參考文獻 |
References
[1] Cheung, A.N., Zhang, H.J., Xue, W.C., Siu, M.K., Pathogenesis of choriocarcinoma: clinical, genetic and stem cell perspectives. Future Oncol. 2009, 5, 217-231.
[2] Lunghi, L., Ferretti, M.E., Medici, S., Biondi, C., Vesce, F., Control of human trophoblast function. Reprod Biol Endocrinol. 2007, 5, 6.
[3] Benaitreau, D., Dieudonné, M.N., Dos Santos, E., Leneveu, M.C., et al., Antiproliferative effects of adiponectin on huamn trophoblastic cell lines JEG-3 and BeWo. Biol. Reprod. 2009, 80, 1107-1114.
[4] Li, Q., Wang, H., Ye, S., Xiao, S., et al., Induction of apoptosis and inhibition of invasion in choriocarcinoma JEG-3 cells by α-calendric acid and β-calendic acid. . Prostaglandins Leukot Essent Fatty Acids. 2013, 89, 367-376.
[5] Pospechova, K., Rozehnal, V., Stejskalova, L., Vrzal, R., et al., Expression and activity of vitamin D receptor in the human placenta and in choriocarcinoma BeWo and JEG-3 cell lines. Mol Cell Endocrinol. 2009, 299, 178-187.
[6] Wang, Y., Tang, C., Wu, M., Pan, Y., et al., Dehydroascorbic acid taken up by glucose transporters stimulates estradiol production through inhibition of JNK/c-Jun/AP1 signaling in JAR cells. Mol Hum Reprod. 2014 20(8), 799-809.
[7] Grisaru-Granovsky, S., Maoz, M.., Barzilay, O., Yin, Y.J., et al., Dickkopf-1 induced apoptosis in human placental choriocarcinoma is independent of canonical Wnt signaling. Biochem Biophys Res Commun. 2006, 350, 641-647.
[8] Caüzac, M., Czuba, D., Girard, J., Hauguel-de Mouzon, S., Transduction of leptin growth signals in placental cells is independent of JAK-STAT activation.Placenta. 2003, 24, 378-384.
[9] Rusznyak, S., Szent-Gyorgyi, A., Vitamin P: flavanols as vitamins. Nature. 1936, 138, 27.
[10] Roberts, E.A.H. The chemistry of tea fermentation. J Sci Food Agric. 1952, 3, 193-198.
[11] Liao, S., Kao, Y.H., Hiipakka, R.A., Green tea: biochemical and biological basis for health benefits. Vitam Horm. 2001, 62, 1-94.
[12] Pan, M.H., Chiou, Y.S., Wang, Y.J., Ho, C.T., Lin, J.K., Multistage carcinogenesis process as molecular targets in cancer chemoprevention. Food Funct. 2011, 2, 101-110.
[13] Yang, C.S., Wang, H., Mechanistic issues concerning cancer prevention by tea catechins. Mol Nutr Food Res. 2011, 55, 819-831.
[14] Castro, D.J., Yu, Z., Lohr, C.V., Pereira, C.B., et al., Chemoprevention of dibenzo[a,l]pyrene transplacental carcinogenesis in mice born to mothers administered green tea: primary role of caffeine. Carcinogenesis. 2008, 29, 1581-1586.
[15] Chu, K.O., Wang, C.C., Chu, C.Y., Chan, K.P., et al., Pharmacokinetic studies of green tea catechins in maternal plasma and fetuses in rats. J Pharm Sci. 2006, 95, 1372-1381.
[16] Araújo, J.R., Correia-Branco, A., Pereira, A.C., Pinho, M.J., et al., Oxidative stress induced by tert-butylhydroperoxide interferes with the placental transport of glucose: in vitro studies with BeWo cells. Eur J Pharm. 2013, 720, 218-226.
[17] Monzen, S., Kashiwakura, I., Radioprotective effects of (-)-epigallocatechin-3 -gallate on human erythrocyte/granulocyte lineages. Radiat Prot Dosimetry. 2012, 152, 224-228.
[18] Correia-Branco, A., Azevedo,C.F., Araújo JR, Guimarães JT, Faria A, Keating E, Martel F. Xanthohumol impairs glucose uptake by a human first-trimester extravillous trophoblast cell line (HTR-8/SVneo cells) and impacts the process of placentation. Mol Hum Reprod. 2015, 21, 803-815.
[19] Deng, Y.T., Lin, J.K., EGCG inhibits the invasion of highly invasive CL1-5 lung cancer cells through suppressing MMP-2 expression via JNK signaling and induces G2/M arrest. J. Agric. Food Chem. 2011, 59, 13318-13327.
[20] Huang, C.H., Tsai, S.J., Wang, Y.J., Pan, M.H., et al., EGCG inhibits protein synthesis, lipogenesis, and cell cycle progression through activation of AMPK in p53 positive and negative human hepatoma cells. Mol Nutr Food Res. 2009, 53, 1156-1165.
[21] Kao, Y.H., Chang, H.H., Lee, M.J., Chen, C.L., Tea, obesity, and diabetes. Mol Nutr Food Res. 2006, 50, 188-210.
[22] Lee, J.C., Chung, L.C., Chen, Y.J., Feng, T.H., et al., Upregulation of B-cell translocation gene 2 by epigallocatechin-3-gallate via p38 and ERK signaling blocks cell proliferation in human oral squamous cell carcinoma cells. Cancer Lett. 2015, 360, 310-318.
[23] Hung, P.F., Wu, B.T., Chen, H.C., Chen, Y.H., et al., Antimitogenic effect of green tea (-)-epigallocatechin gallate on 3T3-L1 preadipocytes depends on the ERK and Cdk2 pathways. Am J Physiol Cell Physiol. 2005, 288, C1094-C1108.
[24] Ku, H.C., Liu, H.S., Hung, P.F., Chen, C.L., et al., Green tea (-)-epigallocatechin gallate inhibits IGF-I and IGF-II stimulation of 3T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor, but not AMP-activated protein kinase pathway. Mol Nutr Food Res. 2012, 56, 580-592.
[25] Carey, E.A., Albers, R.E., Doliboa, S.R., Hughes, M., et al., AMPK knockdown in placental trophoblast cells results in altered morphology and function. Stem Cells Dev. 2014, 23, 2921-2930.
[26] Guan, Z., Li, H.F., Guo, L.L., Yang X. Effects of vitamin C, vitamin E, and molecular hydrogen on the placental function in trophoblast cells. Arch Gynecol Obstet. 2015, 292, 337- 342.
[27] Pearson, G., Robinson, F., Gibson, T.B., Xu, B.E., et al., Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. . Endocr Rev. 2001, 22, 153-183.
[28] Lu, H., Meng, X., Yang, C.S., Enzymology of methylation of tea catechins and inhibition of catechol-O-methyltransferase by (-)-epigallocatechin gallate. Drug Metab Dispos. 2003, 31, 572-579.
[29] Suzuki, K., Yahara, S., Hashimoto, F., Uyeda, M., Inhibitory activities of (-)-epigallocatechin-3-O-gallate against topoisomerases I and II. Biol Pharm Bull. 2001, 24, 1088-1090.
[30] Hsieh, C.F., Tsuei, Y.W., Liu, C.W., Kao, C.C., et al., Green tea epigallocatechin gallate inhibits insulin stimulation of adipocyte glucose uptake via the 67-kilodalton laminin receptor and AMP-activated protein kinase pathways. Planta Med. 2010, 76, 1694-1698.
[31] Hwang, J.T., Ha, J., Park, I.J., Lee, S.K., et al., Apoptotic effect of EGCG in HT-29 colon cancer cells via AMPK signal pathway. Cancer Lett. 2007, 247, 115-121.
[32] Ku, H.C., Chang, H.H., Liu, H.C., Hsiao, C.H., et al., Green tea (-)-epigallocatechin gallate inhibits insulin stimulation of 3T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor pathway. Am J Physiol Cell Physiol. 2009, 297, C121-C132.
[33] Alessi, D.R., Cuenda, A., Cohen, P., Dudley, D.T., Saltiel, A.R., PD98059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem. 1995, 270, 27489-27494.
[34] Engelman, J.A., Lisanti, M.P., Scherer, P.E., Specific inhibitors of p38 mitogen-activated protein kinase block 3T3-L1 adipogenesis. J Biol Chem. 1998, 27, 32111-32120.
[35] Brunn, G.J., Williams, J., Sabers, C., Wiederrecht, G., et al., Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J. 1996, 15, 5256-5267.
[36] Ku, H.C., Tsuei, Y.W., Kao, C.C., Weng, J.T., et al., Green tea (-)-epigallocatechin gallate suppresses IGF-I and IGF-II stimulation of 3T3-L1 adipocyte glucose uptake via the glucose transporter 4, but not glucose transporter 1 pathway. Gen Comp Endocrinol. 2014, 199, 46-55.
[37] Albrecht, D.S., Clubbs, E.A., Ferruzzi, M., Bomser, J.A., Epigallocatechin-3- gallate (EGCG) inhibits PC-3 prostate cancer cell proliferation via MEK-independent ERK1/2 activation. Chem Biol Interact. 2008, 171, 89-95.
[38] Vayalil, P.K., Katiyar, S.K., Treatment of epigallocatechin-3-gallate inhibits matrix metalloproteinases-2 and -9 via inhibition of activation of mitogen-activated protein kinases, c-jun and NF-kappaB in human prostate carcinoma DU-145 cells. Prostate. 2004, 59, 33-42.
[39] Siddiqui, I.A., Adhami, V.M., Afaq, F., Ahmad, N., Mukhtar, H., Modulation of phosphatidylinositol-3-kinase/protein kinase B- and mitogen-activated protein kinase-pathways by tea polyphenols in human prostate cancer cells. J Cell Biochem. 2004, 91, 232-242.
[40] Hou, Z., Lambert, J.D., Chin, K.V., Yang, C.S., Effects of tea polyphenols on signal transduction pathways related to cancer chemoprevention. Mutat Res. 2004, 555, 3-19.
[41] Kao, Y.H., Hiipakka, R.A., Liao, S., Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology. 2000, 141, 980-987.
[42] Weng, C.J., Yen, G.C., Flavonoids, a ubiquitous dietary phenolic subclass, exert extensive in vitro anti-invasive and in vivo anti-metastatic activities. Cancer Metastasis Rev. 2012, 31, 323-351.
[43] Yang, C.S., Wang, X., Lu, G., Picinich, S.C., Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer. 2009, 9, 429-439.
[44] Yang, C.S., Chen, L., Lee, M.J., Balentine, D., Kuo, M.C., Schantz, S.P., Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers. Cancer Epidemiol Biomark Prev. 1998, 7, 351-354.
[45] Chow, H.H., Hakim, I.A., Vining, D.R., Crowell, J.A., Ranger-Moore J, et al., Effects of dosing condition on the oral bioavailability of green tea catechins after single-dose administration of polyphenon E in healthy individuals. Clin Cancer Res. 2005, 11, 4627-4633.
[46] Chow, H.H., Cai, Y., Alberts, D.S., Hakim, I., Dorr, R., Shahi, F., et al., Phase I pharmacokinetic study of tea polyphenols following single-dose administration of epigallocatechin gallate and polyphenon E. Cancer Epidemiol Biomark Prev. 2001, 10, 53-58.
[47] Unno, T., Kondo, K., Itakura, H., Takeo, T., Analysis of (-)-epigallocatechin gallate in human serum obtained after ingesting green tea. Biosci Biotechnol Biochem. 1996, 60, 2066-2068.
[48] Ullmann, U., Haller, J., Decourt, J.P., Girault, N., Girault, J., et, al. A single ascending dose study of epigallocatechin gallate in healthy volunteers. J Int Med Res. 2003, 31, 88-101.
[49] Feng, W.Y., Metabolism of green tea catechins: an overview. Curr Drug Metab. 2006, 7, 755-809.
[50] Fournier, T., Guibourdenche, J., Evain-Brion, D., Review: hCGs: different sources of production, different glycoforms and functions. Placenta. 2015, 36 Suppl, S60-S65.
[51] Tachibana, H., Koga, K., Fujimura, Y., Yamada, K., A receptor for green tea polyphenol EGCG. Nat Struct Mol Biol. 2004, 11, 380-381.
[52] van den Brûle, F.A., Price, J., Sobel, M.E., Lambotte, R., Castronovo, V., Inverse expression of two laminin binding proteins, 67LR and galectin-3, correlates with the invasive phenotype of trophoblastic tissue. Biochem Biophys Res Commun. 1994, 201, 388-393.
[53] Kumazoe, M., Sugihara K., Tsukamoto, S., Huang, Y., Tsurudome, Y., Suzuki, T., et al., 67-kDa laminin receptor increases cGMP to induce cancer-selective apoptosis, . J Clin Invest 2013, 123 787-799.
[54] Chang, J.Z., Yang, W.H., Deng, Y.T., Chen, H.M., Kuo, M.Y., EGCG blocks TGFβ1-induced CCN2 by suppressing JNK and p38 in buccal fibroblasts. Clin Oral Investig. 2013, 17, 455-461.
[55] Lee, M.H., Kwon, B.J., Koo, M.A., You, K.E., Park, J.C., Mitogenesis of vascular smooth muscle cell stimulated by platelet-derived growth factor-bb is inhibited by blocking of intracellular signaling by epigallocatechin-3-O -gallate. Oxid Med Cell Longev. 2013, 2013, 827905.
[56] Haslinger, P., Haider, S., Sonderegger, S., Otten, J.V., et al., AKT isoforms 1 and 3 regulate basal and epidermal growth factor-stimulated SGHPL-5 trophoblast cell migration in humans. Biol Reprod. 2013, 88, 54.
[57] Sonderegger, S., Haslinger, P., Sabri, A., Leisser, C., et al., Wingless (Wnt)-3A induces trophoblast migration and matrix metalloproteinase-2 secretion through canonical Wnt signaling and protein kinase B/AKT activation. Endocrinology. 2010, 151, 211-220.
[58] Petroff, M.G., Phillips, T.A., Ka, H., Pace, J.L., Hung, J.S., Isolation and culture of term human trophoblast cells. Methods Mol Med. 2006, 121, 203-217.
[59] Favata, M.F., Horiuchi, K.Y., Manos, E.J., Daulerio, A.J., et al., Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem. 1998, 273, 18623-18632.
[60] Yu, L., Zhao, Y., Fan, Y., Wang, M., Xu, S., Fu, G., Epigallocatechin-3 gallate, a green tea catechin, attenuated the downregulation of the cardiac gap junction induced by high glucose in neonatal rat cardiomyocytes. Cell Physiol Biochem. 2010, 26, 403-412.
[61] Wu J, Xu, X., Li, Y., Kou, J., et al., : Quercetin, luteolin and epigallocatechin gallate alleviate TXNIP and NLRP3-mediated inflammation and apoptosis with regulation of AMPK in endothelial cells. . Eur J Pharmacol 2014, 745, 59-68.
[62] Handwerger, S., New insights into the regulation of human cytotrophoblast cell differentiation. Mol Cell Endocrinol. 2010, 323, 94-104.
[63] Shih, L.J., Lin, Y.R., Lin, C.K., Liu, H.S., Kao, Y.H., Green tea (-)-epigallocatechin gallate induced growth inhibition of human placental choriocarcinoma cells. Placenta. 2016, 41, 1-9.
[64] Niazi, M., Coleman, D.V., Loeffler, F.E., Trophoblast sampling in eary pregnancy. Culture of rapidly dividing cells from immature placental villi. Br J Obstet Gynaecol. 1981, 88, 1081-1085.
[65] Fischer, I., Redel, S., Hofmann, S., Kuhn, C., Friese, K., Walzel, H., Jeschke, U., Stimulation of syncytium formation in vitro in human trophoblast cells by galectin-1. Placenta. 2010, 31, 825-832.
[66] Hills, F.A., Elder, M.G., Chard, T., Sullivan, M.H., Regulation of human villous trophoblast by insulin-like growth factors and insulin-like growth factor-binding protein-1. J Endocrinol. 2004, 183, 487-496. |