博碩士論文 962403603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.144.187.103
姓名 馬瑞門(Mani Ramanathan)  查詢紙本館藏   畢業系所 化學學系
論文名稱
(Synthetic studies towards the antimalarial fungal polyketide Codinaeopsin via an intramolecular Diels-Alder reaction and Efficient deprotection of benzyl ethers and aryl acetals using triphenylphosphine hydrobromide)
相關論文
★ 含胺基之二苯乙烯衍生物的分子內光誘導電子轉移之C-N斷鍵反應及激態錯合體之研究★ 新型含1,2,3-三氮唑之雙光子吸收材料的合成及其光學性質探討
★ 紫質衍生物研究:間位苯卟啉分子的鋅離子感測及大環紫質的構型★ Squamocin 之合成研究
★ 發展4,4’-亞甲基對苯胺或聯苯胺為骨架的四氯衍生物作為人類麩胺基硫轉移酶抑制劑的合成及構效關係的探討★ 含有香豆素的石膽酸類似物作為唾液酸轉移酶抑制劑的合成與初步活性測試
★ 石膽酸C4含氟唾液酸轉移酶抑制劑和苯並惡嗪酮相關的螢光探針之合成及生物研究★ 合成和優化2-(1-乙基-3,5-二甲基-1H-吡唑-4-基)乙-1-胺衍生物和其抗三陰性乳腺癌細胞的體外活性研究
★ 以蛋白質體學探討在大腸桿菌中甲醇利用代謝途徑★ Data-independent acquisition mass spectrometry analysis for identification of cerebrospinal fluid biomarker of reversible cerebral vasoconstriction syndrome
★ 從手性N-亞磺醯胺進行非對映選擇性磷酯基化反應建構高度選擇性的α-胺基磷酸酯★ DNA型式碳水化合物抗原之生物偵測器的開發及應用
★ 合成具有分子腳架之多並苯化合物且用於自組裝分子薄膜之研究★ 1,3-偶極環化加成反應在藥物合成與醣晶片上的應用
★ 平面化寡聚萘分子之合成及其光學、電學性 質研究★ 多並苯醚類化合物的合成與多並苯醚類化合 物於自組裝分子薄膜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Codinaeopsin (1) 是一種新的色胺酸衍生物之聚酮化合物,在2008年從Costa Rica 收集的endophytic fungus中分離得到(圖一),這化合物的結構主要是由一個多取代的trans decalin carbocycle 與一個具有indole結構的雜環相連結而成,在這一類的天然物中,Codinaeopsin 在 decalin carbocycle 上具有最多的取代基,包含四個methyl和一個 1-methyl-propenyl groups,而在這類型的天然物中大部分的α-acyl-γ-hydroxy lactam 的Cα 位置上都接有 Hydroxy group,Codinaeopsin具有抑制plasmodium falciparum的活性,Codinaeopsin對malaria做活性測試IC50=2.33μg/mL 或 4.7μM,Codinaeopsin 的複雜結構以及很好的生物活性,促使我們選擇這個結構作為我們的合成目標,其最關鍵的步驟是以E,E,E-triene經由路易士酸催化,進行分子內的Diels-Alder (IMDA) 反應,生成得到主要的decalin 骨架。主要合成策略是用可購買到的mesitol 進行Rh 催化的氫化反應,接著進行E-selective Horner-Wittig olefination得到三取代alkene,再進行one pot TPAP oxidation/Wittig olefination ,之後經由加熱反應或路易士酸催化,進行分子內的 Diels-Alder (IMDA) 反應得到racemic exo 和endo decalin cores ,產物的立體化學是由NOE 和單晶X-ray 進行鑑定。
在第二章中,Triphenylphosphine hydrobromide是已知可用來切斷benzyl ethers derived from 1o, 2o, alkyl and aryl alcohols得到相對應的醇類和benzyltriphenylphosphonium bromide,並且具有好的產率,我們也利用微波反應和加熱反應,以及使用化學劑量的triphenylphosphine hydrobromide對此條件做了改進,也對其反應機構進行研究。
在第三章中,Triphenylphosphine hydrobromide是已知可用來去掉aryl acetals 和 ketals 官能基得到相對應的carboyl 化合物,然後alkyl phosphonium salts在簡單的條件(50oC, microwave, 5 min.)下,產率最高可到 90%,同時這反應也可以忍受酸敏感的官能基,我們也利用具有不同官能基的起始物反應來進行反應機構的研究。
摘要(英) Codinaeopsin (1) a new tryptophan derived polyketide was isolated in 2008 from an endophytic fungus collected in Costa Rica (Fig.1).1 The unique chemical structure of this target includes a densely substituted trans decalin carbocycle which is connected to an indole fragment through an unusual heterocyclic unit. Among the natural products found in this family, Codinaeopsin has the most substituted decalin unit with four methyl and a 1-methyl-propenyl groups attached to it. The unusual α-acyl-γ-hydroxy lactam (modified tetramic acid cores) with oxidized Cα position of tryptophan are often present in natural products from fungal sources. Codinaeopsin is having promising activity against plasmodium falciparum, the causative agent of most lethal form of malaria (IC50=2.33μg/mL) or 4.7μM. The structural complexity, together with the extraordinary biological profile, prompted us to choose this natural product as an ideal synthetic target. The synthetic plan relied on a late stage Lewis acid mediated intramolecular Diels-Alder (IMDA) reaction of E,E,E-triene with a suitable dienophile to yield the appropriately decorated decalin skeleton.The synthetic approach described here shares a number of key features, including rhodium catalyzed hydrogenation of commercially available mesitol, E-selective Horner-Wittig olefination protocol to construct the trisubstituted alkene and one pot TPAP oxidation/Wittig olefination of the sensitive polyene substrate. Syntheses of racemic exo and endo decalin cores of Codinaeopsin are accomplished via intramolecular Diels-Alder reaction under thermal and Lewis acidic conditions. The relative stereochemistry of these IMDA adducts were confirmed by NOE and single crystal X-ray techniques.
In chapter 2, Triphenylphosphine hydrobromide is reported to cleave the benzyl ethers derived from 1o, 2o, alkyl and aryl alcohols to the corresponding alcohols and benzyltriphenylphosphonium bromide in good yields. The reaction is optimized both under microwave and conventional heating conditions using stoichiometric amount of triphenylphosphine hydrobromide. The mechanism of this reaction is also discussed.
In chapter 3, Triphenylphosphine hydrobromide is reported to deprotect the aryl acetals and ketals to give the corresponding carbonyl compounds and alkyl phosphonium salts under convenient conditions (50 oC, microwave, 5 min. yields up to 90%). The reaction is compatible with acid sensitive functional groups and the mechanism is discussed through the substrates surveyed.
關鍵字(中) 關鍵字(英) ★ Intramolecular Diels-Alder reaction
★ Lewis acid
★ BHT
★ Triphenylphophine hydrobromide
★ benzyl ethers
★ acetal
論文目次 Dedication---------------------------------------------------------------------------------------------I
Acknowledgements---------------------------------------------------------------------------------II
Abstract (English)------------------------------------------------------------------------------------III
Abstract (Chinese) ------------------------------------------------------------------------------------V
Table of contents----------------------------------------------------------------------------------VIII
List of figures----------------------------------------------------------------------------------------IX
List of schemes------------------------------------------------------------------------------------X
List of tables----------------------------------------------------------------------------------------XI
List of abbreviations--------------------------------------------------------------------------------XIII
Appendix for chapter one------------------------------------------------------------------------XVI
Appendix for chapter two-----------------------------------------------------------------------XVII
Appendix for chapter three---------------------------------------------------------------------XVIII
CHAPTER ONE
Synthetic studies towards the antimalarial fungal polyketide Codinaeopsin via an
intramolecular Diels-Alder reaction--------------------------------------------------------------1
1.1 Introduction -----------------------------------------------------------------------------------1
1.2 The intramolecular Diels-Alder (IMDA) reaction--------------------------------------1
1.2.1 Regiochemistry of the IMDA reactions-------------------------------------------2
1.2.2 Stereochemical aspects of the IMDA reactions-------------------------------3
1.3 Recent advances in natural product synthesis by using IMDA reactions—---4
1.4 Isolation and bioactivity of the antimalarial fungal polyketide Codinaeopsin--7
1.5 Retrosynthetic approach to Codinaeopsin based on IMDA reaction------------9
1.6 Results and discussions---------------------------------------------------------------------9
1.7 Synthesis of tryptophan derived heterocyclic units----------------------------------22
1.7.1 The Baylis-Hillman reaction--------------------------------------------------------25
1.8 Summary---------------------------------------------------------------------------------------27
1.9 Future plans-----------------------------------------------------------------------------------27
1.10 References------------------------------------------------------------------------------------28
CHAPTER TWO
Cleavage of benzyl ethers by triphenylphosphine hydrobromide------------------------29
2.1 Abstract--------------------------------------------------------------------------------------------29
2.2 Introduction---------------------------------------------------------------------------------------29
2.3 Results and discussion------------------------------------------------------------------------30
2.4 Summary------------------------------------------------------------------------------------------34
2.5 References----------------------------------------------------------------------------------------35
CHAPTER THREE
Phosphonium salts and aldehydes from the convenient anhydrous reaction of aryl
acetals and triphenylphsophine hydrobromide-----------------------------------------------37
3.1 Abstract--------------------------------------------------------------------------------------------37
3.2 Introduction---------------------------------------------------------------------------------------37
3.3 Representative reaction of deprotection of acetals and ketals under anhydrous
conditions------------------------------------------------------------------------------------------38
3.4 Results and discussions-----------------------------------------------------------------------38
3.5 Chemoselective deprotection of aryl acetals/ketals using catalytic
triphenylphosphine hydrobromide-----------------------------------------------------------43
3.5.1 Representative reaction of deprotection of acetal under
catalytic conditons--------------------------------------------------------------------------43
3.6 Summary------------------------------------------------------------------------------------------45
3.7 References----------------------------------------------------------------------------------------45
4.0 Experimental section for chapter one------------------------------------------------------48
4.1 References----------------------------------------------------------------------------------------77
5.0 Experimental section for chapter two------------------------------------------------------78
5.1 General information--------------------------------------------------------------------------78
5.2 Standard procedure for debenzylation--------------------------------------------------78
5.3 Synthesis of benzyl ethers-----------------------------------------------------------------79
5.4 References-------------------------------------------------------------------------------------81
6.0 Experimental section for chapter three----------------------------------------------------84
6.1 General information--------------------------------------------------------------------------84
6.2 Synthesis of acetals--------------------------------------------------------------------------85
6.3 Chemoselective deprotection of aryl acetals and ketals using catalytic
Triphenylphosphine hydrobromide-------------------------------------------------------89
6.4 References------------------------------------------------------------------------------------98
7.0 Appendix for chapter one--------------------------------------------------------------------99
8.0 Appendix for chapter two--------------------------------------------------------------------177
9.0 Appendix for chapter three------------------------------------------------------------------189
參考文獻 CHAPTER 1:
1. Kontnik. R.; Clardy. J. Org.Lett. 2008,10, 4149
2. Alder, K.; Schumacher, M. F. Chem. Org. Naturst. 1953, 10, 66
3. Brieger, G. J. Am. Chem. Soc.1963, 85, 3783
4. Juhl. M.; Tanner. D. Chem. Soc. Rev. 2009, 38, 2983
5. Taber. D. F. Intramolecular Diels-Alder and Alder Ene reactions; Springer-verlag:
Berlin, 1984; Vol. 18.
6. Paintner. F. F. Tetrahedron Lett., 2003, 44, 2549
7. Lygo, B.; Bhatia, M.; Cooke, J. W. B.; Hirst, D. J.; Tetrahedron Lett. 2003, 2529
8. Yakelis, N, A.; Roush, W. R.; Org. Lett. 2001, 3, 957
9. Juhl. M.; Tanner. D. Chem. Soc. Rev. 2009, 38, 2983
10. Heckrodt. T. J.; Mulzer. J. J. Am. Chem. Soc. 2003, 125(16), 4680
11. Nicolaou. K. C.; Snyder. S. A.; Montagnon.T.; vassilikogiannakis. G. Angew.
Chem. Int. Ed. 2002, 41, 1668
12. Dixon. D. J. Org, Lett. 2000, 2, 3611
13. Betzer. J. F. Acad. Sci. Paris, Chimie/ Chemistry. 2001, 4, 695
14. Dineen, T. A.; Roush, W. R.; Org. Lett. 2005, 7, 1355
15. Chow, S.; Fletcher, M. T.; Lambert, L. K.; Gallagher, O. P.; Moore, C. J.; Cribb,
B. W.; Allsopp, P. G.; Kitching, W. J. Org. Chem. 2005, 70, 1808
16. MacCoss, R. N.; Balskus, E. P.; Ley, S. V. Tetrahedron Lett. 2003, 44, 7779
17. Moses, J. E.; Baldwin, J. E.; Brukner, S.; Eade, S. J.; Adlington, R. M. Org.
Biomol. Chem. 2003, 1, 3670
18. Thomas. O.; Reinhard. B. Synthesis, 2004, 13, 2135
19. Hoye. T. R.; ,Dvornikovs. V. J. Am. Chem. Soc. 2006, 128, 2550
20. Coleman. R. S.; Walczak. M. C.; Campbell. E. L. J. Am. Chem. Soc. 2005, 127,
16038
21. Snider. B. S.; and Neubert. B. J. J. Org. Chem. 2004, 69, 8952
CHAPTER 2:
1. (a) Wuts, P. G. M.; Green, T. W. In Protective groups in Organic Synthesis, 4th
edition; John Wiley & Sons; New York, 2007; p 102; (b) Weissman, S. A.; Zewge,
D. Tetrahedron 2005, 61, 7833; (c) Jarowicki, K.; Kocienski, P. J. Chem. Soc.,
Perkin Trans. 1 2001, 2109, and references cited therein.
2. (a) Vincent, A.; Prunet, J. Tetrahedron Lett. 2006, 47, 4075; (b) Kanie, O.;
Grotenbreg, G.; Wong, C. H. Angew. Chem., Int. Ed. 2000, 39, 4545; (c) Yoshino,
T.; Nagata, Y.; Itoh, E.; Hashimoto, M.; Katoh, T.; Terashima, S. Tetrahedron
1997, 53, 10239; (d) Horita, K.; Yoshioka, T.; Tanaka, T.; Oikawa, Y.; Yonemitsu,
O. Tetrahedron 1986, 42, 3021; (e) Oikawa, Y.; Tanaka, T.; Horita, K.; Yonemitsu,
O. Tetrahedron Lett. 1984, 25, 5397.
3. Reductive cleavage: (a) Alonso, E.; Ramon, D. J.; Yus, M. Tetrahedron, 1997, 53,
14355; (b) Liu, H.-J.; Yip, J.; Shia, K. S. Tetrahedron Lett. 1997, 38, 2252; (c)
Schon, I. Chem.Rev.1984, 84, 287
4. Oxidative cleavage: (a) Ikemoto, N.; Schreiber, S. L. J. Am. Chem. Soc. 1992,
114, 2524: (b) Baek, S.; Jo, H.; Kim, H.; Kim, S.; Kim, D. Org. Lett. 2005, 7, 75.
5. Other debenzylation: Hwu, J. R.; Wong, G.-G.; Huang, J.-J.; Tsay, S.-C. J. Org.
Chem. 1997, 62, 4097.
6. (a) Yajima, H.; Fuji, N.; Ogawa, H.; Kawatani, H. J. Chem. Soc., Chem. Commun.
1974, 107; (b) Fletcher, S.; Gunning, P. T. Tetrahedron Lett. 2008, 49, 4817.
7. (a) Petchmanee, T.; Ploypradith, P.; Ruchirawat, S. J. Org. Chem. 2006, 71,
2892; (b) Sharma, G. V. M.; Reddy, C. G.; Krishna, P. R. J. Org. Chem.2003, 68,
4574; (c) Jung, M. E.; Lyster, M. A. J. Org. Chem. 1977, 42, 3761; (d) Guindon,
Y.; Yoakim, C.; Morton, H. E. Tetrahedron Lett. 1983, 24, 2969; (e) Williams, D.
R.; Brown, D. L.; Benbow, J. W. J. Am. Chem. Soc. 1989, 111, 1923.
8. a) Kim, J. D.; Han.; Zee, O. O.; Jung, Y. H. Tetrahedron Lett. 2003, 44, 733; (b)
Rizzi, E.; Dallavalle, S.; Merlini, L.; Beretta, G. L.; Pratesib, G. G.; Zunnio. F.
Bioorg. Med. Chem. Lett. 2005, 15, 4313.
9. (a) Bhatt, M. V.; Kulkarni, S. U. Synthesis 1983, 249; (b) Tiecco, M. Synthesis
1988, 749.
10. (a) Evans, D. A.; Scjeerer, J. R. Angew. Chem., Int. Ed. 2005, 44, 6038; (b)
Xiong, Z.; Gao, D. A.; Cogan. D. A.; Goldberg, D. R.; Hao. M.-H.; Moss, N.; Pack,
E.; Pargellis, C.; Skow, D.; Trieselmann, T.; Werneburg, B.; White, A. Biorg. Med.
Chem. Lett. 2008, 18, 1994; (c) Hajela, S. P.; Johnson, A. R.; Xu, J.; Sunderland,
C. J.; Cohen, S. M.; Caulder, D. L.; Raymond, K. N. Inorg. Chem. 2001, 40,
3208: (d) Kim, M.; Mao, Q.; Davidson, B. L.; Wiemer, D. F. J. Med. Chem. 2003,
46, 1603; (e) Leighton, P.; Sanders, J. K. M. J. Chem. SOc., Perkin Trans. 1
1987, 2385; (f) Messeri, T. Pentassuglia, G.; Di Fabio, R. Tetrahedron Lett. 2001,
42, 3227.
11. Cohen, N.; Weber, G.; Banner, B. L.; Lopresti, R. J.; Schaer, B.; Focella, A.;
Zenchoff, G. B.l Chiu, A.-M. Todaro, L; O’Donnell, M.; Welton, A. F.; Brown, D.;
Garippa, R.; Crowley, H.; Morgan, D. W. J. Med. Chem. 1989, 32, 1842.
12. Meir, M. S,. In Encyclopedia of Reagents for Organic Synthesis; Paquette, L. A.,
Ed.; John Wiley & Sons; New York, 1995; Vol. 8, p 5392.
13. Hercouet, A.; Le Corre, M. Synthesis 1988, 157.
14. Bolitt, V.; Mioskowski, C.; Shin, D. S.; Falck, J. R. Tetrahedron Lett. 1988, 29,
4583.
15. McCullough, K. J. Tetrahedron Lett. 1982, 23, 2223.
16. Vide infra (see supporting information)
17. The work-up procedure for compound 26: After cooling to rt, the reaction mixture,
starting from 0.45 mmol of 35 was added with ammonium hydroxide (30%, 1
mL), and extracted with diethyl ether (10 mL X 2). The organic layers were
combined, dried over Na2SO4, filtered, and concentrated. The crude product was
further purified by flash column chromatography (20%, EA/hexanes) to give 36
(34 mg, 0.26 mmol, 57%)
18. Smith, M. B.; March, J. In March’s Advanced Organic Chemistry; Wiley-
Interscience; New York, 2007; p 244.
19. This deprotection is another example of ‘push-pull’ mechanism: (a) Fuji. K.;
Ichikawa, K.; Node, M.; Fujita, E. J. Org. Chem. 1979, 44, 1661; (b) Kiso, Y.;
Ukawa, K.; Nakamura, S.; Akita, T. Chem. Pharm. Bull. Jpn. 1980, 28, 673; (c)
Yajima, H.; Fujii, N. J. Am. Chem. Soc. 1981, 103, 5867; (d) Tam, J. P.; Heath, W.
F.; Merrifield, R. B. J. Am. Chem. Soc. 1986, 108, 5242.
CHAPTER 3:
(1) (a) Wuts, P. G. M.; Greene, T. W. in Protective Groups in Organic Synthesis;
4th ed.; John Wiley & Sons: New York, 2007; pp. 435–473. (b) Kocienski, P. J.
in Protecting Groups; 3rd ed.; Georg Thieme Verlag: Stuttgart, Germany, 2005.
(c) Smith, M. B. in Organic Synthesis; 3rd ed.; Wavefunction Inc.: Irvine, 2011;
pp. 608–612.
(2) Recent examples: (a) Ates, A.; Gautier, A.; Leroy, B.; Plancher, J.-M.; Quesnel,
Y.; Vanherck, J.-C.; Marko, I. E. Tetrahedron, 2003, 59, 8989. (b) Robinson, M.
W. C.; Graham, A. E. Tetrahedron Lett., 2007, 48, 4727. (c) Cayley, A. N.; Cox,
R. J.; Ménard-Moyon, C.; Schmidta, J. P.; Taylor, R. J. K. Tetrahedron Lett.,
2007, 48, 6556. (d) Bailey, A. D.; Baru, A. R.; Tasche, K. K.; Mohan, R. S.
Tetrahedron Lett., 2008, 49, 691. (e) Olson, M. E.; Carolan, J. P.; Chiodo, M. V.;
Lazzara, P. R. ; Mohan, R. S. Tetrahedron Lett., 2010, 51, 3969. (f) Golden, K.
C.; Gregg, B. T.; Quinn, J. F. Tetrahedron Lett., 2010, 51, 4010. (g) Madabhushi,
S.; Mallu, K. K. R.; Chinthala, N.; Beeram, C. R.; Vangipuram, V. S.
Tetrahedron Lett., 2012, 53, 697. (h) Ranu, B. C.; Jana, R.; Samanta, S. Adv.
Synth. Catal. 2004, 346, 446. (i) Krishnaveni, N. S.; Surendra, K.; Reddy, M. A.;
Nageswar, Y. V. D.; Rao, K. R. J. Org. Chem. 2003, 68, 2018. (j) Williams, D. B.
G.; Cullen, A.; Fourie, A.; Henning, H.; Lawton, M.; Mommsen, W.; Nangu, P.;
Parker, J.; Renison, A. Green Chem., 2010, 12, 1919. (k) Chang, C.-C.; Liao,
B.-S.; Liu, S.-T. Synlett, 2007, 283. (l) Mohammadpoor-Baltork, I.; Moghadam,
M.; Tangestaninejad, S.; Mirkhani, V.; Mirjafari, A. Can. J. Chem., 2008, 86, 831.
(3) Kaur, G.; Trehan, A.; Trehan, S. J. Org. Chem. 1998, 63, 2365.
(4) Mycock, D. K.; Sherlock, A. E.; Glossop, P. A.; Hayes, C. J. Tetrahedron Lett.,
2008, 49, 6390.
(5) Sun, J.; Dong, Y.; Cao, L.; Wang, X.; Wang, S.; Hu, Y. J. Org. Chem. 2004, 69,
8932.
(6) Fujioka, H.; Minamitsuji, Y.; Kubo, O.; Senami, K.; Maegawa, T. Tetrahedron,
2011, 67, 2949.
(7) Chang, C.; Chua, K. C.; Yue, S. Syn. Commun., 1992, 22, 1217.
(8) Denis, J.-N.; Krief, A. Angew. Chem. Int. Ed. Engl., 1980, 19, 1006.
(9) (a) Yang, H.; Zhang, X.; Zhou, L.; Wang, P. J. Org. Chem. 2011, 76, 2040. (b)
Thevenet, D.; Neier, R. Helv. Chim. Acta, 2011, 94, 331.
(10) Meier, M. S. in Encyclopedia of Reagents for Organic Synthesis; Paquette, L.
A., Ed.; John Wiley & Sons Inc.: New York, 1995; Vol. 8, pp 5392
(11) Ramanathan, M.; Hou, D.-R. Tetrahedron Lett., 2010, 51, 6143.
(12) (a) Gray, G. A. J. Am. Chem. Soc. 1973, 95, 7736. (b) Kitahara, T.; Horiguchi,
A.; Mori, K. Tetrahedron, 1988, 44, 4713; also see supporting information.
(13) Rao, S. V.; Kandula, P. K. Tetrahedron: Asymmetry, 2005, 16, 3268.
(14) Castaneda, F.; Aliaga, C.; Acuna, C.; Silva, P.; Bunton, C.A. Phosphorus, Sulfur
Silicon Relat. Elem., 2008, 183, 1188.
(15) (a) Cordes, E. H.; Bull, H. G. Chem. Rev. 1974, 74, 581. (b)Satchell, D. P. N.;
Satchell, R. S. Chem. Soc. Rev., 1990, 19, 55. (c) Belarmino, A. T. N.;
Froehner, S.; Zanette, D.; Farah, J. P. S.; Bunton, C. A.; Romsted, L. S. J. Org.
Chem., 2003, 68, 706.
(16) The 1H NMR spectra of the prepared compounds 18 and 19 showed that the
cis-isomers were dominant (supporting information). Here, we followed the
assignments made by Espenson and Abu-Omar: Zhu, Z.; Espenson, J. H.
Organometallics, 1997, 16, 3658; Wegenhart, B. L.; Abu-Omar, M. M. Inorg.
Chem. 2010, 49, 4741.
(17) Shibata, I.; Mitani, I.; Imakuni, A.; Baba, A. Tetrahedron Lett., 2011, 52, 721.
(18) Christol, H. Bull. Soc. Chim. Fr., 1989, 477.
(19) Das, P.; McNulty, J. Eur. J. Org. Chem. 2010, 3587.
(20) (a) Ghosh, A. K.; Gong, G. Chem. Asian J. 2008, 3, 1811. (b) Shiina, I.;
Hashizume, M.; Yamai, Y.-s.; Oshiumi, H.; Shimazaki, T.; Takasuna, Y.-j.; Ibuka,
R. Chem. Eur. J. 2005, 11, 6601. (c) Wrona, I. E.; Lowe, J. T.; Turbyville, T. J.;
Johnson, T. R.; Beignet, J.; Beutler, J. A.; Panek, J. S. J. Org. Chem. 2009, 74,
1897. (d) Breuilles, P.; Oddon, G.; Uguen, D. Tetrahedron Lett., 1997, 38, 660
指導教授 侯敦仁(Duen-Ren Hou) 審核日期 2013-1-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明