pozzi, and D. P. Umstadter, Phys. Rev. Lett. 110, 115003 (2013).
指導教授 陳賜原(Szu-yuan Chen) 審核日期 2013-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明