博碩士論文 962403601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:87 、訪客IP:3.142.199.70
姓名 阮光碧(Quang Bac Nguyen)  查詢紙本館藏   畢業系所 化學學系
論文名稱
(Synthesis, Structural Characterization and Properties of Organically Incorporated Transition Metal Germanates and Uranium Germanates)
相關論文
★ 探討有機鹼DBU與金屬salen錯合物在二氧化碳對環氧化物的環狀加成反應中的角色★ 磷橋異核雙金屬錯合物的配位子移轉
★ 含有碳烯化合物之鈀金屬異相觸媒催化碳碳鍵生成反應之研究★ 銅(I)催化的碳硫偶合反應中間產物研究
★ 鈾鍺酸鹽之合成與結構鑑定★ 稀土元素配位聚合物和亞磷酸鹽之合成、晶體結構與發光性質研究
★ 含有機模板的錫鍺酸鹽與錫矽酸鹽之合成與其結構鑑定★ 銅催化碳硫偶合反應之陽離子效應研究
★ 銅(I)催化碳-氮偶合反應之研究★ 探討β芳香醚類斷裂之研究
★ 銅(I)催化碳-氮偶合反應之研究★ 鋰鋁鈦磷酸鹽的合成、晶體結構及性質研究
★ 鋰鐵鈦磷酸鹽之晶體結構與離子導電度性質研究★ 鈦磷酸鹽與鈦矽酸鹽之合成、晶體結構與 性質研究
★ 有機-無機混成之金屬磷酸鹽/亞磷酸鹽骨架化合物的合成與性質研究★ 極性溶劑對銅(I)催化碳-氮偶合反應之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(英) Microporous materials have widespread applications including ion-exchange, selective sorption or separation, and catalysis processes. New microporous compounds with novel structures and interesting properties are extremely desired for growing demands in technology.
This thesis descrives the synthesis, crystal structures and properties of organically incorporated transition metal germanates (series A), and uranium germanates (series B), which are classified on the basis of their structural characteristics and the methods of preparation. These compounds are synthesized by solvothermal, ionothermal, and high-temperature, high-pressure hydrothermal methods, and characterized by various spectroscopic techniques.
In series A, a zinc germanate, A1, was synthesized by solvothermal method. Its structure contains neutral infinite chains with empty 18-membered ring channels. This is the first example in literature where the fluorine atoms in the germanate cluster are characterized by 19F NMR spectroscopy. A niobium germanate, A2, was synthesized by using a deep-eutectic solvent as the medium for the synthesis. Its layer structure consists of NbGe6X19 clusters with 10 membered-ring windows. This is the first example of organically templated niobium germanate where the structure was characterized by single-crystal X-ray diffraction. This compound displays an intense SHG response.
In series B, the synthesis, crystal structures, and properties of three novel uranium germanates with various valence states of uranium are discussed. B1 is a mixed-valence uranium(IV,VI) germanate, Cs8UIV(UVIO2)3(Ge3O9)3•3H2O. B2 is a tetravalent uranium germanate containing four- and five-coordinate germanium, Cs4U([5]Ge2O2)([4]Ge3O9)2. B3 is a pentavalent uranium germanate containing four- and six-coordinate germanium, Cs3U[6]Ge([4]Ge3O9)2. These compounds have been structurally synthesized under high-temperature, high-pressure hydrothermal conditions and characterized by single-crystal X-ray diffraction. The valence states of uranium have been confirmed by X-ray photoelectron spectroscopy, electron paramagnetic resonance, UV-visible, and photoluminescence measurements.
關鍵字(中) ★ 過渡金屬
★ 鍺酸鹽
★ 高溫高壓水熱合成
★ 溶劑熱
★ 離子熱
★ 鈾金屬
關鍵字(英) ★ Transition metal
★ uranium
★ germanate
★ solvothermal
★ ionothermal
★ high-temperature, high-pressure hydrothermal synthesis
論文目次 Abstract
List of Publications
Abbreviations
Table of contents
List of Figures
List of Tables
List of Schemes
Chapter 1. Organically Incorporated Germanates and Transition Metal Germanates 1
1.1 Organically Incorporated Germanates 1
1.2 Organically Incorporated Transition Metal Germanates 15
1.2.1 Zirconium Germanates 15
1.2.2 Niobium Germanates 17
1.2.3 Nickel Germanates 18
1.2.4 Zinc Germanates 20
1.2.5 Cobalt, and Cadmium Germanates 22
1.3 Uranium Silicates and Uranium Germanates 27
1.4 Overview of the Research and Outlook 38
1.5 References 39
Chapter 2. Synthesis and Characterization Methods 42
2.1 Synthesis Methods 42
2.1.1 High-Temperature Solid-State Reactions 42
2.1.2 Flux-Growth Synthesis 43
2.1.3 Hydrothermal, Solvothermal, and Ionothermal Syntheses 43
2.2 Methods for Characterization of Materials 51
2.2.1 Single-Crystal X-ray Diffraction 52
2.2.2 Powder X-ray Diffraction 56
2.2.3 Solid-State Nuclear Magnetic Resonance Spectroscopy 56
2.2.4 Energy-dispersive X-ray Spectroscopy 58
2.2.5 Electron Probe Microanalysis 59
2.2.6 Total Reflection X-ray Fluorescence 59
2.2.7 Second-Harmonic Generation 59
2.2.8 Fourier Transform Infra-Red Spectroscopy 61
2.2.9 Thermogravimetric Analysis 61
2.2.10 Elemental Analysis 61
2.2.11 X-Ray Photoelectron Spectroscopy 62
2.2.12 Electron Paramagnetic Resonance 70
2.2.14 Optical Absorption and Photoluminescence 76
2.3 List of Reagents 79
2.4 List of Equipments 80
2.5 List of Compounds 81
2.6 References 82
Chapter 3. Synthesis, Crystal Structures and Properties of Organically Incorporated Transition Metal Germanates 85
3.1 A One-Dimensional Zinc Germanate Containing Hollow Columns with an Extra-Large 18-Membered Ring Window 85
3.2 An Organically Templated Niobium Germanate 103
3.3 References 115
Chapter 4. Synthesis, Crystal Structures, and Properties Of Uranium Germanates 117
4.1 A Mixed-Valence Uranium(IV,VI) Germanate Containing 9-Ring Channels, Cs8UIV(UVIO2)3(Ge3O9)3•3H2O 117
4.2 A Tetravalent Uranium Germanate Containing Four- and Five-coordinate Germanium, Cs4U([5]Ge2O2)([4]Ge3O9)2 136
4.3 A Pentavalent Uranium Germanate Containing Four- and Six-Coordinate Germanium, Cs3U[6]Ge([4]Ge3O9)2 149
4.4 References 166
Conclusions 168
Appendice
171
參考文獻 (1) (a) Feng, S.; Xu, R. Acc. Chem. Res. 2001, 34, 239–247. (b) Cundy, C. S.; Cox, P. A. Chem. Rev. 2003, 103, 663–702. (c) Parnham, E. R.; Morris, R. E. Acc. Chem. Res. 2007, 40, 1005–1013. (d) Byrappaa, K.; Adschirib, T. Prog. Cryst. Growth Charact. Mater. 2007, 53, 117–166.
(2) Lin, Z.-E.; Yang, G.-Y. Eur. J. Inorg. Chem. 2010, 2895–2902.
(3) (a) Cheng, J.; Xu, R. J. Chem. Soc., Chem. Commun. 1991, 483–485. (b) Cheng, J.; Xu, R.; Yang, G. J. Chem. Soc., Dalton Trans. 1991, 1537–1540. (c) Jones, R. H.; Chen, J.; Thomas, J. M.; George, A.; Hursthouse, M. B.; Xu, R.; Li, S.; Lu, Y.; Yang, G. Chem. Mater. 1992, 4, 808–812.
(4) (a) Li, H.; Eddaoudi, M.; Richardson, D. A.; Yaghi, O. M. J. Am. Chem. Soc. 1998, 120, 8567–8568. (b) Plévert, J.; Gentz, T. M.; Laine, A.; Li, H.; Young, V. G.; Yaghi, O. M.; O’Keeffe, M. J. Am. Chem. Soc. 2001, 123, 12706–12707. (c) Beitone, L.; Loiseau, T.; Férey, G. Inorg. Chem. 2002, 41, 3962–3966. (d) Plévert, J.; Gentz, T. M.; Groy, T. L.; O’Keeffe, M.; Yaghi, O. M. Chem. Mater. 2003, 15, 714–718. (e) Pan, Q.; Li, J.; Christensen, K. E.; Bonneau, C.; Ren, X.; Shi, L.; Sun, J.; Zou, X.; Li, G.; Yu, J.; Xu, R. Angew. Chem., Int. Ed. 2008, 47, 7868–7871. (f) Shi, L.; Bonneau, C.; Li, Y.; Sun, J.; Yue, H.; Zou, X. Cryst. Growth Des. 2008, 8, 3695–3699. (g) Su, J.; Wang, Y.; Wang, Z.; Liao, F.; Lin, J. Inorg. Chem. 2010, 49, 9765–9769. (h) Guo, B.; Inge, A. K.; Bonneau, C.; Sun, J.; Christensen, K. E.; Yuan, Z.-Y.; Zou, X. Inorg. Chem. 2011, 50, 201–207. (i) Inge, A. K.; Sun, J.; Moraga, F; Guo, B.; Zou, X. CrystEngComm 2012, 14, 5465–5471.
(5) (a) Li, H.; Yaghi, O. M. J. Am. Chem. Soc. 1998, 120, 10569–10570. (b) Medina, M. E.; Iglesias, M.; Monge, M. A.; Gutiérrez-Puebla, E. Chem. Commun. 2001, 2548–2549. (c) Lin, Z.-E.; Zheng, S.-T.; Yang, G.-Y. Z. Anorg. Allg. Chem. 2006, 354–358.
(6) (a) Tripathi, A.; Young, V. G. Jr, Johnson, G. M.; Cahill, C. L.; Parise, J. B. Acta Crystallogr. 1999, C55, 496–499. (b) Li, H.; Eddaoudi, M.; Yaghi, O. M. Angew. Chem., Int. Ed. 1999, 38, 653–655. (c) Bu, X.; Feng, P.; Stucky, G. D. Chem. Mater. 2000, 12, 1505–1507. (d) Zhou, Y.; Zhu, H.; Chen, Z.; Chen, M.; Xu, Y.; Zhang, H.; Zhao, D. Angew. Chem., Int. Ed. 2001, 40, 2166–2168. (e) Pitzschke, D.; Näther, C.; Bensch, W. Z. Naturforch. 2003, 58b, 205–210. (f) Medina, M. E.; Iglesias, M.; Snejko, N.; Gutiérrez-Puebla, E.; Monge, M. A. Chem. Mater. 2004, 16, 594–599. (g) Xu, Y.; Fan, W.; Elangovan, S. P.; Ogura, M.; Okubo, T. Eur. J. Inorg. Chem. 2004, 4547–4549. (h) Attfield, M. P.; Al-Ebini, Y.; Pritchard, R. G.; Andrews, E. M.; Charlesworth, R. J.; Hung, W.; Masheder, Ben J.; Royal, D. S. Chem. Mater. 2007, 19, 316–322.
(7) (a) Zou, X.; Conradsson, T.; Klingstedt, M.; Dadachov, M. S.; O’Keeffe, M. Nature 2005, 437, 716–719. (b) Bonneau, C.; Sun, J.; Sanchez-Smith, R.; Guo, B.; Zhang, D.; Inge, A. K.; Edén, M.; Zou, X. Inorg. Chem. 2009, 48, 9962– 9964. (c) Inge, A. K.; Peskov, M. V.; Sun, J.; Zou, X. Cryst. Growth Des. 2012, 12, 369–375. (d) Huang, S.; Inge, A. K.; Yang, S.; Christensen, K. E.; Zou, X.; Sun, J. Dalton Trans. 2012, 41, 12358–12364.
(8) (a) Christensen, K. E.; Shi, L.; Conradsson, T.; Ren, T.-z.; Dadachov, M. S.; Zou, X. J. Am. Chem. Soc. 2006, 128, 14238–14239. (b) Ren, X.; Li, Y.; Pan, Q.; Yu, J.; Xu, R.; Xu, Y. J. Am. Chem. Soc. 2009, 131, 14128–14129. (c) Peskov, M. V.; Zou, X. J. Phys. Chem. C 2011, 115, 7729–7739.
(9) (a) Zhang, H.-X.; Zhang, J.; Zheng, S.-T.; Yang, G.-Y. Inorg. Chem. 2003, 42, 6595–6597. (b) Pan, Q.; Li, J.; Ren, X.; Wang, Z.; Li, G.; Yu, J.; Xu, R. Chem. Mater. 2008, 20, 370–372. (c) Ren, X.; Li, Y.; Shao, L.; Yu, J.; Xu, R. Z. Anorg. Allg. Chem. 2012, 1345–1350.
(10) (a) Li, H.; Eddaoudi, M.; Plévert, J.; O’Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2000, 122, 12409–12410. (b) Liu, Z.; Weng, L.; Zhou, Y.; Chen Z.; Zhao, D. J. Mater. Chem. 2003, 13, 308–311. (c) Liu, Z.; Weng, L.; Chen, Z.; Zhao, D. Inorg. Chem. 2003, 42, 5960–5965. (d) Plévert, J.; Sanchez-Smith, R.; Gentz, T. M.; Li, H.; Groy, T. L.; Yaghi, O. M.; O’Keeffe, M. Inorg. Chem. 2003, 42, 5954–5959.
(11) (a) Francis, R. J.; Jacobson, A. J. Angew. Chem., Int. Ed. 2001, 40, 2879–2881. (b) Francis, R. J.; Jacobson, A. J. Chem. Mater. 2001, 13, 4676–4680.
(12 (a) Lin, Z.-E.; Zhang, J.; Zhao, J.-T.; Zheng, S.-T.; Pan, C.-Y.; Wang, G.-M.; Yang, G.-Y. Angew. Chem., Int. Ed. 2005, 44, 6881–6884. (b) Huang, S.; Christensen, K.; Peskov, M. V.; Yang, S.; Li, K.; Zou, X.; Sun, J. Inorg. Chem. 2011, 50, 9921– 9923. (c) Luo, W.; Mu, W.-Q.; Zhang, X.; Zhang, X.; Pu, Y.-Y.; Zhu, Q.-Y.; Dai, J. Inorg. Chem. 2012, 51, 1489–1494.
(13) (a) Bu, X.; Feng, P.; Stucky, G. D. Chem. Mater. 2000, 12, 1811–1813. (b) Wang, C.-M.; Lin, C.-H.; Yang, C.-W.; Lii, K.-H. Inorg. Chem. 2010, 49, 5783–5785.
(14) Julius, N, N.; Choudhury, A.; Rao, C. N. R. J. Solid State Chem. 2003. 170, 124–129.
(15) Lin, Z. E; Zhang, J.; Zheng, S.-T.; Yang, G.-Y. Microporous Mesoporous Mater. 2004, 74, 205–211.
(16) (a) Burns, P. C. In Structural Chemistry of Inorganic Actinide Compounds; Krivovichev, S. V., Burns, P. C., Tananaev, I. G., Eds.; Elsevier: Amsterdam, Netherlands, 2007; Chapter 1, pp 1– 30. (b) Grenthe, I.; Drożdżyński, J.; Fujino, T.; Buck, E. C.; Albrecht-Schmitt, T. E.; Wolf, S. F. In The Chemistry of the Actinide and Transactinide Elements; Morss, L. R., Edelstein, N. M., Fuger, J., Eds.; Springer: New York, 2011; Vol. 1, pp 253– 698.
(17) (a) Burns, P. C.; Ewing, R. C.; Hawthorne, F. C. Can. Mineral. 1997, 35, 1551–1570. (b) Burns P. C. Can. Mineral. 2005, 43, 1839–1894.
(18) (a) Burns, P. C. Rev. Mineral. 1999, 38, 23–90. (b) Finch, R.; Murakami, T. Rev. Mineral. 1999, 38, 91–179. (c) Ling, J.; Morrison, J. M.; Ward, M.; Poinsatte-Jones, K.; Burns, P. C. Inorg. Chem. 2010, 49, 7123–7128. (d) Morrison, J. M.; Moore-Shay, L. J.; Burns, P. C. Inorg. Chem. 2011, 50, 2272–2277.
(19) (a) Wang, X.; Huang, J.; Liu, L.; Jacobson, A. J. J. Mater. Chem. 2002, 12, 406–410. (b) Wang, X.; Huang, J.; Jacobson, A. J. J. Am. Chem. Soc. 2002, 124, 15190–15191. (c) Huang, J.; Wang, X.; Jacobson, A. J. J. Mater. Chem. 2003, 13, 191–196.
(20) (a) Chen, C.-S.; Kao, H.-M.; Lii, K.-H. Inorg. Chem. 2005, 44, 935–940. (b) Lin, C.-H.; Chiang, R.-K.; Lii, K.-H. J. Am. Chem. Soc. 2009, 131, 2068–2069. (c) Liu, H.-K.; Chang, W.-J.; Lii, K.-H. Inorg. Chem. 2011, 50, 11773–11776.
(21) Shannon, R. D. Acta Crystallogr. 1976, A32, 751–767.
(22) (a) Stieff, L. R.; Stern, T. W.; Sherwood, A. M. Science 1955, 121, 608– 609. (b) Stieff, L. R.; Stern, T. W.; Sherwood, A. M. Am. Mineral. 1956, 41, 675–688. (c) Uvarova, Y. A.; Sokolova, E.; Hawthorne, F. C.; Agakhanov, A. A.; Pautov, L. A. Can. Mineral. 2004, 42, 1005–1011.
(23) Liu, H.-K.; Lii, K.-H. Inorg. Chem. 2011, 50, 5870–5872.
(24) Durif, P. A. Acta Crystallogr. 1956, 9, 533.
(25) (a) Kraus, K. A.; Nelson, F.; Johnson, G. L. J. Am. Chem. Soc. 1949, 71, 2510–2517. (b) Kraus, K. A.; Nelson, F. J. Am. Chem. Soc. 1949, 71, 2517–2522. (c) Selbin, J.; Ortego, J. D. Chem. Rev. 1969, 69, 657–671.
(26) (a) Chen, C.-S.; Lee, S.-F.; Lii, K.-H. J. Am. Chem. Soc. 2005, 127, 12208–12209. (b) Lin, C.-H.; Chen, C.-S.; Shiryaev, A. A.; Zubavichus, Y. V.; Lii, K.-H. Inorg. Chem. 2008, 47, 4445–4447.
(27) (a) Burns, P. C.; Finch, R. J. Am. Mineral. 1999, 84, 1456–1460. (b) Hawthorne, F. C.; Finch, R. J.; Ewing, R. C. Can. Mineral. 2006, 44, 1379–1385.
(28) (a) Belai, N.; Frisch, M.; Ilton, E. S.; Ravel, B.; Cahill, C. L. Inorg. Chem. 2008, 47, 10135–10140. (b) Lin, C.-H.; Lii, K.-H. Angew. Chem., Int. Ed. 2008, 47, 8711–8713.
(29) Lee, C.-S.; Wang, S.-L.; Lii, K.-H. J. Am. Chem. Soc. 2009, 131, 15116–15117.
(30) Lee, C.-S.; Lin, C.-H.; Wang, S.-L.; Lii, K.-H. Angew. Chem., Int. Ed. 2010, 49, 4254–4256.
(31) (a) Burns, P. C.; Finch, R. J.; Hawthorne, F. C.; Miller, M. L.; Ewing, R. C. J. Nucl. Mater. 1997, 249, 199–206. (b) Bénard, P.; Louër, D.; Dacheux, N.; Brandel, V.; Genet, M. Chem. Mater. 1994, 6, 1049–1058. (c) Diwu, J.; Albrecht-Schmitt, T. E. Inorg. Chem. 2012, 51, 4432–4434.
指導教授 李光華(Kwang-Hwa Lii) 審核日期 2012-12-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明