博碩士論文 962403007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.15.229.113
姓名 鍾武勳(Wu-Hsun Chung)  查詢紙本館藏   畢業系所 化學學系
論文名稱
(Dispersive micro solid-phase extraction for the rapid determination of selected emerging contaminants – method optimization and applications)
相關論文
★ 以質譜技術探討非共價鍵結蛋白質聚合物之結構★ 以液相層析質譜儀檢測水樣與生物檢體中 全氟界面活性劑之濃度
★ 利用液相層析串聯質譜技術檢測水環境中藥物殘留物之方法開發與應用★ 直鏈式烷基苯基二甲基銨鹽類陽離子型界面活性劑在水環境中微量檢測方法的研究
★ 芳香族磺酸鹽類有機污染物在水環境中的分析與研究★ 以固相萃取及氣相層析質譜儀對水環境中壬基苯酚類 持久性有機污染物之分析與研究
★ 以固相萃取法及氣相層析質譜儀對水環境中動情激素類有機污染物之分析與研究★ 利用熱裂解直接高溫衍生化法快速分析直鏈式烷基三甲基銨鹽之方法建立與探討
★ 利用感應偶合電漿質譜儀檢測半導體製程用化學品中微量金屬不純物之分析研究★ 應用毛細管電泳間接偵測方法分離四級銨鹽界面活性劑
★ 利用毛細管電泳結合線上濃縮方法分離奈磺酸鹽之機制探討★ 快速分析水環境中醫療藥品殘留物之研究與探討
★ 以毛細管電泳法與電灑游離質譜法探討內包錯合物之研究★ 以氣相及液相層析質譜儀分析具荷爾蒙效應物質之方法開發
★ 以離子配對高效液相層析儀檢測螢光增白劑在不同基質中之研究★ 以氣相層析質譜儀檢測具荷爾蒙效應添加劑之方法開發與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 一般的萃取方法是耗時、成本較高、對生態不友善,並且有殘留等問題。本論文所提出的分散微固相萃取法 (DmSPE) 結合溶劑脫附或熱脫附技術可改善這些缺點,並且藉由實驗設計進行萃取參數的最佳化。
本文分為三個部分:在第一個部分,開發及驗證最佳化方法檢測水樣中七個人造麝香的目標待測物。此方法包含DmSPE加上超音波輔助溶劑脫附 (UASD),並以氣相層析質譜儀 (GC-MS) 進行檢測。水樣中目標待測物的萃取效率及UASD的影響因子是由Box-Behnken design的實驗設計法進行最佳化。最佳萃取條件是在50毫升的水樣中浸入10.1毫克的矽膠基質鍵結十八烷基 (C18) 吸附劑,經過10.4分鐘的劇烈搖盪萃取後,在過濾器上收集及乾燥吸附劑,再以200 μL的正己烷作為脫附溶劑,經過38秒的超音波脫附目標待測物。從城市污水處理廠 (MWTP) 的排放水及河流水樣的初步檢測顯示galaxolide (HHCB) 和tonalide (AHTN) 是兩個最常被檢測到的人造麝香化合物,它們被測到的濃度範圍:污水水樣為88 ~ 690 ng/L,河流水樣為5 ~ 320 ng/L。
在第二部分,是開發一個簡單,快速,無溶劑的檢測方法,將DmSPE結合直接熱脫附 (TD)-GC-MS技術,用於檢測水樣中五個目標麝香待測物。水樣中目標麝香待測物萃取的效率及GC注射埠中熱脫附的條件,其影響的參數以中心合成設計 (CCD) 法進行最佳化,最佳萃取條件包含浸入3.2毫克的C18吸附劑到10毫升的水樣中,劇烈搖盪萃取1.0分鐘之後,在過濾器上收集並乾燥吸附劑。吸附劑再被轉移到一個微試管內,並將其直接插入到GC程式升溫注射器中,而所萃取的目標麝香待測物在337 °C的GC的注射埠中進行熱脫附3.8分鐘。以標準添加法初步進行河流水樣分析,結果顯示HHCB和AHTN的測定濃度範圍為11 ~ 140 ng/L。
最後,我們更進一步以無溶劑法快速檢測水樣中含有OH-官能基的六個二苯甲酮系的紫外光防曬劑,此法包含DmSPE結合同時矽烷衍生及熱脫附 (SSTD)-GC-MS技術。先以Plackett-Burman設計法篩選主要影響因子,選出的主要因子再以CCD作為最佳化探討,而最佳實驗條件包括浸入1.5毫克的Oasis HLB吸附劑到10毫升的水樣中,劇烈搖盪1分鐘後,吸附劑轉移到微試管中,先在122 °C下乾燥3.5分鐘,再加入2 µL BSTFA矽烷化試劑。其中SSTD的程序是將注射埠的溫度保持在70 °C持續2.5分鐘進行衍生化反應,然後溫度迅速增加到340 °C持續5.7分鐘,以利TMS衍生物熱脫附進入GC。以標準添加法初步檢測MWTP的排放水及河流水樣,顯示2-羥基-4-甲氧基二苯甲酮 (BP-3) 是最常被檢測到的二苯甲酮系UV防曬劑,其檢測到的濃度範圍為5.1 ~ 39.7 ng/L。
本論文的結果顯示DmSPE 結合溶劑或熱脫附技術可以滿足檢測的驗證標準,精確檢測水樣中微量的新興汙染物,此技術是簡單,低成本,有效率,對生態友善的檢測方法。在未來,這些方法也可進一步應用在其他領域,例如:食品,飲料,化妝品中新興汙染物的檢測。
摘要(英) The general developed microextraction methods were time-consuming, higher cost, eco-unfriendly, and carryover problems. A dispersive micro solid-phase extraction (DmSPE) coupled solvent/thermal desorption techinque was able to improve these disadvantages, and the parameters were optimized by experimental design, which was proposed by this thesis.
This thesis was divided into three parts: the first part developed and validated an optimized method for the determination of seven synthetic target musks in water samples. The method involves a DmSPE plus ultrasound-assisted solvent desorption (UASD) prior to their determination by gas chromatography-mass spectrometry (GC-MS). Factors affecting the extraction efficiency of the target analytes from water samples and UASD were optimized by a Box-Behnken design (BBD) method. The optimal extraction conditions involved immersing 10.1 mg of a octadecyl (C18) bonded silica adsorbent in a 50 mL water sample. After 10.4 min of extraction by vigorously shaking, the adsorbent was collected and dried on a filter, and the target musks were desorbed by ultrasound for 38 sec with n-hexane (200 μL) as the desorption solvent. A preliminary analysis of the effluents from municipal wastewater treatment plants (MWTP) and river water samples revealed that galaxolide (HHCB) and tonalide (AHTN) were the two most commonly detected synthetic musks; their concentration were determined to range from 88 to 690 ng/L for effluent samples, and 5 to 320 ng/L for river water samples.
In the second part, a simple, rapid, and solvent-free method involves the use of DmSPE coupled with direct thermal desorption (TD) -GC-MS for the analysis of five target musks in water samples. The parameters affecting the extraction efficiency of the target analytes from water sample and the thermal desorption conditions in the GC injection-port were optimized using a central composite design (CCD) method. The optimal extraction conditions involved immersing 3.2 mg of a C18 adsorbent in a 10 mL water sample. After extraction by vigorously shaking for 1.0 min, the adsorbents were collected and dried on a filter. The adsorbents were transferred to a micro-vial, which was directly inserted into GC temperature programmed injector, and the extracted target analytes were then thermally desorbed in the GC injection port at 337 °C for 3.8 min. Using a standard addition method, a preliminary analysis of the river water samples revealed that the concentrations of HHCB and AHTN were determined to in the range from 11 to 140 ng/L.
Finally, a solvent-free method involves the use of DmSPE followed by the simultaneous silylation and thermal desorption (SSTD) -GC-MS for the rapid analysis of six benzophenone-type UV absorbers in water samples. A Plackett-Burman design was used for screening and a CCD for optimizing the major factors was applied. The optimal experimental conditions involved immersing 1.5 mg of the Oasis HLB adsorbent in a 10 mL portion of water sample. After vigorous shaking for 1 min, the adsorbents were transferred to a micro-vial, and were dried at 122 °C for 3.5 min, after cooling, 2 μL of the BSTFA silylating reagent was added. For SSTD, the injection-port temperature was held at 70 °C for 2.5 min for derivatization, and the temperature was then rapidly increased to 340 °C to allow the thermal desorption of the TMS-derivatives into the GC for 5.7 min. Using a standard addition method, a preliminary analysis of the MWTP effluent and river water samples revealed that 2-hydroxy-4-methoxybenzophenone (BP-3) was the most common benzophenone-type UV absorber present. The concentrations of BP-3 ranged from 5.1 to 39.7 ng/L.
The preliminary results of this dissertation reveals that these methods can satisfy analytical validation criteria, allow precise measurement of the trace levels of emerging contaminants in aqueous samples, and they are simple, low cost, effective, and eco-friendly method. In the future, these methods also can be further studied to apply in other fields, e.g., food, beverage, pharmaceutical, cosmetic, etc.
關鍵字(中) ★ 人造麝香
★ 熱脫附-氣相層析質譜
★ 分散微固相萃取
★ 水分析
★ 二苯甲酮型紫外線防曬劑
關鍵字(英) ★ Synthetic musks
★ Thermal desorption–GC–MS
★ Dispersive micro solid-phase extraction
★ Water analysis
★ Benzophenone-type UV absorbers
論文目次 Abstract. I
Abstract in Chinese III
Acknowledgements. V
Table of contents. VII
List of figures. XI
List of tables XIII
Abbreviation. XV
Chapter 1 Introduction 1
1.1 Research background. 1
1.2 Conventional extraction methods 3
1.2.1 Liquid-liquid extraction. 3
1.2.2 Solid-phase extraction. 3
1.3 Proposed microextraction technology. 5
1.3.1 Solid-phase microextraction 5
1.3.2 Stir-bar sorptive extraction 6
1.3.3 Single-drop microextraction 7
1.3.4 Hollow fiber liquid-phase microextraction 9
1.3.5 Dispersive liquid-liquid microextraction. 10
1.4 Method used in this study. 13
1.4.1 Dispersive micro solid-phase extraction 13
1.4.2 DmSPE combined with solvent desorption 15
1.4.3 DmSPE combined with thermal desorption. 15
1.5 Introduction of target analytes 16
1.5.1 Emerging contaminants. 16
1.5.2 Synthetic musk compounds 16
1.5.2.1 Flow distribution of synthetic musk compounds 16
1.5.2.2 Toxicity of synthetic musk compounds. 17
1.5.2.3 Structures of synthetic musk compounds. 18
1.5.3 Benzophenone-type UV filters 20
VIII
1.5.3.1 Flow distribution of benzophenone-type UV filters. 20
1.5.3.2 Toxicity of benzophenone-type UV filters 20
1.5.3.3 Names and structures of benzophenone-type UV filters 21
1.6 Experimental design. 23
1.6.1 univariate experimental design 23
1.6.2 Response surface methodology 23
1.6.3 Analysis of a second-order response surface 25
1.6.4 Box-Behnken design 26
1.6.5 Central composite design. 27
1.6.6 Pareto chart from Plackett-Burman design 27
1.7 Adsorption theory. 29
1.7.1 Introduction to the studied adsorbents. 30
1.7.2 Adsorption theory 33
1.7.2.1 Langmuir adsorption isotherm. 33
1.7.2.2 BET theory 34
1.7.2.3 Barrett-Joyner-Halenda theory 36
1.8 Study objective 38
Chapter 2 Dispersive micro solid-phase extraction coupled with ultrasoundassisted
solvent desorption. 51
2.1 Introduction 51
2.2 Experimental. 53
2.2.1 Chemicals and reagents. 53
2.2.2 Sample collection. 53
2.2.3 DmSPE procedure. 54
2.2.4 GC-MS analysis. 56
2.2.5 Method evaluation. 57
2.3 Results and Discussion 58
2.3.1.1 Selection of the optimal adsorbents. 58
2.3.1.2 Selection of the optimal desorption solvent. 59
2.3.1.3 Optimization of DmSPE plus UASD procedure 60
2.3.2 Method performance and validation 66
2.3.3 Method applications 67
2.4 Summary. 72
Chapter 3 Dispersive micro solid-phase extraction coupled with thermal
desorption gas chromatography-mass spectrometry 79
3.1 Introduction 79
3.2 Experimental Section. 81
3.2.1 Chemicals and Reagents 81
3.2.2 Sample collection. 81
3.2.3 DmSPE Procedure. 82
3.2.4 TD-GC-MS analysis 84
3.2.5 Experimental design 85
3.2.6 Method evaluation. 85
3.3 Results and Discussion 87
3.3.1 Optimization of DmSPE and TD procedure. 87
3.3.1.1 Selection of the optimal adsorbents. 88
3.3.1.2 Effect of extraction time on recovery. 89
3.3.1.3 Effect of salt and pH on recovery. 90
3.3.1.4 Central composite design (CCD) for Optimization. 90
3.3.2 Method performance and validation 95
3.3.3 Method applications 96
3.4 Summary. 102
Chapter 4 Dispersive micro solid-phase extraction coupled with simultaneous
silylation plus thermal desorption 107
4.1 Introduction 107
4.2 Experimental. 109
4.2.1 Chemicals and reagents. 109
4.2.2 Sample collection. 109
4.2.3 DmSPE following SSTD-GC-MS procedures. 110
4.2.4 Experimental design 113
4.2.5 Method evaluation. 113
4.3 Results and Discussion 115
4.3.1 Optimization of DmSPE and SSTD procedure. 115
4.3.1.1 Screening design. 116
4.3.1.2 Optimization design 121
4.3.2 Method performance and validation 126
4.3.3 Method applications 127
4.4 Summary. 132
Chapter 5 Conclusions. 139
參考文獻 Chapter 1
[1] Rodríguez, J. A., Aguilar-Arteaga, K., Díez, C., Barrado, E., Recent a dvances in the extraction of triazines from water samples, Herbicides-Advances in Research, 2013, Chapter 13, 255-276.
[2] Huddleston, J .G., Rogers, R. D., Room temperature ionic liquids as novel media for ‘clean’ liquid-liquid extraction, Chem. Commun., 1998, 1765-1766.
[3] Pedersen-Bjergaard, S., Liquid-phase microextraction with porous hollow fibers, a miniaturized and highly flexible format for liquid-liquid extraction, J. Chromatogr. A, 2008, 1184, 132-142.
[4] Othmer, D. F., Tobias, P. E., Liquid-liquid extraction data-toluene and acetaldehyde systems, Ind. Eng. Chem., 1942, 34 , 690-692.
[5] Bester, K., Lamani, X., Determination of biocides as well as some biocide metabolites from facde run-off waters by solid phase extraction and high performance liquid chromatographic separation and tandem mass spectrometry detection, J. Chromatogr. A, 2010, 1217, 5204-5214.
[6] Hennion, M. C., Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography, J. Chromatogr. A, 1999, 856, 3-54.
[7] Lindsey, M. E., Meyer, M., Thurman, E. M., Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry, Anal. Chem., 2001, 73, 4640-4646.
[8] Chavez-Moreno, C. A., Guzman-Mar, J. L., Hinojosa-Reyes, L., Hernandez-Ramirez, A., Ferrer, L., Cerda, V., Applicability of multisyringe chromatography coupled to on-line solid-phase extracrtion to the simultaneous determination of dicamba, 2,4-D, and atrazine, Anal. Bioanal. Chem., 2012, 403, 2705-2714.
[9] Kaye, B., Herron, W. J., Macrae, P. V., Robinson, S., Stopher, D. A., Venn, R. F., Wild, W., Rapid, solid phase extraction technique for the high-throughput assay of darifenacin in human plasma, Anal. Chem., 1996, 68, 658-1660.
[10] Rule, G., Chapple, M., Henion, J., A 384-well solid-phase extraction for LC/MS/MS determination of methotrexate and its 7-hydroxy metabolite in human urine and plasma, Anal. Chem., 2001, 73, 439-443.
[11] Belardi, R. P., Pawliszyn, J. B., The application of chemically modified fused silica fibres in the extraction of organics from water matrix samples and their rapid transfer to capillary columns, Water Pollut. Res. J. Can., 1989, 24, 179-189.
[12] Arthur, C. L., Pawliszyn, J., Solid phase microextraction with thermal desorption using fused silica optical fibers, Anal. Chem., 1990, 62, 2145-2148.
[13] Zhang, Z., Pawliszyn, J., Headspace solid-phase microextraction, Anal. Chem., 1993, 65, 1843-1852.
[14] Wu, M. W., Yeh, P. C., Chen, H. C., Liu, L. L., Ding, W.H., A microwave-assisted headspace solid-phase microextraction for rapid determination of synthetic polycyclic and nitro-aromatic musks in fish samples, J. Chin. Chem. Soc., 2013, 60, 1169-1174.
[15] Xu, L., Basheer, C., Lee, H. K., Developments in single-drop microextraction, J. Chromatogr. A, 2007, 1152, 184-192.
[16] Chen, Y., Guo, Z., Wang, X., Qiu, C., Sample preparation, J. Chromatogr. A, 2008, 1184, 191-219.
[17] Lambert, J. P., Mullett, W. M., Kwong, E., Lubda, D., Stir bar sorptive extraction based on restricted access material for the direct extraction of caffeine and metabolites in biological fluids, J. Chromatogr. A, 2005, 1075, 43-49.
[18] Rodil, R., Moederb, M., Development of a method for the determination of UV filters in water samples using stir bar sorptive extraction and thermal desorption-gas chromatography-mass spectrometry, J. Chromatogr. A, 2008, 1179, 81-88.
[19] Rodríguez-Gómez, R., Zafra-Gómez, A., Camino-Sánchez, F. J., Ballesteros, O., Navalón, A., Gas chromatography and ultra high performance liquid chromatography tandem mass spectrometry methods for the determination of selected endocrine disrupting chemicals in human breast milk after stir-bar sorptive extraction, J. Chromatogr. A, 2014, 1349, 69-79.
[20] Liu, H., Dasgupta, P. K., Analytical chemistry in a drop. solvent extraction in a microdrop, Anal. Chem., 1996, 68, 1817-1821.
[21] Jeannot, M. A., Cantwell, F. F., Solvent microextraction into a single drop, Anal. Chem., 1996, 68, 2236-2240.
[22] Jeannot, M. A., Cantwell, F. F., Mass transfer characteristics of solvent extraction into a single drop at the tip of a syringe needle, Anal. Chem., 1997, 69, 235-239.
[23] Saraji, M., Boroujeni, M. K., Analysis of narcotic drugs in biological samples using hollow fiber liquid-phase microextraction and gas chromatography with nitrogen phosphorus detection, Microchim. Acta., 2011, 174, 159-166.
[24] Chimuka, L., Michel, M., Cukrowska, E., Buszewski, B., Advances in sample preparation using membrane-based liquid-phase microextraction techniques, Trends Anal. Chem., 2011, 30, 1781-1792.
[25] Lambropoulou, D. A., Albanis, T. A., Application of hollow fiber liquid phase microextraction for the determination of insecticides in water, J. Chromatogr. A, 2005, 1072, 55-61.
[26] Xiong, J., Hu, B., Comparison of hollow fiber liquid phase microextraction and dispersive liquid-liquid microextraction for the determination of organosulfur pesticides in environmental and beverage samples by gas chromatography with flame photometric detection, J. Chromatogr. A, 2008, 1193, 7-18.
[27] Rezaee, M., Assadi, Y., Hosseini, M. R. M., Aghaee, E., Ahmadi, F., Berijani, S., Determination of organic compounds in water using dispersive liquid-liquid microextraction, J. Chromatogr. A, 2006, 1116, 1-9.
[28] Rezaee, M., Yamini, Y., Faraji, M., Evolution of dispersive liquid-liquid microextraction method, J. Chromatogr. A, 2010, 1217, 2342-2357.
[29] Berijani, S., Assadi, Y., Anbia, M., Hosseini, M. R. M, Aghaee, E., Dispersive liquid-liquid microextraction combined with gas chromatography-flame photometric detection: Very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water, J. Chromatogr. A, 2006, 1123, 1-9.
[30] Wu, J. W., Chen, H. C., Ding, W. H., Ultrasound-assisted dispersive liquid-liquid microextraction plussimultaneous silylation for rapid determination of salicylate andbenzophenone-type ultraviolet filters in aqueous samples, J. Chromatogr. A, 2013, 1302, 20-27.
[31] Chen, H., Chen, R., Li, S., Low-density extraction solvent-based solvent terminated dispersive liquid-liquid microextraction combined with gas chromatography-tandem mass spectrometry for the determination of carbamate pesticides in water samples, J. Chromatogr. A, 2010, 1217, 1244-1248.
[32] Guo, L., Lee, H. K., Low-density solvent-based solvent demulsification dispersive liquid-liquid microextraction for the fast determination of trace levels of sixteen priority polycyclic aromatic hydrocarbons in environmental water samples, J. Chromatogr. A, 2011, 1218, 5040-5046.
[33] Shi, Z. G., Lee, H. K., Dispersive liquid-liquid microextraction coupled with dispersive μ-solid-phase extraction for the fast determination of polycyclic aromatic hydrocarbons in environmental water samples, Anal. Chem., 2010, 82, 1540-1545.
[34] Román, I. P., Chisvert, A., Canals, A., Dispersive solid-phase extraction based on oleic acid-coated magnetic nanoparticles followed by gas chromatography-mass spectrometry for UV-filter determination in water samples, J. Chromatogr. A, 2011, 1218, 2467-2475.
[35] Anastassiades, M., Lehotay, S. J., Stajnbaher, D., Schenck, F. J., Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce, J. AOAC Int., 2003, 86, 412-431.
[36] Basheer, C., Alnedhary, A. A., Rao, B. S., Valliyaveettil, S., Lee, H. K., Development and application of porous membrane-protected carbon nanotube micro-solid-phase extraction combined with gas chromatography/mass spectrometry, Anal. Chem., 2006, 78, 2853-2858.
[37] Fu, S. C., Tzing, S. H., Chen, H. C., Wang, Y.C., Ding, W. H., Dispersive micro-solid phase extraction combined with gas chromatography-chemical ionization mass spectrometry for the determination of N-nitrosamines in swimming pool water samples, Anal. Bioanal. Chem., 2012, 402, 2209-2216.
[38] Giannoulis, K. M., Tsogas, G. Z., Giokas, D. L., Vlessidis, A. G., Dispersive micro-solid phase extraction of ortho-phosphate ions onto magnetite nanoparticles and determination as its molybdenum blue complex, Talanta, 2012, 99, 62-68.
[39] Jiménez-Soto, J. M., Cárdenas, S., Valcárcel, M., Evaluation of single-walled carbon nanohorns as sorbent in dispersive micro solid-phase extraction, Anal. Chim. Acta, 2012, 714, 76-81.
[40] Reyes-Gallardo, E. M., Lasarte-Aragones, G., Lucena, R., Cárdenas, S., Valcárcel, M., Hybridization of commercial polymeric microparticles and magnetic nanoparticles for the dispersive micro-solid phase extraction of nitroaromatic hydrocarbons from water, J. Chromatogr. A, 2013, 1271, 50-55.
[41] Peck, A. M., Analytical methods for the determination of persistent ingredients of personal care products in environmental matrices, Anal. Bioanal. Chem, 2006, 386, 907-939.
[42] Panagiotou, A. N., Sakkas, V. A., Albanis, T. A., Application of chemometric assisted dispersive liquid-liquid microextraction to the determination of personal care products in natural waters, Anal. Chim. Acta., 2009, 649, 135-140.
[43] Roosens, L., Covaci, A., Neels, H., Concentrations of synthetic musk compounds in personal care and sanitation products and human exposure profiles through dermal application, Chemosphere, 2007, 69, 1540-1547.
[44] Rimkus, G. G., Gatermann, R., Hühnerfuss, H., Musk xylene and musk ketone amino metabolites in the aquatic environment, Toxicol. Lett., 1999, 111, 5-15.
[45] Gautschi, M., Bajgrowicz, J. A., Philip, K., Fragrance Chemistry - Milestones and Perspectives, Chimia, 2001, 55, 379-387.
[46] Bester, K., Analysis of musk fragrances in environmental samples, J. Chromatogr. A, 2009, 1216, 470-480.
[47] Yamagashi, T., Miyazaki, T., Horii, S., Kaneko, S. B., Identification of musk xylene and musk ketone in freshwater fish collected from the Tama River, Tokyo, Environ. Contam. Toxicol., 1981, 26, 656-662.
[48] Peck, A. M., Hornbuckle, K. C., Synthetic musk fragrances in Lake Michigan, Environ. Sci. Technol, 2004, 38, 367-372.
[49] Andresen, J. A., Muir, D., Ueno, D., Darling, C., Theobald, N., Bester, K., Emerging pollutants in the North Sea in comparison to Lake Ontario, Canada, data, Environ. Toxicol. Chem., 2007, 26, 1081-1089.
[50] Kevekordes, S., Merch-Sundermann, V., Diez, M., Dunkelberg, H., In vitro genotoxicity of polycyclic musk fragrances in the micronucleus test, Mutation Research/Genetic Toxicol. Environ. Mutagen., 1997, 395, 145-150.
[51] Dietrich, D. R., Chou, Y. J., Ecotoxicology of Musks, Pharmaceuticals and Care Products in the Environment, American Chemical Society, Chapter 9, 2001, 156-167.
[52] Gatermann, R., Biselli, S., Hühnerfuss, H., Rimkus, G. G., Hecker, M., Karbe, L., Synthetic musks in the environment. Part 1: species-dependent bioaccumulation of polycyclic and nitro musk fragrances in freshwater fish and mussels, Arch. Environ. Contam. Toxicol., 2002, 42, 437-446.
[53] Hutter, H. P., Wallner, P., Moshammer, H., Hartl, W., Sattelberger, R., Lorbeer, G., Kundi, M., Blood concentrations of polycyclic musks in healthy young adults, Chemosphere, 2005, 59, 487-492.
[54] Richardson, S. D., Ternes T. A., Water Analysis: Emerging Contaminants and Current Issues. Anal. Chem, 2011, 83, 4614-4648.
[55] Giokas, D. L., Salvador, A., Chisvert A., UV filters: from sunscreens to human body and the environment, Trends Anal. Chem., 2007, 26, 360-374.
[56] Jeon, H. K., Chung, Y., Ryu, J. C., Simultaneous determination of benzophenone-type UV filters in water and soil by gas chromatography-mass spectrometry, J. Chromatogr. A, 2006, 1131, 192-202.
[57] Negreira, N., Rodríguez, I., Ramil, M., Rubí, E., Cela, R., Sensitive determination of salicylate and benzophenone type UV filters in water samples using solid-phase microextraction, derivatization and gas chromatography tandem mass spectrometry, Anal. Chim. Acta., 2009, 638, 36-44.
[58] Suzuki, T., Kitamura, S., Khota, R., Sugihara, K., Fujimoto, N., Ohta, S., Estrogenic and antiandrogenic activities of 17 benzophenone derivatives used as UV stabilizers and sunscreens, Toxicol. Appl. Pharmacol., 2005, 203, 9-17.
[59] Heberer, T., Occurrence fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data, Toxicol. Lett., 2002, 131, 5-17.
[60] Balmer, M. E., Buser, H. R., Muller, M. D., Poiger, T., Occurrence of some organic UV Filters in wastewater, in surface waters, and in fish from Swiss Lakes, Environ. Sci. Technol., 2005, 39, 953-962.
[61] Schlumpf, M., Schmid, P., Durrer, S., Conscience, M., Maerkel, K., Henselera, M., Gruettera, M., Herzoga, I., Reolona, S., Ceccatellia, R., Faassa, O., Stutzb, E., Jarryc, H., Wuttkec, W., Lichtensteiger, W., Endocrine activity and developmental toxicity of cosmetic UV filters-an update, Toxicol., 2004, 205, 113-122.
[62] Giokas, D. L., Salvador, A., Chisvert, A., UV filters: From sunscreens to human body and the environment, Trends Anal. Chem., 2007, 26, 360-374.
[63] Felix, T., Hall, B. J, Brodbelt, J. S., Determination of benzophenone-3 and metabolites in water and human urine by solid-phase microextraction and quadrupole ion trap GC-MSOriginal Research Article, Anal. Chim. Acta., 1998, 371, 195-203.
[64] Sánchez-Brunete, C., Miguel, E., Albero, B., Tadeo, J. L., Analysis of salicylate and benzophenone-type UV filters in soils and sediments by simultaneous extraction cleanup and gas chromatography-mass spectrometry, J. Chromatogr. A, 2011, 1218, 4291- 4298.
[65] Morgan, S. L., Deming, S. N., Simplex optimization of analytical chemical methods, Anal. Chem., 1974, 46, 1170-1181.
[66] Czitrom, V., One-factor-at-a-time versus designed experiments, Am. Stat., 1999, 53, 126-131.
[67] Gandolfia, F., Malleret, L., Sergent, M., Doumenq, P., Parameters optimization using experimental design for headspace solid phase micro-extraction analysis of short-chain chlorinated paraffins in waters under the European water framework directive, J. Chromatogr. A, 2015, 1406, 59-67.
[68] Hanrahan, G., Lu, K., Application of factorial and response surface methodology in modern experimental design and optimization, Crit. Rev. Anal. Chem., 2006, 36, 141-151.
[69] Montgomery, D. C., Response surface methodology, Design and Analysis of Experiments, 7th ed, 2009, Chapter 11, 417- 480.
[70] Anderson, M. J., Whitcomb, P. J., Two-level factorial design, DOE Simplified: Practical Tools for Effective Experimentation, 3rd ed, 2015, Chapter 3, 37-70.
[71] Hibbert, D. B., Experimental design in chromatography: A tutorial review, J. Chromatogr. B, 2012, 910, 2-13.
[72] Tanboonchuy, V., Grisdanurak, N., Liao, C. H., Background species effect on aqueous arsenic removal by nano zero-valent iron using fractional factorial design, J. Hazard. Mater., 2012, 205-206, 40-46.
[73] Dhekale, N. H., Bindu, K. H., Kirankumar, K. Y., Gore, A. H., Anbhule, P. V., Kolekar, G. B., Development and optimization of a multivariate RP-UPLC method for determination of telmisartan and its related substances by applying a two-level factorial design approach: application to quality control study, Anal. Methods, 2014, 6, 5168-5182.
[74] Ferrari, L., Kaufmann, J., Winnefeld, F., Plank, J., Interaction of cement model systems with superplasticizers investigated by atomic force microscopy, zeta potential, and adsorption measurements, J. Colloid Interface Sci., 2010, 347, 15-24.
[75] Geankoplis, C. J., Liquid-liquid and fluid-solid separation processes, Transport Processes and Separation Process Principles, 4th ed, 2003, Chapter 12, 760-771.
[76] Langmuir, I., The adsorption of gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc., 1918, 40, 1361–1403.
[77] Boleslaw Ludwik, D., Surface area of activated charcoal by Langmuir adsorption isotherm, J. Chem. Educ.,1961, 38, 357-358.
[78] Hanaor, D. A. H., Ghadiri, M., Chrzanowski, W., Gan, Y., Scalable surface area characterization by electrokinetic analysis of complex anion adsorption, Langmuir, 2014, 30, 15143-15152.
[79] Koh, K., Wong-Foy, A. G., Matzger, A. J., A porous coordination copolymer with over 5000 m2/g BET surface area, J. Am. Chem. Soc., 2009, 131, 4184–4185.
[80 Brunauer, S., Emmett, P. H., Teller, E., Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 1938, 60, 309–319.
[81] Sing, K. S. W., Adsorption methods for the characterization of porous materials, Adv. Colloid Interface Sci., 1998, 76-77, 3-11.
[82] Barrett, E. P., Joyner, L. G., Halenda, P. P., The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc., 1951, 73, 373-380.
[83] Denoyel, R., Fernandez-Colinas, J., Grillet, Y., Rouquerol, J., Assessment of the surface area and microporosity of activated charcoals from immersion calorimetry and nitrogen adsorption data, Langmuir, 1993, 9, 515-518.
Chapter 2
[1] Anastassiades, M., Lehotay, S. J., Stajnbaher, D., Schenck, F. J., Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce, J. AOAC Int., 2003, 86, 412-431.
[2] Basheer, C., Alnedhary, A. A., Rao, B. S. M., Valliyaveettil, S., Lee, H. K., Development and application of porous membrane-protected carbon nanotube micro-solid-phase extraction combined with gas chromatography/mass spectrometry, Anal. Chem., 2006, 78, 2853-2858.
[3] Fu, S. C., Tzing, S. H., Chen, H. C., Wang, Y.C., Ding, W. H., Dispersive micro-solid phase extraction combined with gas chromatography-chemical ionization mass spectrometry for the determination of N-nitrosamines in swimming pool water samples, Anal. Bioanal. Chem., 2012, 402, 2209-2216.
[4] Planas, C., Palacios, Ó., Ventura, F., Rivera, J. Caixach, J., Analysis of nitrosamines in water by automated SPE and isotope dilution GC/HRMS: Occurrence in the different steps of a drinking water treatment plant, and in chlorinated samples from a reservoir and a sewage treatment plant effluent, Talanta, 2008, 76, 906-913.
[5] Tsai,W. H., Huang, T. C., Huang, J. J., Hsue, Y. H., Chuang, H. Y., Dispersive solid-phase microextraction method for sample extraction in the analysis of four tetracyclines in water and milk samples by high-performance liquid chromatography with diode-array detection, J. Chromatogr., A, 2009, 1216, 2263-2269.
[6] Shi, Z. G., Lee, H. K., Dispersive liquid−liquid microextraction coupled with dispersive μ-solid-phase extraction for the fast determination of polycyclic aromatic hydrocarbons in environmental water samples, Anal. Chem., 2010, 82, 1540-1545.
[7] Asensio-Ramos, M., D’Orazio, G., Hernandez-Borges, J., Rocco, A., Fanali, S., Multi-walled carbon nanotubes-dispersive solid-phase extraction combined with nano-liquid chromatography for the analysis of pesticides in water samples, Anal. Bioanal. Chem., 2011, 400, 1113-1123.
[8] Román, I. P., Chisvert, A., Canals, A., Dispersive solid-phase extraction based on oleic acid-coated magnetic nanoparticles followed by gas chromatography-mass spectrometry for UV-filter determination in water samples, J. Chromatogr. A, 2011, 1218, 2467-2475.
[9] Jiménez-Soto, J. M., Cárdenas, S., Valcárcel, M., Evaluation of single-walled carbon nanohorns as sorbent in dispersive micro solid-phase extraction, Anal. Chim. Acta, 2012, 714, 76-81.
[10] Giannoulis, K. M., Tsogas, G. Z., Giokas, D. L., Vlessidis, A. G., Dispersive micro-solid phase extraction of ortho-phosphate ions onto magnetite nanoparticles and determination as its molybdenum blue complex, Talanta, 2012, 99, 62-68.
[11] Bitsch, N., Dudas, C., Korner, W., Failing, K., Biselli, S., Rimkus, G., Brunn, H., Estrogenic activity of musk fragrances detected by the e-screen assay using human MCF-7 cells, Arch. Environ. Contam. Toxicol., 2002, 43, 257-264.
[12] Eisenhardt, S., Runnebaum, B., Bauer, K., Gerhard, I., Nitromusk compounds in women with gynecological and endocrine dysfunction, Environ. Res., 2001, 87, 123-130.
[13] Seinen, W., Lemmen, J. G., Pieters, R. H. H., Verbruggen, E. M. J., Burg, B. van der, AHTN and HHCB show weak estrogenic - but no uterotrophic activity, Toxicol. Lett., 1999, 111, 161-168.
[14] Peck, A. M., Linebaugh, E. K., Hornbuckle, K. C., Synthetic musk fragrances in Lake Erie and Lake Ontario sediment cores, Environ. Sci. Technol., 2006, 40, 5629-5635.
[15] Reiner, J. L., Berset, J. D., Kannan, K., Mass flow of polycyclic musks in two wastewater treatment plants, Arch. Environ. Contam. Toxicol., 2007, 52, 451-457.
[16] Wang, Y. C., Ding, W. H., Determination of synthetic polycyclic musks in water by microwave-assisted headspace solid-phase microextraction and gas chromatography-mass spectrometry, J. Chromatogr. A, 2009, 1216, 6858-6863.
[17] Hu, Z., Shi, Y., Cai, Y., Concentrations, distribution, and bioaccumulation of synthetic musks in the Haihe River of China, Chemosphere, 2011, 84, 1630-1635.
[18] Kubwabo, C., Fan, X., Rasmussen, P. E., Wu, F., Determination of synthetic musk compounds in indoor house dust by gas chromatography-ion trap mass spectrometry, Anal. Bioanal. Chem., 2012, 404, 467-477.
[19] Posada-Ureta, O., Olivares, M., Navarro, P., Vallejo, A., Zuloaga, O., Etxebarria, N., Membrane assisted solvent extraction coupled to large volume injection-gas chromatography-mass spectrometry for trace analysis of synthetic musks in environmental water samples, J. Chromatogr. A, 2012, 1227, 38.
[20] Nakata, H., Occurrence of synthetic musk fragrances in marine mammals and sharks from Japanese coastal waters, Environ. Sci. Technol., 2005, 39, 3430-3434.
[21] Moon, H. B., Lee, D. H., Lee, Y. S., Kannan, K., Occurrence and accumulation patterns of polycyclic aromatic hydrocarbons and synthetic musk compounds in adipose tissues of Korean females, Chemosphere, 2012, 86, 485-490.
[22] Yin, J., Wang, H., Zhang, J., Zhou, N., Gao, F., Wu, Y., Xiang, J., Shao, B., The occurrence of synthetic musks in human breast milk in Sichuan, China, Chemosphere, 2012, 87, 1018-1023.
[23] Wu, M. W., Yeh, P. C., Chen, H. C., Liu, L. L., Ding, W. H., A microwave-assisted headspace solid-phase microextraction for rapid determination of synthetic polycyclic and nitro-aromatic musks in fish samples, J. Chin. Chem. Soc., 2013, 60, 1169-1174.
[24] EURACHEM. The Fitness for Purpose of Analytical Methods, A Laboratory Guide to Method Validation and Related Topics, 1st ed.; Eurachem: Teddington, 1998.
[25] Chung, W. H., Tzing, S. H., Ding, W. H., Dispersive micro solid-phase extraction for the rapid analysis of synthetic polycyclic musks using thermal desorption gas chromatography-mass spectrometry, J. Chromatogr. A, 2013, 1307, 34-40.
[26] Simonich, S. L., Federle, T. W., Eckhoff, W. S., Rottiers, A., Webb, S., Sabaliunas, D., DeWolf, W., Removal of fragrance materials during U.S. and European wastewater treatment, Environ. Sci. Technol., 2002, 36, 2839-2847.
[27] Peck, A. M., Analytical methods for the determination of persistent ingredients of personal care products in environmental matrices, Anal. Bioanal. Chem., 2006, 386, 907-939.
[28] Bester, K., Analysis of musk fragrances in environmental samples, J. Chromatogr. A, 2009, 1216, 470-480.
[29] Einsle, T., Paschke, H., Bruns, K., Schrader, S., Popp, P., Moeder, M., Membrane-assisted liquid-liquid extraction coupled with gas chromatography-mass spectrometry for determination of selected polycyclic musk compounds and drugs in water samples, J. Chromatogr.A, 2006, 1124, 196-204.
[30] Zeng, X. Y., Sheng, G. Y., Gui, H. Y., Chen, D. H., Shao, W. L., Fu, J. M., Preliminary study on the occurrence and distribution of polycyclic musks in a wastewater treatment plant in Guandong, China, Chemosphere, 2007, 69, 1305-1311.
[31] Regueiro, J., Llompart, M., Garcia-Jaresa, C., Garcia-Monteagudo, J. C., Cela, R., Preliminary study on the occurrence and distribution of polycyclic musks in a wastewater treatment plant in Guandong, China, J. Chromatogr., A, 2008, 1190, 27-38.
[32] Pietrogrande, M. C., Basaglia, G., GC-MS analytical methods for the determination of personal-care products in water matrices, Trends Anal. Chem., 2007, 26, 1086-1094.
[33] Garcia-Jares, C., Llompart, M., Polo, M., Salgado, C., Macias, S., Cela, R., Optimisation of a solid-phase microextraction method for synthetic musk compounds in water, J. Chromatogr. A, 2002, 963, 277-285.
[34] Moeder, M., Schrader, S., Winkler, U., Rodil, R., At-line microextraction by packed sorbent-gas chromatography-mass spectrometry for the determination of UV filter and polycyclic musk compounds in water samples, J. Chromatogr. A, 2010, 1217, 2925-2932.
[35] Panagiotou, A. N., Sakkas, V. A., Albanis, T. A., Application of chemometric assisted dispersive liquid-liquid microextraction to the determination of personal care products in natural waters, Anal. Chim. Acta, 2009, 649, 135-140.
Chapter 3
[1] Urbanowicz, M., Zabiegala, B., Namie´snik, J., Solventless sample preparation techniques based on solid- and vapour-phase extraction, Anal. Bioanal. Chem., 2011, 399, 277-300.
[2] Wang, Y. C., Ding, W. H., Determination of synthetic polycyclic musks in water by microwave-assisted headspace solid-phase microextraction and gas chromatography-mass spectrometry, J. Chromatogr. A, 2009, 1216, 6858-6863.
[3] Planas, C., Palacios, Ó., Ventura, F., Rivera, J. Caixach, J., Analysis of nitrosamines in water by automated SPE and isotope dilution GC/HRMS: Occurrence in the different steps of a drinking water treatment plant, and in chlorinated samples from a reservoir and a sewage treatment plant effluent, Talanta, 2008, 76, 906-913.
[4] Shi, Z. G., Lee, H. K., Dispersive liquid-liquid microextraction coupled with dispersive μ-solid-phase extraction for the fast determination of polycyclic aromatic hydrocarbons in environmental water samples, Anal. Chem., 2010, 82, 1540-1545.
[5] Asensio-Ramos, M., D’Orazio, G., Hernandez-Borges, J., Rocco, A., Fanali, S., Multi-walled carbon nanotubes-dispersive solid-phase extraction combined with nano-liquid chromatography for the analysis of pesticides in water samples, Anal. Bioanal. Chem., 2011, 400, 1113-1123.
[6] EURACHEM Guide The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related Topics, 1st ed., LGC, Teddington, 1998.
[7] Hu, Z., Shi, Y., Cai, Y., Concentrations, distribution, and bioaccumulation of synthetic musks in the Haihe River of China, Chemosphere, 2011, 84, 1630-1635.
[8] Simonich, S. L., Federle, T. W., Eckhoff, W. S., Rottiers, A., Webb, S., Sabaliunas, D., DeWolf, W., Removal of fragrance materials during U.S. and European wastewater treatment, Environ. Sci. Technol., 2002, 36, 2839-2847.
[9] Peck, A. M., Analytical methods for the determination of persistent ingredients of personal care products in environmental matrices, Anal. Bioanal. Chem., 2006, 386, 907-939.
[10] Bester, K., Analysis of musk fragrances in environmental samples, J. Chromatogr. A, 2009, 1216, 470-480.
[11] Basheer, C., Alnedhary, A. A., Rao, B. S., Valliyaveettil, S., Lee, H. K., Development and application of porous membrane-protected carbon nanotube micro-solid-phase extraction combined with gas chromatography/mass spectrometry, Anal. Chem., 2006, 78, 2853-2858.
[12] Tsai, W. H., Huang, T. C., Huang, J. J., Hsue, Y. H., Chuang, H. Y., Dispersive solid-phase microextraction method for sample extraction in the analysis of four tetracyclines in water and milk samples by high-performance liquid chromatography with diode-array detection, J. Chromatogr. A, 2009, 1216, 2263-2269.
[13] Román, I. P., Chisvert, A., Canals, A., Dispersive solid-phase extraction based on oleic acid-coated magnetic nanoparticles followed by gas chromatography-mass spectrometry for UV-filter determination in water samples, J. Chromatogr. A, 2011, 1218, 2467-2475.
[14] Stalikas, C., Fiamegos, Y., Sakkas, V., Albanis, T., Developments on chemometric approaches to optimize and evaluate microextraction, J. Chromatogr. A, 2009, 1216, 175-189.
[15] Chung, L. W., Lin, K. L., Yang, T. C. C., Lee, M. R., Orthogonal array optimization of microwave-assisted derivatization for determination of trace amphetamine and methamphetamine using negative chemical ionization gas chromatography-mass spectrometry, J. Chromatogr. A, 2009,1216, 4083-4089.
[16] Careri, M., Elviri, L., Mangia, A., Liquid chromatography-UV determination and liquid chromatography-atmospheric pressure chemical ionization mass spectrometric characterization of sitosterol and stigmasterol in soybean oil, J. Chromatogr. A, 2001, 935, 249-257.
[17] Einsle, T., Paschke, H., Bruns, K., Schrader, S., Popp, P., Moeder, M., Membrane-assisted liquid-liquid extraction coupled with gas chromatography-mass spectrometry for determination of selected polycyclic musk compounds and drugs in water samples, J. Chromatogr.A, 2006, 1124, 196-204.
[18] Zeng, X. Y., Sheng, G. Y., Gui, H. Y., Chen, D. H., Shao, W. L., Fu, J. M., Preliminary study on the occurrence and distribution of polycyclic musks in a wastewater treatment plant in Guandong, China, Chemosphere, 2007, 69, 1305-1311.
[19] Regueiro, J., Llompart, M., Garcia-Jaresa, C., Garcia-Monteagudo, J. C., Cela, R., Ultrasound-assisted emulsification-microextraction of emergent contaminants and pesticides in environmental waters, J. Chromatogr. A, 2008, 1190, 27-38.
[20] Pietrogrande, M. C., Basaglia, G., GC-MS analytical methods for the determination of personal-care products in water matrices, Trends Anal. Chem., 2007, 26, 1086-1094.
[21] Posada-Ureta, O., Olivares, M., Navarro, P., Vallejo, A., Zuloaga, O., Etxebarria, N., Membrane assisted solvent extraction coupled to large volume injection-gas chromatography-mass spectrometry for trace analysis of synthetic musks in environmental water samples, J. Chromatogr. A, 2012, 1227, 38-47.
[22] Moeder, M., Schrader, S., Winkler, U., Rodil, R., At-line microextraction by packed sorbent-gas chromatography-mass spectrometry for the determination of UV filter and polycyclic musk compounds in water samples, J. Chromatogr. A, 2010, 1217, 2925-2932.
[23] Panagiotou, A. N., Sakkas, V. A., Albanis, T. A., Application of chemometric assisted dispersive liquid-liquid microextraction to the determination of personal care products in natural waters, Anal. Chim. Acta., 2009, 649, 135-140.
[24] Yang, C. Y., Ding, W. H., Determination of synthetic polycyclic musks in aqueous samples by ultrasound-assisted dispersive liquid-liquid microextraction and gas chromatography-mass spectrometry, Anal. Bioanal. Chem., 2012, 402, 1723-1730.
[25] Garcia-Jares, C., Llompart, M., Polo, M., Salgado, C., Macias, S., Cela, S. R., Optimisation of a solid-phase microextraction method for synthetic musk compounds in water, J. Chromatogr. A, 2002, 963, 277-285.
Chapter 4
[1] Balmer, M. E., Buser, H. R., Muller, M. D., Poiger, T., Occurrence of some organic UV filters in wastewater, in surface waters, and in fish from Swiss Lakes, Environ. Sci. Technol., 2005, 39, 953-962.
[2] Jeona, H. K., Chungb, Y., Ryua, J. C., Simultaneous determination of benzophenone-type UV filters in water and soil by gas chromatography-mass spectrometry, J. Chromatogr. A, 2006, 1131, 192-202.
[3] Cuderman, P., Heath, E., Determination of UV filters and antimicrobial agents in environmental water samples, Anal. Bioanal. Chem., 2007, 387, 1343-1350.
[4] Zenker, A., Schmutz, H., Fent, K., Simultaneous trace determination of nine organic UV-absorbing compounds (UV filters) in environmental samples, J. Chromatogr. A, 2008, 1202, 64-74.
[5] Rodil, R., Moeder, M., Development of a method for the determination of UV filters in water samples using stir bar sorptive extraction and thermal desorption-gas chromatography-mass spectrometry, J. Chromatogr. A, 2008, 1179, 81-88.
[6] Kawaguchi, M., Ito, R., Honda, H., Endo, N., Okanouchi, N., Saito, K., Seto, Y., Nakazawa, H., Simultaneous analysis of benzophenone sunscreen compounds in water sample by stir bar sorptive extraction with in situ derivatization and thermal desorption-gas chromatography-mass spectrometry, J. Chromatogr. A, 2008, 1200, 260-263.
[7] Rodil, R., Quintana, J. B., López-Mahía, P., Muniategui-Lorenzo, S., Prada-Rodríguez, D., Multiclass Determination of Sunscreen Chemicals in Water Samples by Liquid Chromatography−Tandem Mass Spectrometry, Anal. Chem., 2008, 80, 1307-1315.
[8] Negreira, N., Rodríguez, I., Ramil, M., Rubí, E., Cela, R., Sensitive determination of salicylate and benzophenone-type UV filters in water samples using solid-phase microextraction, derivatization and gas chromatography tandem mass spectrometry, Anal. Chim. Acta, 2009, 638, 36-44.
[9] Ho, Y.C., Ding, W.H., Solid-phase Extraction Coupled Simple On-line Derivatization Gas Chromatography - Tandem Mass Spectrometry for the Determination of Benzophenone-type UV Filters in Aqueous Samples, J. Chin. Chem. Soc., 2012, 59, 107-113.
[10] Zhang, Y.F., Lee, H. K., Determination of ultraviolet filters in environmental water samples by temperature-controlled ionic liquid dispersive liquid-phase microextraction, J. Chromatogr. A, 2013, 1271, 56-61.
[11] Wu, J.W., Chen, H.C., Ding, W.H., Ultrasound-assisted dispersive liquid-liquid microextraction plus simultaneous silylation for rapid determination of salicylate and benzophenone-type ultraviolet filters in aqueous samples, J. Chromatogr. A, 2013, 1302, 20-27.
[12] Roldán-Pijuán, M., Lucena, R., Cárdenas, S., Valcárcel, M., Micro-solid phase extraction based on oxidized single-walled carbon nanohorns immobilized on a stir borosilicate disk: Application to the preconcentration of the endocrine disruptor benzophenone-3, Microchem. J., 2014, 115, 87-94.
[13] Tsui, M. M. P., Leung, H. W., Wai, T. C., Yamashita, N., Taniyasu, S., Liu, W. H., Lam, P. K. S., Murphy, M. B., Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in surface waters from different countries, Water Res., 2014, 67, 55-65.
[14] Emnet, P., Gawa, S., Northcott, G., Storey, B., Graham, L., Personal care products and steroid hormones in the Antarctic coastal environment associated with two Antarctic research stations, McMurdo Station and Scott Base, Environ. Res., 2015, 136, 331-342.
[15] Tarazona, I., Chisvert, A., León, Z., Salvador, A., Determination of hydroxylated benzophenone UV filters in sea water samples by dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry, J. Chromatogr. A, 2010, 1217, 4771-4778.
[16] Benedé, J. L., Chisvert, A., Salvador, A., Sánchez-Quiles, D., Tovar-Sánchez, A., Determination of UV filters in both soluble and particulate fractions of seawaters by dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry, Anal. Chim. Acta., 2014, 812, 50-58.
[17] Gago-Ferrero, P., Diaz-Cruz, M. S., Barcelo, D., Multi-residue method for trace level determination of UV filters in fish based on pressurized liquid extraction and liquid chromatography-quadrupole-linear ion trap-mass spectrometry, J. Chromatogr. A, 2013, 1286, 93-101.
[18] Tsai, D. Y., Chen, C. L., Ding, W. H., Optimization of matrix solid-phase dispersion for the rapid determination of salicylate and benzophenone-type UV absorbing substances in marketed fish, Food Chem., 2014, 154, 211-216.
[19] Jiménez-Díaz, I., Zafra-Gómez, A., Ballesteros, O., Navalón, A., Analytical methods for the determination of personal care products in human samples: An overview, Talanta, 2014, 129, 448-458.
[20] Suzuki, T., Kitamura, S., Khota, R., Sugihara, K., Fujimoto, N., Ohta, S., Estrogenic and antiandrogenic activities of 17 benzophenone derivatives used as UV stabilizers and sunscreens, Toxicol. Appl. Pharmacol., 2005, 203, 9-17.
[21] Ma, R. S., Cotton, B., Lichtensteiger, W., Schlumpf, M., UV Filters with Antagonistic Action at Androgen Receptors in the MDA-kb2 Cell Transcriptional-Activation Assay, Toxicol. Sci., 2003, 74, 43-50.
[22] Schreurs, R. H. M. M., Sonneveld, E., Jansen, J. H. J., Seinen, W., Burg, B. van der, Interaction of Polycyclic Musks and UV Filters with the Estrogen Receptor (ER), Androgen Receptor (AR), and Progesterone Receptor (PR) in Reporter Gene Bioassays, Toxicol. Sci., 2005, 83, 264-272.
[23] Watanabe, Y., Kojima, H., Takeuchi, S., Uramaru, N., Sanoh, S., Sugihara, K., Kitamura, S., Ohta, S., Metabolism of UV-filter benzophenone-3 by rat and human liver microsomes and its effect on endocrine-disrupting activity, Toxicol. Appl. Pharmacol., 2015, 282, 119-128.
[24] Kunisue, T., Chen, Z., Louis, G. M. B., Sundaram, R., Hediger, M. L., Sun, L. P., Kannan, K., Urinary Concentrations of Benzophenone-type UV Filters in U.S. Women and Their Association with Endometriosis, Environ. Sci. Technol., 2012, 46, 4624-4632.
[25] Liao, C. Y., Kannan, K., Widespread Occurrence of Benzophenone-Type UV Light Filters in Personal Care Products from China and the United States: An Assessment of Human Exposure, Environ. Sci. Technol. 2014, 48, 4103-4109.
[26] Chung, W. H., Tzing, S. H., Ding, W. H., Dispersive micro solid-phase extraction for the rapid analysis of synthetic polycyclic musks using thermal desorption gas chromatography-mass spectrometry, J. Chromatogr. A, 2013, 1307, 34-40.
[27] Fu, S. C., Tzing, S. H., Chen, H. C., Wang, Y. C., Ding, W. H., Dispersive micro-solid phase extraction combined with gas chromatography-chemical ionization mass spectrometry for the determination of N-nitrosamines in swimming pool water samples, Anal. Bioanal. Chem. 2012, 402, 2209-2216.
[28] EURACHEM Guide: The Fitness for Purpose of Analytical Methods, A Laboratory Guide to Method Validation and Related Topics, LGC, Teddington, 1st ed., 1998.
[29] Asensio-Ramos, M., D’Orazio, G., Hernandez-Borges, J., Rocco, A., Fanali, S., Multi-walled carbon nanotubes-dispersive solid-phase extraction combined with nano-liquid chromatography for the analysis of pesticides in water samples, Anal. Bioanal. Chem., 2011, 400, 1113-1123.
[30] Román, I. P., Chisvert, A., Canals, A., Dispersive solid-phase extraction based on oleic acid-coated magnetic nanoparticles followed by gas chromatography-mass spectrometry for UV-filter determination in water samples, J. Chromatogr. A, 2011, 1218, 2467-2475.
[31] Urbanowicz, M., Zabiegala, B., Namieśnik, J., Solventless sample preparation techniques based on solid- and vapour-phase extraction, Anal. Bioanal. Chem., 2011, 399, 277-300.
[32] Myers, R. H., Montgomery, D. C., Response Surface Methodology, Wiley, New York, 2002.
[33] López, R., Goñi, F., Etxandia, A., Millán, E., Determination of organochlorine pesticides and polychlorinated biphenyls in human serum using headspace solid-phase microextraction and gas chromatography-electron capture detection, J. Chromatogr. B, 2007, 846, 298-305.
[34] Cortada, C., Vidal, L., Tejada, S., Romo, A., Canals, A., Determination of organochlorine pesticides in complex matrices by single-drop microextraction coupled to gas chromatography-mass spectrometry, Anal. Chim. Acta, 2009, 638, 29-35.
[35] Stalikas, C., Fiamegos, Y., Sakkas, V., Albanis, T., Developments on chemometric approaches to optimize and evaluate microextraction, J. Chromatogr. A, 2009, 1216, 175-189.
[36] Chung, L. W., Lin, K. L., Yang, T. C. C., Lee, M. R., Orthogonal array optimization of microwave-assisted derivatization for determination of trace amphetamine and methamphetamine using negative chemical ionization gas chromatography-mass spectrometry, J. Chromatogr. A, 2009, 1216, 4083-4089.
指導教授 丁望賢(Wang-Hsien Ding) 審核日期 2016-5-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明