博碩士論文 962406017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:54.163.20.123
姓名 盧俊宏(Lu, Jyun-Hong)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 一維光柵陣列結構的特性及應用研究-以Helmholtz resonator 陣列及Morpho 蝴蝶翅膀結構為例
(Study and Applications of the One-Dimensional Grating Structures- Helmholtz Resonator Array and Morpho Butterfly Wing.)
相關論文
★ 氮化鎵微光學元件之研究★ 二維雙輸入雙輸出光子晶體分光器
★ 矽光波導元件光耗損研究★ 矽晶片波導元件研究
★ 砷化鎵光子晶體共振腔研究★ 應用奈米小球製作之波導模態共振器
★ 光子晶體異常折射之能流研究★ 氮化鎵光子晶體共振腔
★ 分析BATC大視野多色巡天計畫中正常星系的質光比★ 新型中空多模干涉分光器
★ 表面電漿對於半導體發光元件光萃取效率的影響之探討★ 半導體光子晶體雷射之研究
★ 新型中空光波導研製與應用★ 動態波長分配技術在乙太被動光纖網路的應用
★ 禁止頻帶材料的光學與聲波特性研究★ 漸變式光子晶體透鏡研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文研究關於一維亥姆霍茲共鳴器陣列及Morpho 蝴蝶翅膀微結構的特性。
藉由共振腔的共振(局域共振),亥姆霍茲共鳴器陣列可以在特定頻率產生很大的吸收。調整亥姆霍茲共鳴器的結構參數可以觀察到不同結構的共振波長位移的情形。而彈簧質量模型的近似,可以幫助我們更進一步的了解聲波在亥姆霍茲共鳴器中的共振行為。在模擬的過程中我們發現亥姆霍茲共鳴器陣列在特定頻率會有類似Fabry–Pérot干涉的效應,且其頻率與底板厚度相關。由穩態場圖可以觀察到此效應是由底板和亥姆霍茲共鳴器陣列的共振所產生。在應用方面,由測試的結果發現,亥姆霍茲共鳴器陣列對於液體參數變化的感應非常靈敏,因此很適合拿來量測混和溶液的濃度變化。
在聲學的量測系統上我們採用了Ultrasonic immersion transmission technique來量測亥姆霍茲共鳴器陣列。並且在結構特性量測及濃度量測的兩個階段分別採用了不同的量測架構。量測結果顯示在高低頻的信號對比度都超過20dB,且結構對濃度變化的靈敏度高達1757 kHz/Molar ratio unit(Molar ratio 0-0.035)。
Morpho蝴蝶翅膀結構的部分,我們採用嚴格耦合波理論和平面波展開法來分析此結構的特性。我們發現其lamella間的錯位是造成斜向入射時反射光不會有色偏的主因。此外,我們也發現調整結構的垂直方向週期可以等比例的調整反射光顏色。我們也嘗試把蝴蝶翅膀結構視為一個二維的光子晶體結構,並且使用二維的平面波展開法和計算態密度來分析翅膀結構。計算結果顯示翅膀結構在垂直方向藍光區域並不一定會有相對應的partial band gap。在態密度的結果中,在藍光區域會有明顯的強度下降情形。我們改進了態密度的計算方式,使它可以顯示入射角度及反射光頻率的資訊。與嚴格耦合波理論的結果相比較,雖然反射行為不會完整的相符,不過改良後的態密度的結果所顯示出來的反射特徵與嚴格耦合波的結果一致。這也代表Morpho蝴蝶翅膀結構可以被視為一個二維的光子晶體結構。經由改良後的態密度計算法,可以讓平面波展開法分析斜向入射光的反射行為。
摘要(英) In this thesis, we studied the one-dimensional (1D) grating structures of the Helmholtz resonator (HR) array and the Morpho butterfly wing. The HR array can absorb sound waves in specific frequencies by the locally resonant effect. By adjusting the structural parameters of the HR array, we can observe the behavior of the resonant frequency shift. The mapping between the two-spring-mass model and the finite-difference time-domain results can help us to understand the acoustic resonance inside the HR structure. Furthermore, we discover that the Fabry–Pérot-type interference occurs in this structure, and that the resonant frequencies are proportional to the thickness of the substrate. This resonant effect can be obviously observed in the field pattern of the quasi-steady state, and it resonates from the HR and substrate structure. Besides, HR array is rather sensitive to the variation of the liquid parameters. Therefore, this kind of structure is suitable for sensing the liquid concentration.
In the acoustic measurement system, we adopt the ultrasonic immersion transmission technique in our experimental setup. In the two experimental stages of the structural parameters and liquid concentration sensing, we set the two different types of the experimental setups. The measured results show that the extinction ratio is larger than 20dB, and the sensitivity to the variation of the liquid concentration is up to 1757 kHz/Molar ratio unit during the Molar ratio 0-0.035.
We adopt the rigorous coupled-wave analysis algorithm (RCWA) and plane wave expansion (PWE) method to investigate the optical properties of wing structure of the Morpho butterfly. The results show that the displacement between the lamellae is the main condition for reflected the stable wavelength (color) in the oblique incidence. Besides, adjusting the period in the vertical direction can linearly modify the reflection (wavelength) color. The wing structure can be regarded as a two dimensional photonic crystal (2D PC) structure and we analyze the optical behavior by using the plane wave expansion (PWE) method and the photonic density of states (PhDOS). The results show that the partial band gap does not usually exist in the direction of the normal incidence. Furthermore, we improve the calculation of the PhDOS for the condition in the oblique incident light. The property of the reflection light can be observed in the results obtained from the modified PhDOS results which consist with that of the RCWA. The consistency between the two methods also implies that the wing structure can be regarded as a 2D periodic structure.
關鍵字(中) ★ 有限差分時域法
★ 亥姆霍茲共鳴器
★ 聲子晶體
★ 彈簧質量模型
★ 光子晶體
★ Morpho 蝴蝶翅膀
★ 嚴格耦合波理論
★ 平面波展開法
★ 態密度
關鍵字(英) ★ Finite-difference time-domain method
★ Helmholtz resonator
★ Phononic crystals
★ Spring-mass model
★ Photonic crystals
★ Morpho butterfly wings
★ Rigorous coupled wave theory
★ Plane wave expansion method
★ Density of states
論文目次 摘要 i
Abstract iii
謝誌 vi
目錄 vii
圖目錄 x
表目錄 xvii
名詞縮寫 xviii
Chapter 1 緒論 1
1.1 光子晶體(Phononic crystals) 2
1.2.1 局域共振(local resonance) 4
1.2 亥姆霍茲共鳴器(Helmholtz Resonator) 5
1.3 液體濃度偵測器 6
1.4 仿生結構中的光子晶體 10
1.5 小結 22
Chapter 2 理論 24
2.1 二維有限時域差分法(2-D Finite difference time domain (FDTD) method) [82 -86] 24
2.1.1 The simple force equation: Euler’s equation 24
2.1.2 聲波的連續方程式(The equation of continuity) 25
2.1.2 聲波的離散化(Discretization of the formula on 2D acoustic wave) [82] 26
2.1.3 2D inhomogeneous FDTD [84-86] 28
2.2 準穩態場圖(Quasi-steady state filed contour) [87] 30
2.3 彈簧質量模型(Spring-mass model) [27] 30
2.4 亥姆霍茲共鳴器(The Helmholtz resonator) [26, 27] 32
2.5 嚴格耦合波理論(Rigorous coupled-wave analysis algorithm (RCWA) method) (electromagnetic wave) 34
2.6 平面波展開法(Plane wave expansion (PWE) method) (electromagnetic ave) 38
2.7 態密度的計算(Original and modified photonic density of states) (electromagnetic wave) 40
2.8 小結 42
Chapter 3 一維亥姆霍茲共鳴器的特性及其應用 44
3.1 彈簧質量模型及FDTD的結果討論 44
3.2 彈簧質量模型擬合結果. 46
3.3 結構特性量測 50
3.4 液體濃度感測器模擬結果 53
3.4.1 FDTD模擬結果 53
3.4.2 彈簧質量模型模擬結果 55
3.5 液體濃度感測器的量測結果 57
3.6 量測誤差討論 62
3.7 小結 65
Chapter 4 Morpho蝴蝶翅膀的週期性奈米結構 67
4.1 參考結構的模擬 67
4.2 翅膀結構的結構參數分析 71
4.3 二維光子晶體-Morpho蝴蝶翅膀結構 76
4.4 The modified PhDOS simulation of the wing structures 79
4.5 小結 81
Chapter 5 結論及未來工作 82
5.1 亥姆霍茲共鳴器及Morpho蝴蝶翅膀結構的結論 82
5.2 未來工作 83
參考文獻 85
文章發表 90
參考文獻 [1] R. Martínez-Sala, J. Sancho, J. V. Sánchez, V. Gómez, J. Llinares and F. Meseguer, “Sound attenuation by sculpture”, Nature 378, 241, 1995.
[2] E. Yablonovith, “inhibited spontaneous emission in solid-state physicsand electronics, PRLYablonovitchPBGsInhibited”, Phys. Rev. Lett. 58, 2059, 1987.
[3] V. Narayanamurti, H. L. Störmer, M. A. Chin, A. C. Gossard, and W. Wiegmann, “Selective Transmission of High-Frequency Phonons by a Superlattice: The ”Dielectric” Phonon Filter”, Phys. Rev. Lett. 43, 2012, 1979.
[4] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites”, Phys. Rev. Lett. 71, 2022, 1993.
[5] M. Sigalas, E.N. Economou, “Band structure of elastic waves in two dimensional systems”, Solid State Commun. 86, 141-143, 1993.
[6] M. M.Sigalas,E. N.Economou, “Elastic and acoustic wave band structure”, J. Sound Vib. 158, 377-382, 1992.
[7] F. R. Montero de Espinosa, E. Jiménez, and M. Torres, “Ultrasonic Band Gap in a Periodic Two-Dimensional Composite”, Phys. Rev. Lett. 80, 1208, 1998.
[8] M. Torres, F. R. Montero de Espinosa, D. Garcia-Pablos, and N. Garcia,“Sonic Band Gaps in Finite Elastic Media: Surface States and Localization Phenomena in Linear and Point Defects”, Phys. Rev. Lett. 82, 3054, 1999.
[9] M. Kafesaki, M. M. Sigalas, and N. García,“Frequency Modulation in the Transmittivity of Wave Guidesin Elastic-Wave Band-Gap Materials”, Phys. Rev. Lett. 85, 4044, 2000.
[10] A. Khelif, B. Djafari-Rouhani, J. O. Vasseur, P. A. Deymier, Ph. Lambin, and L. Dobrzynski, “Transmittivity through straight and stublike waveguides in a two-dimensional phononic crystal”, Phys. Rev. B 65, 174308, 2002.
[11] A. Talneau, L. Le Gouezigou, N. Bouadma,M. Kafesaki, C. M. Soukoulis and M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 mu m,” Appl. Phys. Lett. 80, 547-549, 2002.
[12] D. S. Song, S. H. Kim, H. G. Park, C. K. Kim and Y. H. Lee “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers”, Appl. Phys. Lett. 80, 3901, 2002.
[13] S. Lan, K. Kanamoto, T. Yang, S. Nishikawa, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, and H. Ishikawa, “Similar role of waveguide bends in photonic crystal circuits and disordered defects in coupled cavity waveguides: An intrinsic problem in realizing photonic crystal circuits”, Phys. Rev. B 67, 115208, 2003.
[14] H. T. Chien, C. C. Chen, and P. G. Luan, “Photonic crystal beam splitters”, Opt. Commun. 259, 873-875, 2006.
[15] C.-C. Chen, H.-D. Chien, and P.-G. Luan, “Photonic Crystal Beam Splitters,” Appl. Opt. 43, 6187-6190, 2004.
[16] Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu,Z. Yang, C. T. Chan, P. Sheng, “Locally Resonant Sonic Materials”, Science 289, 1734, 2000.
[17] C. Goffaux, J. S. Dehesa, and A. L. Yeyati, “Evidence of Fano-Like Interference Phenomena in Locally Resonant Materials”, Phys. Rev. Lett. 88, 225502, 2002.
[18] G. Wang, X. Wen, J. Wen, L. Shao, and Y. Liu, “Two-Dimensional Locally Resonant Phononic Crystals with Binary Structures”, Phys. Rev. Lett. 93, 154302, 2004.
[19] R. Sainidou, B. D. Rouhani, Y. Pennec, and J. O. Vasseur, “Locally resonant phononic crystals made of hollow spheres or cylinders”, Phy. Rev. E 73, 24302, 2006.
[20] D. Bigoni, S. Guenneau, A. B. Movchan, and M. Brun, “Elastic metamaterials with inertial locally resonant structures: Application to lensing and localization”, Phy. Rev. B 87, 174303, 2013.
[21] Ronald L. Panton and John M. Miller, “Resonant frequencies of cylindrical Helmholtz resonators”, J. Acoust. Soc. Am. 57,1533, 1975.
[22] P. K. Tang, W. A. Sirignano, “THEORY OF A GENERALIZED HELMHOLTZ RESONATORi”, J. Sound. Vib. 26, 247-262, 1973.
[23] A. Selamet, I. Lee, “Helmholtz resonator with extended neck”, J. Acoust. Soc. Am. 113,1975, 2003.
[24] J. M. de Bedout, M. A. Franchek, R. J. Bernhard, L. Mongeau, “ADAPTIVE-PASSIVE NOISE CONTROL WITH SELF-TUNING HELMHOLTZ RESONATORS”, J. Sound. Vib.,202, 109-123, 1997.
[25] L.E. Kinsler, A. R. Frey, A. B. Coppens, J. V. Sanders, Fundamentals of Acoustics, pp. 113-296 (John Wiley & Sons, Inc., 2000).
[26] 馬大猷, 現代聲學理論基礎, pp. 115-117 (科學出版社, 2003).
[27] 杜功煥, 朱哲民, 龔秀芬, 聲學基礎, pp.126-175 (南京大學出版社, 2001).
[28] http://www.frca.co.uk/article.aspx?articleid=332
[29] http://www.oximetry.org/pulseox/principles.htm
[30] Wikipedia. ” Pulse oximetry”,http://en.wikipedia.org/wiki/Oximetry
[31] S. Lopez. ”Pulse Oximeter Fundamentals and Design.” Free-scale Semiconductor, Inc., AN4327 Rev 1.09 (2011).
[32] Wikipedia. ”Refractometer ”,http://en.wikipedia.org/wiki/Refractometer.
[33] http://www2.ups.edu/faculty/hanson/labtechniques/refractometry/theory.htm
[34] R Lucklum and J Li, “Phononic crystals for liquid sensor applications”, Meas. Sci. Technol. 20, 124014, 2009
[35] R. Lucklum and J. Li. ”Transmission properties of 1D and 2D phononic crystal sensors.” Ultrasonics Symposium (IUS), 2009 IEEE International. IEEE, 2009.
[36] Kuhnkies, R., und W. Schaaffs: Acustica 13 (1963) 407.
[37] M. Ke, M. Zubtsov, and R. Lucklum, “Sub-wavelength phononic crystal liquid sensor”, J. Appl. Phys. 110,026101(2011).
[38] M. Zubtsov, R. Lucklum, M. Ke, A. Oseev, R. Grundmann, B. Henning, U. Hempel, “2D phononic crystal sensor with normal incidence of sound”, Sensor Actuat. A-Phys. 186, 118-124 (2012)
[39] A. Oseev, R. Lucklum, M. Ke, M. Zubtsov, R. Grundmann, “Phononic crystal sensor for liquid property determination”, Proc. of SPIE 8346, 834607-1 (2012)
[40] R. Lucklum, “Phononic Crystal Sensors - Insides Behind the Scene”, IEEE International Ultrasonics Symposium Proceedings
[41] A.Oseev, M. Zubtsov, R. Lucklum, “Octane number determination of gasoline with a phononic crystal sensor”, Procedia Eng. 47, 1382-1385(2012).
[42] A. Oseev, M. Zubtsov, R. Lucklum, “Gasoline properties determination with phononic crystal cavity sensor”, Sensor Actuat. 189, 208-212 (2013).
[43] Wikipedia. ”Opal”, http://en.wikipedia.org/wiki/Opal
[44] G. Tayeb, B. Gralak and S. Enoch, “Structural Colors in Nature and Butterfly-Wing Modeling”, Optics and Photonics News 14(2), 38-43 (2003)
[45] D. P. Puzzo, A. C. Arsenault, I. Manners and G. A. Ozin, “Electroactive Inverse Opal: A Single Material for All Colors”, Angew. Chem. 121(5), 961–965(2009)
[46] C. I. Aguirre, Edilso Reguera andAndreas Stein, “Tunable Colors in Opals and Inverse Opal Photonic Crystals”, Adv. Funct. Mater 20(16), 2565–2578(2010).
[47] R. C. McPhedran,N. A. Nicorovici, D. R. McKenzie, L. C. Botten, A. R. Parker and G. W. Rouse “The Sea Mouse and the Photonic Crystal,” Aust. J. Chem. 54, 241–244(2001).
[48] J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X Liu, and R. Fu, “Coloration strategies in peacock feathers,” PNAS 100(22), 12576(2003).
[49] Y. Li, Z. Lu, H. Yin, X. Yu, X. Liu, and J. Zi, “Structural origin of the brown color of barbules in male peacock tail feathers,” Phys. Rev. E 72, 010902(2005).
[50] Wikipedia., ”大藍閃蝶”, http://zh.wikipedia.org/wiki/%E5%A4%7%E8%97%8D%E9%96%83%E8%9D%58.
[51] Wikipedia., ”Morpho”, http://en.wikipedia.org/wiki/Morpho .
[52] Wikipedia., ”閃蝶屬”, http://zh.wikipedia.org/wiki/%E9%96%83%E8%9D%58%E5%53%AC .
[53] C. M. Penz, P. J. DeVries, American Museum Novitates, No. 3374, AmericanMuseum of Natural History, New York, 2002.
[54] Walter, Bernhard Ludwig Johann Heinrich. Die Oberflächen-oder Schillerfarben. F. Vieweg und Sohn, 1895.
[55] Lord Rayleigh, “VII. On the optical character of some brilliant animal colours,” Philos. Mag. 37, 98 – 121 (1919).
[56] A. A. Michelson, “On metallic colouring in birds and insects,” Philos. Mag., 21, 554 – 567(1911).
[57] L. Rayleigh, “On the reflection of light from a regularly stratified medium,” Proc. Roy. Soc. Lon., 93, 565-577(1917).
[58] H. Onslow, “On a Periodic Structure in Many Insect Scales, and the Cause of Their Iridescent Colours,” Philos. Trans. R. Soc. Lond. 731, 1 –74(1921).
[59] C. W. Mason, “Structural Colors in Insects. I,”J. Phys. Chem. 30, 383– 395(1926).
[60] C. W. Mason, “Structural Colors in Insects. II,” J. Phys. Chem. 31, 321 –354(1927).
[61] C. W. Mason, “Structural Colors in Insects. III,” J. Phys. Chem. 31, 1856 – 1872(1927).
[62] Thomas F. Anderson and A. Glenn Richards Jr., “An Electron Microscope Study of Some Structural Colors of Insects,” J. Appl. Phys. 13, 748 (1942).
[63] H. Ghiradella, W. Radigan, “Development of butterfly scales. II. Struts, lattices and surface tension,” J. Morphol. 150, 279 –298(1976).
[64] H. Ghiradella, “Structure of Iridescent Lepidopteran Scales: Variations on Several Themes,” Ann. Entomol. Soc. Am.77, 637– 645(1984).
[65] H. Ghiradella, “Light and color on the wing: structural colors in butterflies and moths,”Appl. Opt. 30, 3492– 3500(1991).
[66] H. Ghiradella, “Structure of butterfly scales: Patterning in an insect cuticle,”Microsc. Res. Tech. 27, 429 –438(1994).
[67] H. Ghiradella in Microscopic Anatomy of Invertebrates, Vol. 11A (Eds.:F. W. Harrison, M. Locke), Wiley-Liss, New York, 1998, pp. 257– 287.
[68] H. Ghiradella, “Development of ultraviolet-reflecting butterfly scales: How to make an interference filter,” J. Morphol.142, 395 –410(1974).
[69] H. Ghiradella, “Structure and development of iridescent butterfly scales: Lattices and laminae,” J. Morphol. 202, 69 –88(1989).
[70] S. Kinoshita, S. Yoshioka and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,”Proc. R. Soc. Lond. B 269(1499), 1417 – 1421(2002).
[71] S. Kinoshita, S. Yoshioka, Y. Fujii, N. Okamoto, “Photophysics of Structural Color in the Morpho Butterflies,” Forma 17, 103–121(2002).
[72] S. Kinoshita, S. Yoshioka, J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401(2008).
[73] Dong Zhuand Shuichi Kinoshita, “Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: Effects of alternately stacked shelves and ridge density,” Phys. Rev. E 80, 051924 (2009).
[74] S. Kinoshita and S. Yoshioka, “Structural Colors in Nature: The Role of Regularity and Irregularity in the Structure,” ChemPhysChem 6, 1442 – 1459 (2005).
[75] M. A. Steindorfer, V. Schmidt, M. Belegratis, B. Stadlober,and J. R. Krenn2,“Detailed simulation of structural color generation inspired by the Morpho butterfly,” Opt. Express 20(19), 21482–21494 (2012).
[76] B. Gralak, G. Tayeb, S. Enoch, “Morpho butterflies wings color modeled with lamellar grating theory,” Opt. Express 9(11), 567-578 (2001).
[77] A.Saito, S.Yoshioka,S.Kinoshita, “Reproduction of the Morpho butterfly′s blue: arbitration of contradicting factors. In: Optical Science and Technology,” the SPIE 49th Annual Meeting. International Society for Optics and Photonics, 188-194 (2004).
[78] K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, S. Matsui, “Brilliant Blue Observation from a Morpho-Butterfly-Scale Quasi-Structure,” Jpn. J. Appl. Phys. 44(1), 48-50 (2005).
[79] A. Saito, J. Murase, M. Yonezawa, H. Watanabe, T. Shibuya, M. Sasaki, T. Ninomiya, S. Noguchi, M. A. Kasaya, Y. Kuwahara, “High-throughput reproduction of the Morpho butterfly′s specific high contrast blue,” Proc. of SPIE 8339, 83390C-1 (2012).
[80] A. Saito, M. Nakajima, Y. Miyamura, K. Sogo, Y. Ishikawa, Y. Hirai, “Morpho blue by nanocasting lithography,” In: SPIE Optics+ Photonics. International Society for Optics and Photonics, 63270Z-63270Z-9 (2006).
[81] R. H. Siddique, S. Diewald, J. Leuthold, H. Hölscher, “Theoretical and experimental analysis of the structural pattern responsible for the iridescence of Morpho butterflies,” Opt. Express 21(12), 14351-14361 (2013).
[82] Schneider J. B., (2013) Understanding the FDTD Method, Available online.
[83] http://scienceworld.wolfram.com/physics/LameConstants.html
[84] B. A. Auld, Acoustic fields and waves in solids. New York: Wiley,pp.165-190 (1973).
[85] E. A. Skelton, J. H. James, Theoretical Acoustics of Underwater Structures, (World Scientific Publishing Co. Pte. Ltd. 1997).
[86] M. M. Sigalas, N. Garcia, “Theoretical study of three dimensional elastic band gaps with the finite-difference time-domain method”, J. Appl. Phys., 87(6), 3122 (2000).
[87] 簡宏達, 二維雙輸入雙輸出光子晶體分光器, 國立中央大學光電科學研究所碩士論文, 2004.
[88] S. Peng, G. M. Morris, “Efficient Implementation of rigorous coupled-wave analysis for surface-relief grating,” J. Opt. Soc. Am. A 12(5), 1087-1096 (1995).
[89] M. G. Moharam, E. B. Grann, and D. A. Pommet, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068-1076(1995).
[90] 欒丕綱, 陳啟昌, 光子晶體-從蝴蝶翅膀到奈米光子學, (五南圖書出版公司, 2006), pp 44-136.
[91] K. Sakoda, “Optical Properties of Photonic Crystal”, Springer, pp. 13-41, 2001.
[92] K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic crystal (Wiley, 2004), 4-5.
[93] Y. Wang, B. Cheng and D. Zhang, “The density of states in quasiperiodic photonic crystals,” J. Phys.: Condens. Matter 15, 7675-7680 (2003).
[94] I.A. Sukhoivanov, I.V. Guryev, J.A. Andrade Lucio, E. Alvarado Mendez, M. Trejo-Duran, and M. Torres-Cisneros, “Photonic density of states maps for design of photonic crystal devices,” Microelectron. J. 39, 685-689 (2008).
[95] T. Taniguchi, and M. Büttiker, “Friedel phases and phases of transmission amplitudes in quantum scattering systems,” Phys. Rev. B 60, 13814-13823 (1999).
[96] A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm, S. Ballandras, and V. Laude, “Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal,” Phys. Rev. B 68, 214301 (2003).
[97] M. Zubtsov, R. Lucklum, M. Ke, A. Oseev, R. Grundmann, B. Henning and U. Hempel,“2D phononic crystal sensor with normal incidence of sound,” Sensors Actuat. A-Phys 186, 118 (2012).
[98] D. E. Mihai and E. Strájescu, “Considerations about kalman Filtration Applied to Surface Reconstruction Methods,” U.P.B. Sci. Bull. Series D: Mechanical Engineering 69, 59-66 (2007).
[99] S. Berthier, J. Boulenguez, Z. Bálint, “Multiscaled polarization effects in suneve coronate (Lepidoptera) and other insects: application to anti-counterfeiting of banknotes,” Appl. Phys. A 86, 123-130(2007).
[100] M. Melanie, “An introduction to genetic algorithms,” MIT press, 1998.
[101] J. H. Lu, D. P. Cai, Y. L. Tsai, C. C. Chen, C. E. Lin, and T. J. Yen, “Genetic algorithms optimization of photonic crystal fibers for half diffraction angle reduction of output beam,” Opt. Express 22(19), 22590 (2014)
[102] M. P. Bendsøe, and C. A. M. Soares,“Topology Design of Structures,” Dordrecht: Kluwer Academic Publishers, 1993.
[103] S. Berthier, J. Boulenguez, Z. Bálint, “Multiscaled polarization effects in Suneve coronata (Lepidoptera) and other insects: application to anti-counterfeiting of banknotes,” Appl. Phys. A 86, 123-130(2007).
指導教授 陳啟昌、蕭輔力
(Chii-Chang Chen、Fu-Li Hsiao)
審核日期 2015-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明