博碩士論文 962402015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:34.204.191.31
姓名 陳柏端(Po-Tuan Chen)  查詢紙本館藏   畢業系所 物理學系
論文名稱 GW準粒子於Mn3O4和GaN的激發態性質計算
(GW quasiparticle calculations for excitation properties of Mn3O4 and GaN)
相關論文
★ 混合物種與低溫冷凍原子團簇噴流的發展★ 以雷射脈衝對磁性薄膜進行超快磁轉化及其動態時間解析
★ 以脈衝雷射沈積製造FeBO3薄膜★ 共焦拉曼與螢光顯微鏡之發展及其在材料診斷上之應用
★ 以光激發黑色素來清除細胞環境中之活性氧之探討★ 發展在電漿波導式雷射電漿波電子加速器中誘發電子注入與X 光產生之技術
★ 莫斯堡光譜儀的建造以及其應用到FeCO3薄膜的診斷★ 發展利用另一道脈衝雷射在脈衝雷射沉 積技術中成長碳薄膜的雷射同步過程進 行碳薄膜晶向之控制
★ 研究以雷射進行基板之前置處理來達到控制脈衝雷射沉積的矽鍺量子點的尺寸分布的可行性★ 以超短脈衝雷射沉積技術製作鍺/矽薄膜之研究
★ 一百兆瓦雷射系統之建造與在結構化電漿波導之應用★ 以基質輔助脈衝雷射蒸鍍法製備聚3-己基噻酚/(6,6)-苯基-C61-丁酸甲酯有機太陽能電池
★ 藥物劑量與復原時間影響光動力療法疫苗之功效的系統性研究★ 光控制實用的材料製程在PEM燃料電池及光電元件上的應用
★ 以脈衝雷射沉積與脈衝雷射退火製造鍺/矽量子點與成長鍺薄膜於單晶矽上並應用於光偵測器的研究★ 以工程技術調控SnSe和CaZn2Sb2熱電材料於廢回收之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在最近幾年,利用擬粒子計算來描述材料上電子的激發態性質已獲得成功,例如能帶結構和吸收光譜。因為基於擬粒子的概念配合格林函數計算的近似,使得其理論計算得以執行應用。在理論上,包含電子與電子的斥力加上電子與原子核的屏蔽形成了擬粒子。在數學上,格林函數G具備描述擬粒子的特徵。搭配上具有屏蔽概念的自能Σ,激發態能量得以被定量的計算,我們稱之為動態屏蔽相互作用或者簡稱為GW近似法。此演算法由Hedin在1965年提出。
在本研究中,我欲呈現GW擬粒子方法的兩個理論計算的應用。在第一個部分我們將分析的Mn3O4吸收光譜。基於所選取合適的團簇結構模型,我們計算得到的吸收光譜可以與實驗做很好的比較。因此,實驗上面的光譜特徵可以利用計算結果作分析。第二部分,GaN半導體的擬粒子能帶結構和激發光譜的計算結果。此結果對於利用GaN作為光觸媒的研究,是很重要的前置瞭解。
摘要(英) In recently years, quasiparticle calculations have been used successfully to describe the electronic excited state properties of materials such as band structures and absorption spectra. A successful approximation for the determination of excited states is based on the quasiparticle concept and the Green function method. The Coulomb repulsion between electrons leads to depletion of negative charge around a given electron and the ensemble of this electron and its surrounding positive screening charge forms a quasiparticle. The mathematical description of quasiparticles is based on the Green function G, whose exact determination requires complete knowledge of the quasiparticle self-energy Σ. A determination of the self-energy Σ can only be approximated, and a working scheme for the quantitative calculation of excitation energies is the so-called dynamically screened interaction or the GW approximation (GWA). The GWA for the computation of quasiparticle energies was proposed by Hedin in 1965.
In this study, I would like to show two applications using GW quasiparticle theory. In first part, we present the first analysis of three distinctive peaks appearing in absorption spectrum of Mn3O4 spinel. Based on a proper cluster model, we obtain the calculated spectrum which can be compared well with the experiments. Therefore, the assignments of the origin of the peaks on spectrum can be done. In the second part, the calculations of quasiparticle band structure and optical excitation spectrum of GaN wurtzite have been performed using first-principles methods. These results are the priority for theoretical analysis of photocatalytic reactions using GaN semiconductor.
關鍵字(中) ★ 理論計算
★ 激發態
★ 準粒子
關鍵字(英) ★ excitation properties
★ quasiparticle
★ calculations
論文目次 Contents
Summary i
摘要 ii
Acknowledgement iii
Part I 1
Atomic Level Analysis for Electron Energy-Loss Near-Edge Structure Splitting in Mn3O4 Spinel Using First-Principle Calculations 2
I.1 Introduction for orbital analysis of spinel 3
I.2 Calculation method for ELNES 6
I.2.1 Introduction of electron energy-loss spectroscopy 6
I.2.2 Experimental details of ELNES of Mn3O4 7
I.2.3 Theory of x-ray absorption spectra calculation 8
I.2.4 Calculaiton technique for Mn3O4 using FEFF code 10
I.3 Results and dicussions 12
I.3.1 Assignments for O K-edge splitting 12
I.3.2 Mn L-edge attributing to specific sites 13
I.3.3 ELNES splittings and Mn d orbitals 13
I.3.4 Artificially removed Jahn-Teller distortion by expanding x 14
I.3.5 Artificially removed Jahn-Teller distortion by reducing z 16
I.3.6 Extensive discussion for CoMn2O4 and CoFe2O4 17
I.4 Conclusions 19
I.5 References 33
Part II 35
Theoretical Calculations of Quasiparticle Band Structures and Optical Absorption Spectrum of GaN wurtzite 36
II.1 Introduction for excitation state calculation of GaN 37
II.2 Calculation method of GW-BSE 40
II.2.1 Density functional theory for ground state 40
II.2.2 Quasiparticle 43
II.2.3 Green function approximation and Dyson equation 44
II.2.4 Hedin equeation 47
II.2.5 Optical spectrum - Bethe-Salpeter equation 50
II.2.6 Calculation technique for GW-BSE calculation 53
II.3 Results and dicussions 55
II.3.1 Band structures of GaN 55
II.3.2 Optical spectrum of GaN using BSE 56
II.4 Conclusions 58
II.5 References 66
Appendix: Education and publication list 69
參考文獻 PartI
[1] G. A. Botton, C. C. Appel, A. Horsewell and W. M. Stobbs, Journal of Microscopy 180, 211 (1995).
[2] L. A. J. Garvie, P. R. Buseck and A. J. Craven, The Canadian Mineralogist 33, 1157 (1995).
[3] C. Mitterbauer, G. Kothleitner, W. Grogger, H. Zandbergen, B. Freitag, P. Tiemeijer and F. Hofer, Ultramicroscopy 96, 469 (2003).
[4] T. Riedl, T. Gemming and K. Wetzig, Ultramicroscopy 106, 284 (2006).
[5] H. Einaga and S. Futamura, J. Catal. 227, 304 (2004).
[6] Y. F. Shen, R. P. Zerger, R. N. Deguzman, S. L. Suib, L. Mccurdy, D. I. Potter, and C. L. Oyoung, Science 206, 511 (1993).
[7] O. Giraldo, S. L. Brock, W. S. Willis, M. Marquez, S. L. Suib, and S. Ching, J. Am. Chem. Soc. 122, 9330 (2000).
[8] M. Toupin, T. Brousse, and D. Belanger, Chem. Mater. 16, 3184 (2004).
[9] A. R. Armstrong and P. G. Bruce, Nature 381, 499 (1996).
[10] K. S. Park, M. H. Cho, S. H. Park, K. S. Nahm, Y. K. Sun, Y. S. Lee, and M. Yoshio, Electrochim. Acta 47, 2937 (2002).
[11] V. Baron, J. Gutzmer, H. Rundlo f, and R. Tellgren, Am. Mineral. 83, 786 (1998).
[12] H. Tan, S. Turner, E. Yucelen, J. Verbeeck, and G. Van Tendeloo, Physical Review Letters 107, 107602 (2011).
[13] Y. Li, H. Tan, X.-Y. Yang, B. Goris, J. Verbeeck, S. Bals, P. Colson, R. Cloots, G. Van Tendeloo, and B.-L. Su, Small 7, 475 (2011).
[14] A. Chartier, P. D’Arco, R. Dovesi, and V. R. Saunders, Phys. Rev. B 60, 14042 (1999).
[15] B. Gilbert, B. H. Frazer, A. Belz, P. G. Conrad, K. H. Nealson, D. Haskel, J. C. Lang, G. Srajer and G. De Stasio, J. Phys. Chem. A 107, 2839 (2003).
[16] K. Tatsumia, S. Mutoa, Y. Yamamotoa, H. Ikenob, S. Yoshiokab, I. Tanaka, Ultramicroscopy 106, 1019 (2006).
[17] C. Franchini, R. Podloucky, J. Paier, M. Marsman, and G. Kresse, PHYSICAL REVIEW B 75, 195128 (2007).
[18] J. Lee et al., Phys. Rev. B 80, 205112 (2009).
[19] J. H. Hwang et al., Phys. Rev. B 83, 073103 (2011).
[20] J. Paterson and O. Krivanek, Ultramicroscopy 32, 319 (1990).
[21] L. A. J. Garvie and A. J. Craven, Phys. Chem. Miner. 21, 191 (1994).
[22] H. -J. Noh, S. Yeo, J. -S. Kang, C. L. Zhang, S. -W. Cheong, S. -J. Oh and P. D. Johnson, Appl. Phys. Lett. 88, 081911 (2006).
[23] J. M. Chen, J. M. Lee, C. K. Chen, T. L. Chou, K. T. Lu, S. C. Haw, K. S. Liang, C. T. Chen, H. T. Jeng, S. W. Huang, T. J. Yang, C. C. Shen, R. S. Liu, J. Y. Lin and Z. Hu, Appl. Phys. Lett. 94, 044105 (2009).
[24] W. D. Luo, M. Varela, J. Tao, S. J. Pennycook and S. T. Pantelides, Phys. Rev. B 79, 052405 (2009).
[25] L. Hedin and S. Lundqvist, in Solid State Physics, edited by F. Seitz, D. Turnbull, and H. Ehrenreich (Academic, NewYork), p. 1 (1969).
[26] A. L. Ankudinov, B. Ravel, J. J. Rehr, and S. D. Conradson, PHYSICAL REVIEW B 58, 7565 (1999).
[27] J. J. Rehr and R. C. Albers, Reviews of Modern Physics, 72, 621 (2000).
[28] B. Boucher, R. Buhl and M. Perrin, J. Phys. Chem. Solids 32, 2429 (1971). The crystallographic parameters of Mn3O4 also collected in Inorganic Crystal Structure Database, collection code: 76088.
PartII
[1] Kocha, S. S.; Peterson, M. W.; Arent, D. J.; Redwing, J. M.; Tischler, M. A.; Turner, J. A. J. Electrochem. Soc. 1995, 142, L238.
[2] Huygens, I. M.; Strubbe, K.; Gomes, W. P. J. Electrochem. Soc. 2000, 147, 1797-1802.
[3] Beach, J. D.; Collins, R. T.; Turner, J. A. J. Electrochem. Soc. 2003, 150, A899-A904.
[4] Fujii, K.; Karasawa, T.; Ohkawa, K. Jpn. J. Appl. Phys. 2005, 44, L543-L545.
[5] Fujii, K.; Ohkawa, K. J. Electrochem. Soc. 2006, 153, A468-A471.
[6] Fujii, K.; Iwaki, Y.; Masui, H.; Baker, T. J.; Iza, M.; Sato, H.; Kaeding, J.; Yao, T.; Speck, J. S.; Denbaars, S. P.; Nakamura, S.; Ohkawa, K. Jpn. J. Appl. Phys. 2007, 46, 6573-6578.
[7] Ichitaro Waki, Daniel Cohen, Rakesh La, Umesh Mishra, Steven P. DenBaars, and Shuji Nakamura Appl. Phys. Lett. 91, 093519 (2007).
[8] Kazuhiko Maeda, Tsuyoshi Takata, Michikazu Hara, Nobuo Saito, Yasunobu Inoue, Hisayoshi Kobayashi, Kazunari Domen, J. AM. CHEM. SOC. 2005, 127, 8286-8287.
[9] Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Nature 2006, 440, 295.
[10] R. Michael Sheetz, Ernst Richter, Antonis N. Andriotis, Sergey Lisenkov, Chandrashekhar Pendyala and Mahendra K. Sunkara, Madhu Menon, PHYSICAL REVIEW B 84, 075304 (2011).
[11] Defa Wang, Adrien Pierre, Md Golam Kibria, Kai Cui, Xueguang Han, Kirk H. Bevan, Hong Guo, Suzanne Paradis, Abou-Rachid Hakima, and Zetian Mi, Nano Lett. 2011, 11, 2353–2357.
[12] Xiao Shen, Yolanda A. Small, Jue Wang, Philip B. Allen, Maria V. Fernandez-Serra, Mark S. Hybertsen, and James T. Muckerman, J. Phys. Chem. C 2010, 114, 13695–13704.
[13] Po-Tuan Chen, Chia-Liang Sun, Michitoshi Hayashi, J. Phys. Chem. C 2010, 114, 18228–18232.
[14] Osbert Zheng Tan, Michael C. H. Wu, Viorel Chihaia, and Jer-Lai Kuo, J. Phys. Chem. C 2011, 115, 11684–11693.
[15] N.E. Christensen, I. Gorczyca PHYSICAL REVIEW B 1994, 50, 4397-4415.
[16] S. Logothetidis, J. Petalas, M. Cardona, T. D. Moustakas PHYSICAL REVIEW B 1994, 50, 18017-18029.
[17] Claudia Bungaro, Krzysztof Rapcewicz, J. Bernholc PHYSICAL REVIEW B 2000, 61,6720.
[18] Rubio, A; Corkill, JL.; Cohen, ML.; Shirley, EL; Louie, SG PHYSICAL REVIEW B, 48, 11810-11816 (1993).
[19] Michael Rohlfing, Peter Krueger, and Johannes Pollmann PHYSICAL REVIEW B 1998, 57, 6485-6492.
[20] Lorin X. Benedict and Eric L. Shirley PHYSICAL REVIEW B 1999, 59, 5441-5451.
[21] Robert Laskowski, Niels Egede Christensen, Gilles Santi, and Claudia Ambrosch-Draxl PHYSICAL REVIEW B 72, 035204 (2005).
[22] MONEMAR B, PHYSICAL REVIEW B 1974, 10, 676-681.
[23] J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, Jr., B. P. Keller, U. K. Mishra, S. P. DenBaars Appl. Phys. Lett. 1997, 71, 2572-2574.
[24] P. Trautman, K. Pakula, R. Bozek, and J. M. Baranowski APPLIED PHYSICS LETTERS 2003, 83, 3510-3512.
[25] J. R. Chelikowsky and S. G. Louie, Phys. Rev. B 29, 3470 (1984).
[26] M. Rohlfing, P. Krüger, and J. Pollmann, Phys. Rev. B 48, 17791 (1993).
[27] M. Rohlfing, P. Krüger, and J. Pollmann, Phys. Rev. B 52, 1905 (1995).
[28] M. Rohlfing, P. Krüger, and J. Pollmann, Phys. Rev. Lett. 75, 3489-3492 (1995).
[29] L. Hedin, Phys. Rev. 139, A796 (1965).
[30] L. Hedin and S. Lundqvist, in Solid State Physics: Advances in Research and Application, edited by F. Seitz, D. Turnbull, and H. Ehrenreich (Academic, New York, 1969), Vol. 23, p. 1.
[31] M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390 (1986).
[32] B. Adolph, V. I. Gavrilenko, K. Tenelsen, and F. Bechstedt PHYSICAL REVIEW B 53,9797 (1996).
[33] A. Fetter and J. D. Walecka, Quantum Theory of Many Particle Systems (McGraw-Hill, San Francisco, 1971), p. 538.
[34] M. Rohlfing and S. G. Louie, Phys. Rev. B 62, 4927 (2000).
指導教授 林倫年、陳賜原
(Michitoshi Hayashi、Szu-yuan Chen)
審核日期 2012-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明