博碩士論文 962405005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:34.239.179.228
姓名 楊雅芳(Ya-fang Yang)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 長期與存活資料之聯合模型-新方法和數值方法的改進
(Joint Model of Longitudinal and Survival Data-New Approach and Numerical Improvement)
相關論文
★ 復發事件存活分析的共享廣義伽瑪脆弱因子之半母數聯合模型★ 加乘法風險模型結合長期追蹤資料之聯合模型
★ 有序雙重事件時間分析使用與時間相關的共變數-邊際方法的比較★ 存活與長期追蹤資料之聯合模型-台灣愛滋病實例研究
★ 以聯合模型探討地中海果蠅繁殖力與老化之關係★ 聯合模型在雞尾酒療法療效評估之應用—利用CD4/CD8比值探討台灣愛滋病資料
★ 時間相依共變數之雙重存活時間分析—台灣愛滋病病患存活時間與 CD4 / CD8 比值關係之案例研究★ Cox比例風險模型之參數估計─比較部分概似法與聯合模型
★ 復發事件存活時間分析-丙型干擾素對慢性肉芽病患復發療效之案例研究★ Cox 比例風險假設之探討與擴充風險模型之應用
★ 以聯合模型探討原發性膽汁性肝硬化★ 聯合長期追蹤與存活資料分析-肝硬化病患之實例研究
★ 復發事件存活時間分析-rhDNase對囊狀纖維化病患復發療效之案例研究★ 聯合長期追蹤與存活資料分析-原發性膽汁性肝硬化病患之實例研究
★ 復發事件存活時間分析-Thiotepa對膀胱癌病患復發療效之案例研究★ 半母數擴充風險模型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 因為估計量的一致性和半母數模型的有效性,聯合概似模型已廣泛的被使用在同時處理長期和存活資料上。當加速失效模型被運用於聯合概似模型存活資料的部分時,沒有特定形式的基礎風險函數通常被假設為分段函數,而這種不平滑的階層函數假設會導致劇烈跳動的概似函數,並且造成得到的參數估計值不是對應到概似函數的極大值。同時,因為滑概似函數不平滑的情形,直接尋找估計值的方法被用來得到參數的最大概似估計,但此一方法對於參數收斂的速度是相當緩慢且耗時。為了解決這些困難,我們提出平滑擬似-概似函數的方法來取代原本不平滑的階層平滑假設。除此之外,為了增加參數估計的效及減少計算所耗費時間,我們使用Gaussian Quadrature取代蒙地卡羅方法來計算EM演算法中M-step的積分,藉以得到更加正確的積分結果。另一方面,平滑擬似-概似函數也推廣到多重存活時間與脆弱模型的分析上。為了實務的方便,我們發展一MATLAB程式,程式中包含存活部分的半母數風險迴歸模型 (Cox 比例風除和加速失效模)以及長期資料部分的混合效用有母數和無母數基底的資料分析。
摘要(英) Joint likelihood approaches have been widely used to handle longitudinal and survival data at the same time because the estimation is consistent and semi-parametrically efficient. When accelerated failure time (AFT) model is employed as the survival component of the joint likelihood, the unspecified baseline hazard function is usually assumed to be a piecewise constant function. The non-smooth step function leads to very spiky likelihood function which is very hard to find the globe maximum. Moreover, due to non-smoothness of the likelihood function, direct search methods are used for maximization, which is very slow for parameter convergence and time consuming. Thus, to overcome the difficulties, we proposed a kernel smooth pseudo-likelihood function to replace the non-smooth step function. Besides, we replace MC integration method by the Gaussian quadrature approximation to obtain a more accurate numerical integration. The kernel smooth pseudo-likelihood approach can be extended to multivariate survival time cases by incorporating with frailty. For practical purpose, we use MATLAB to develop a program for popular join model approaches in the recent literature. The program includes semi-parametric hazard regression models, the Cox model and the AFT model, for the survival component, and parametric basis as well as nonparametric basis of mixed effects model for the longitudinal component.
關鍵字(中) ★ 加速失效模型
★ 擬似-概似函數
★ EM演算法
★ 聯合模型
★ Gaussian Quadrature
關鍵字(英) ★ Accelerated Failure Time Model
★ Pseudo-likelihood Function
★ EM algorithm
★ Joint Likelihood
★ Gaussian Quadrature
★ MATLAB
論文目次 中文摘要 ................ i
Abstract ................ ii
致謝辭 ................ iv
Contents ................ vi
Figure of Contents ................ vii
Table of Contents ................ viii
1、 Introduction ................. 1
2、 A Kernel Smooth Approach for Joint Modeling of Accelerated Failure Time and Longitudinal Data ......... 7
3、 A MATLAB Package for Longitudinal and Survival Data with Cox and AFT Models .....................19
4、 A Frailty Joint Modeling of Accelerated Failure Time for Longitudinal and Multiple Survival Data ......... 33
5、 Concluding Remarks and Future Works ............. 45
Appendix .......................................... 45
Reference .......................................... 56
參考文獻 Aalen O.O. (1992). Modelling heterogeneity in survival analysis by the compound Poisson distribution. Annals of Applied Probability, 2, 951-972.
Andersen P.K., Gill R.D. (1982). Cox’s regression model for counting processes: a large sample study. Annals of Statistics, 10(4), 1100-1120.
Balakrishnan N., Peng Y.W. (2006). Generalized gamma frailty model. Statistics in Medicine, 25, 2797-2816.
Bates D., Maechler M., Bollker B. (2012). lme4: Linear Mixed-Effects Models Using S4 Classes. R package version 0.999999-0, URL~http://cran.r-project.org/web/packages/lme4/.
Brown E.R., Ibrahim J.G., DeGruttola V. (2005). A Flexible B-spline Model for Multiple Longitudinal Biomarkers and Survival. Biometrics, 61, 64-73.
Bycott P., Taylor J. (1998). A Comparison of Smoothing Techniques for CD4 Data Measured with Error in a Time-Dependent Cox Proportional Hazards Model. Statist. Medicine, 17, 2061-2077.
Carey J.R., Liedo P., Muller H.G., Wang J.L., Chiou J.M. (1998). Relationship of Age Patterns of Fecundity to Mortality, Longevity, and Lifetime Reproduction in a Large Cohort of Mediterranean Fruit Fly Females. J. Gerontology: Biological Sciences, 53, 245-251.
Cox D.R. (1972). Regression Models and Life Tables (with discussion). Journal of the Royal Statistical Society: Series B, 34, 187-220.
Cox D.R., Oakes D. (1984). Analysis of Survival Data. London: Chapman and Hall.
Ding J., Wang J.L. (2008). Modeling Longitudinal Data with Nonparametric Multiplicative Random Effects Jointly with Survival Data. Biometrics, 64, 546-556.
Fleming T.R., Harrington D.P. (1991). Counting Processes and Survival Analysis. Wiley, New York.
Gao X., Carlin B. (2004). Seperate and Joint Modeling of Longitudinal and Event Time Data Using Standard Computer Packages. The American Statistican, 58, 16-24.
Grambsch P.M., Therneau T.M. (1994). Proportional Hazards Tests and Diagnostics Based on Weighted Residuals. Biometrika, 81, 515-526.
Greenwood M., Yule G.U. (1920). An enquiry into the nature of frequency distributions representative of multiple happenings with particular reference of multiple attacks of disease or of repeated accidents. Journal of the Royal Statistical Society, 83, 255-279.
Heath M.T. (2002). Scientific Computing: An Introductory Survey. 2nd edition. McGraw-Hill.
Henderson R., Diggle P., Dobson A. (2000). Joint Modeling of Longitudinal Measurements and Event Time Data. Biostatistics, 4, 465-480.
Hsieh F.S., Tseng Y.K., Wang J.L. (2006). Joint Modeling of Survival and Longitudinal Data: Likelihood Approach Revisted. Boimetrics, 62, 1037-1043.
Hougaard P. (1986). Survival models for heterogeneous populations derived from stable distributions. Biometrika, 73, 387-396.
Hougaard P. (1986). A class of multivariate failure time distributions. Biometrika, 73, 671-678.
Hougaard P. (2000). Analysis of Multivariate Survival Data. Springer: New York, 2000.
Hougaard P., Myglegaard P., Borch-Johnsen K. (1994). Heterogeneity models of disease susceptibility, with application to diabetic nephropathy. Biometrics, 50, 1178-1188.
The Performance of Kernel Density Functions in Kernel Distribution Function Estimation. Statistics & Probability Letters, 9, 129-132.
Using Non-stochastic Terms to Advantage in Kernel-based Estimation of Intergrated Squared Density Derivatives. Statistics & Probability Letters, 11, 511-514.
Generalized Cross-validation for Bandwidth Selection of Backfitting Estimates in Gerneralized Additive Models. Journal of Computational & Graphical Statistics, 13, 66-89.
Klein J.P. (1992). Semiparametric estimation of random effects using the Cox model based on EM algorithm. Biometrics, 48, 795-806.
Lam K.F., Kuk A.Y.C. (1997). A marginal likelihood approach to estimation in frailty models. Journal of the American Statistical Association, 92, 985-990.
Landers T.L., Jiang S.T., Peek J.R. (2001). Semi-parametric PWP model robustness for log-linear increasing rates of occurrence of failures. Reliab Eng Syst Saf, 73, 145-153.
Landers T.L., Soroudi H.E. (1991). Robustness of a semi-parametric proportional intensity model. IEEE Trans. Reliab., 40(2), 161-164.
Liao, J. G., We, Y., Lin Y. (2010). Improving Sheather and Jones’ bandwidth selector for difficult densities in kernel density estimation. Journal of nonparametric statistics, 22, 105-114.
Lim H.J., Liu J., Melzer-Lange M. (2007). Comparison of Methods for Analyzing Recurrent Events Data: Application to the Emergency Department Visits of Pediatric Firearm Victims. Acceident Analysis and Prevention, 39, 290-299.
Lin D.Y., Ying Z. (1995). Semiparametric inference for the accelerated life model with time-dependent covariates. Journal of Statistical Planning and Inference, 44, 47-63.
Liu L., Huang X. (2009). Joint analysis of correlated repeated measures and recurrent events processes in the presence of death, with application to a study on acquired immune deficiency syndrome. Journal of the Royal Statistical Society: Series C, 58, 65-81.
McGilchrist C.A. (1993). REML estimation for survival models with frailty. Biometrics, 49, 221-225.
Nielsen G.G., Gill R.D., Andersen P.K., Srensen T.I.A. (1992).
Counting process approach to maximum likelihood estimation in frailty models. Scandinavian Journal of Statistics, 19, 25-43.
Pan W. (2001). Using frailties in the accelerated failure time model. Lifetime Data Anal., 7(1), 55-64.
Pawitan Y., Self S. (1993). Modeling Disease Marker Processes in AIDS. J. Amer. Statist. Assoc., 83, 719-726.
Prentice R.L., Williams B.J., Peterson A.V. (1981). On the regression analysis of multivariate failure time data. Biometrika, 68, 373-379.
Qureshi W.M., Landers T.L., Edward E.G. (1994). Robustness evaluation of a semi-parametric proportional intensity model. Reliab. Eng. Syst. Saf., 44, 103-109.
R Development Core Team (2012). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-12-7, URL~http://www.R-project.org/.
Rizopoulos D. (2010).
JM: An R Package for the Joint Modelling of Longitudinal and Time-to-Event Data. Journal of Statistical Software, 35, 1-33.
Rizopoulos D. (2012). JM: Joint Modeling of Longitudinal and Survival Data. R package version 1.0-0, URL~http://cran.r-project.org/web/packages/JM/.
Rizopoulos, D., Verbeke, G., Molenberghs, G. (2008). Shared parameter models under random effects misspecification. Biometrka, 95, 63-74.
Robins J., Tsiatis A.A. (1992). Semiparametric Estimation of an Accelerated Failure Time Model with Time Dependent Covariates. Biometrika, 79, 311-319.
Sheather, Jones (1991). A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society: Series B, 52, 683-690.
Song X., Davidian M., Tsiatis A.A. (2002). A Semiparametric Likelihood Approach to Joint Modelling of Longitudinal and Time-to-Event Data. Biometrics, 58, 742-753.
The MathWorks, Inc (2007). MATLAB: The Language of Technical Computing, Version 7.9.0. The MathWorks, Inc., Natick, Massachusetts. URL~http://www.mathworks.com/products/matlab/.
Therneau T. (2012). Survival: Survival Analysis, including Penalised Likelihood. R package version 2.36-14, URL~http://cran.r-project.org/web/packages/survival/.
Therneau T.M., Grambsch P.M. (2000). Modeling Survival Data: Extending the Cox Model. Springer-Verlag, New York.
Tseng Y.K., Hseih F.S., Wang J.L. (2005). Joint Modeling of Accelerated Failure Time and Longitudinal Data. Boimetrika, 92, 587-603.
Tsiatis A.A., Davidian M. (2001). A Semiparametric Estimator for the Proportional Hazards Model with Longitudinal Covariates Measured with Error.
Biometrika, 88, 447-458.
Tsiatis A.A. and Davidian M. (2004). Joint Modeling of Longitudinal and Time-to-Event Data:~an overview. Statistica Sinica, 14, 809-834.
Tsiatis A.A., DeGruttola V., Wulfsohn M.S. (1995). Modeling the Relationship of Survival to Longitudinal Data Measured with Error: Applications to Survival and CD4 Counts in Patients with AIDS. J. Amer. Statist. Assoc., 90, 27-37.
Vaupel J.W., Manton K.G., and Stallard E. (1997). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, 16, 439-454.
Verbeke G. and Davidian M. (2008). Joint Models for Longitudinal Data: Introduction and Overview. Longitudinal Data Analysis: Handbooks of Modern Statistical Methods Ed. Fitzmaurice, G, Davidian, M, Verbeke, G, Molenberghs, G, 319-326. Chapman & Hall/CRC.
Vithala S. (1994). Robustness of a semi-parametric proportional intensity model for the case of a log-linear non-homogeneous Poisson process. A thesis of the Industrial Engineering Department at the University of Arkansas.
Wang Y., Taylor J.M.G. (2001). Jointly Modeling Longitudinal and Event Time Data with Application to Acquired Immunodeficiency Syndrome. Journal of the American Statistical Association, 96, 895-905.
Wei G.C.G., Tanner M.A. (1990). A Monte Carlo Implementation of the EM Algorithm and Poor Man’s Data Augmentation Algorithm. J. Amer. Statist. Assoc., 85, 699-704.
Wei, L.J., Lin, D.Y., Weissfeld, L. (1989). Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. Journal of the American Statistical Association, 84, 1065-1073.
Wulfsohn M.S., Tsiatis A.A. (1997). A Joint Model for Survival and Longitudinal Data Measured with Error. Boimetrics, 53, 330-339.
Xu L., Zhang J. (2010). An EM-like algorithm for the semiparametric accelerated failure time gamma frailty model. Computational Statistics and Data Analysis, 54, 1467-1474.
Yu M., Law N.J., Taylor J.M.G., Sandler H.M. (2004). Joint Longitudinal-Survival-Cure Models and their Application to Prostate Cancer. Statistica Sinica, 14, 835-862.
Zeng D., Cai J. (2005). Asymptotic Results for Maximum Likelihood Estimators in Joint Analysis of Repeated Measurements and Survival Time. Ann. Stat., 33, 2132-2163.
Zeng D. and Lin, D.Y. (2007). Efficient Estimation in the Accelerated Failure Time Model. Journal of the American Statistical Association, 102, 1387-1396.
Zhang J., Peng Y. (2007). An alternative estimation method for the accelerated failure time frailty model. Comput. Statist. Data Anal., 51(9), 4413-4423.
指導教授 曾議寬(Yi-kuan Tseng) 審核日期 2013-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明