博碩士論文 962406023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:54.81.220.239
姓名 蘇莉真(Li-Chen Su)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 成對表面電漿波生物感測器之研究及其在生醫上的應用
(Study of paired surface plasma waves biosensor and its medical application)
相關論文
★ 半導體雷射控制頻率★ 比較全反射受挫法與反射式干涉光譜法在生物感測上之應用
★ 193nm深紫外光學薄膜之研究★ 雙頻雷射共光程外差干涉橢圓儀
★ 超晶格結構之硬膜研究★ 交錯傾斜微結構薄膜在深紫外光區之研究
★ 膜堆光學導納量測儀★ 紅外光學薄膜之研究
★ 成對表面電漿波生物感知器應用在去氧核糖核酸及微型核糖核酸 雜交反應檢測★ 影像式外差干涉術之建立
★ 探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究
★ 掃描式白光干涉儀應用在量測薄膜之光學常數★ 量子點窄帶濾光片
★ 以量測反射係術探測光學薄膜之特性★ 嵌入式繼光鏡顯微超頻譜影像系統應用在口腔癌切片及活體之設計及研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 表面電漿共振生物感測器是一種具有相當高靈敏度之生物感測器,而且無需標定並能即時地分析分子間的交互作用,大大地縮短檢測的時間及提供更多的生物資訊。本研究結合表面電漿共振與外差干涉技術建構一套振幅式成對表面電漿波生物感測器,對於等效折射率變化的偵測極限高達8.4×10-9 RIU,而在偵測攝護腺特異抗原方面,於磷酸鹽緩衝液中的偵測極限約為10 fg/mL (~300 aM)左右,並且也成功地在10倍稀釋血清中量測到的情況下,即時地偵測到稀釋血清中的目標抗原。
接著我們把此成對表面電漿波生物感測器結合雙流道系統,以降低系統的雜訊,並針對H1N1新型流感病毒進行量測。實驗上,此新型的雙流道成對表面電漿波生物感測系統在緩衝液中的偵測極限為30 PFU/mL,大幅超越目前臨床上常用的快篩試劑,並且此雙流道成對表面電漿波生物感測系統的偵測時間只需要約20分鐘左右,就時效性來說是很有競爭力的。
最後,我們發展了一套數學模型可以計算極低濃度蛋白質結合常數(結合速率常數、解離速率常數、平衡結合常數、平衡解離常數)。實驗上,我們成功的在緩衝液甚至是稀釋血清中,且濃度在0.1 pg/mL to 1 ng/mL範圍內,量測出攝護腺特異抗原與抗體間的蛋白質結合常數。
摘要(英) An amplitude-sensitive paired surface plasma waves biosensor (PSPWB), which is based on SPR in conjunction with an optical heterodyne technique, has been demonstrated to show a detection limit of Δneff = 8.4×10-9 RIU. In addition, the biosensor is capable of real-time detection of total prostate-specific antigen (t-PSA) in phosphate buffered saline (PBS) solution and in diluted human serum without labeling. These experimental results exhibited a linear relationship between surface plasmon resonance (SPR) signals and t-PSA concentrations over a wide range from 10 fg/mL (~300 aM) to 100 pg/mL (~3 pM) and it is without complicated operating procedures when detecting biological analytes in clinical sample. And then, we applied the developed PSPWB in a dual-channel biosensor for rapid and sensitive detection of swine-origin influenza A (H1N1) virus (S-OIV). In conjunction with the amplitude ratio method with a reference channel, the stability of PSPWB system is significantly improved experimentally such that the theoretical LOD of the dual-channel PSPWB for S-OIV is 30 PFU/mL, which was two orders of magnitude more sensitive than the commercial rapid influenza diagnostic test (RIDT) at worst. Furthermore, under in vivo condition, this experiment demonstrates that the assay successfully measured S-OIV at a concentration of 1.8×102 PFU/mL in mimic solution, which contained PBS-diluted normal human nasal mucosa. Most importantly, the assay time took less than 20 min as opposed to several hours by polymerase chain reaction (PCR)-based methods.
Finally, we establish a method that can calculate the binding constants of protein-protein interactions at ultra-low concentrations based on gold nanoparticle enhancement in sandwich configuration. The association rate constant, dissociation rate constant, equilibrium association constant, and the equilibrium dissociation constant, i.e., ka, kd, KA, KD, respectively, of the kinetics of binding between t-PSA and anti-t-PSA at concentrations from 0.1 pg/mL to 1 ng/mL, were measured either in PBS or in human serum. This is the first time that the kinetic constants have been measured at such a low concentration range in a complex sample such as human serum.
關鍵字(中) ★ 生物感測器
★ 表面電漿共振
★ 外差干涉
★ 雙通道
關鍵字(英) ★ heterodyne
★ biosensor
★ surface plasmon resonance (SPR)
★ dual channel
論文目次 Chinese Abstract………………………………………………………….………….......i
English Abstract………………………………………………………………………...iii
Acknowledgments……………………………………………………………………….v
Contents………………………………………………………………………...............vi
List of Figures……………………………………………………………………...........x
List of Tables………………………………………………………………………......xiv
Explanation of Symbols………………………………………………………………...xv
Chapter 1 Introduction…………………………………………………………………1
References…………………………………………………………………..4
Chapter 2 Theory………………………………………………………………………8
2.1 Surface Plasmon Optics……………………………………..............................8
2.1.1 Electromagnetic theory of surface plasmons……………………………8
2.1.2 Spatial extent of the surface plasmon fields………………………...12
2.1.3 Excitation of surface plasmons by light……………………………....14
2.1.4 Surface plasmon resonance (SPR) sensors………………………….....19
2.1.5 Performance of SPR sensors on sensitivity and resolution……………21
2.2 Optical Heterodyne Interferometry…………………………………………...22
2.2.1 Zeeman laser…………………………………………………………...23
2.2.2 Acousto-optic modulator (AOM)……………………………………...24
2.2.3 Electro-optic modulator (EOM)……………………………………….25
References……………………………………………………………………..…29
Chapter 3 Paired Surface Plasma Wave Biosensor…………………………………..34
3.1 Motivation…………………………………………………………………….34
3.2 Experimental Section…………………………………………………………37
3.2.1 Materials……………………………………………………………….37
3.2.2 Effective refractive index variation (Δneff) measurement……………..38
3.2.3 Immobilization of capture antibodies………………………………….38
3.2.4 Target antigen measurement…………………………………………...39
3.2.5 Measurements using the PSPWB……………………………………...39
3.3 Results and Discussion………………………………………………………..41
3.3.1 The system stability of PSPWB………………………………………..41
3.3.2 Effective refractive index variation (Δneff) measurement……………...42
3.3.3 t-PSA measurement in PBS or diluted human serum………………….44
3.4 Summary…………………………………………………………………...48
References………………………………………………………………………...50
Chapter 4 Dual-channel Paired Surface Plasma Wave Biosensor……………………58
4.1 Motivation……………………………………………………………............58
4.2 Experimental Section………………………………………………………….61
4.2.1 Materials……………………………………………………………….61
4.2.2 Rapid influenza diagnostic test for detection of S-OIV……………….62
4.2.3 Real-time quantitative RT-PCR for detection of S-OIV……………….63
4.2.4 Preparation of SPR chip…………………………………………….....64
4.2.5 Measurement of S-OIV using single-channel and dual-channel PSPWB………………………………………………………………..64
4.3 Results and Discussion…………………………………………….................66
4.3.1 System stability of the single-channel and dual-channel PSPWB…….66
4.3.2 Performance of the single-channel and dual-channel PSPWB on detecting S-OIV………………………………………………………68
4.3.3 Detection of S-OIV in mimic solution using the dual-channel PSPWB……………………………………………………………….72
4.3.4 Detection of S-OIV by rapid influenza diagnostic test in PBS and in mimic solution……………………………………………………….73
4.3.5 Detection of S-OIV by real-time quantitative RT-PCR in PBS and in mimic solution………………………………………………………...75
4.4 Summary………………………………………………………………….......79
References………………………………………………………………………...81
Chapter 5 Binding Kinetics of Biomolecule Interaction at Ultra-low Concentrations Based on Gold Nanoparticle Enhancement ……………………………………………91
5.1 Motivation …………………………………………………………………….91
5.2 Experimental Section…………………………………………………………93
5.2.1 Materials……………………………………………………………….93
5.2.2 Preparation of the optical fiber…………………………………….......94
5.2.3 Preparation of the GNP probes…………………………………..….…95
5.2.4 Measurement………………………………………………………..…96
5.2.5 Kinetic analysis of biomolecule binding………………………………96
5.3 Results and discussion……………………………………………………….100
5.3.1 The effect of random and oriented immobilization of capture antibody on binding kinetics…………………………………………………..100
5.3.2 Mouse IgG / anti-mouse IgG binding kinetics……………………….106
5.3.3 Binding kinetics of t-PSA / anti-t-PSA interaction in human serum…108
5.4 Summary….…………………………………………………………………111
References……………………………………………………………………….113
Chapter 6 Conclusions and Future Works…………………………………………..120
參考文獻 [1] R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. London 18, 269–275 (1902).
[2] U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’’s waves),” J. Opt. Soc. Am. 31, 213–222 (1941).
[3] R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[4] D. Beaglehole, “Coherent and incoherent radiation from optically excited surface plasmons on a metal grating,” Phys. Rev. Lett. 22, 708–11 (1969).
[5] A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Zeitschrift fur Physik 216, 398–410 (1968).
[6] E. Kretschmann, and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Zeitschrift fur Naturforschung 23A, 2135–2136 (1968).
[7] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag; Berlin (1988).
[8] J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface plasmon resonance imaging measurements of ultrathin organic films,” Annu. Rev. Phys. Chem. 51, 41–63 (2000).
[9] P. R. H. Stark, A. E. Halleck, and D. N. Larson, “Short order nanohole arrays in metals for highly sensitive probing of local indices of refraction as the basis for a highly multiplexed biosensor technology,” Methods 37, 37–47 (2005).
[10] W. C. Law, P. Markowicz, K. T. Yong, I. Roy, A. Baev, S. Patskovsky, A. V. Kabashin, H. P. Ho, and P. N. Prasad, “Wide dynamic range phase-sensitive surface plasmon resonance biosensor based on measuring the modulation harmonics,” Biosens. Bioelectron. 23, 627–632 (2007).
[11] X. Shan, X. Huang, K. J. Foley, P. Zhang, K. Chen, S. Wang, and N. Tao, “Measuring surface charge density and particle height using surface plasmon resonance technique,” Anal. Chem. 82, 234–240 (2010).
[12] C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmons resonance,” Sensors and Actuators 3, 79–88 (1982).
[13] B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sensors and Actuators 4, 299–304 (1983).
[14] X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
[15] P. Englebienne, A. V. Hoonacker, and M. Verhas, “Surface plasmon resonance: principles, methods and applications in biomedical sciences,” Spectroscopy 17, 255–273 (2003).
[16] J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3, FD12–FD22 (2008).
[17] C. Cao, J. P. Kim, B. W. Kim, H. Chae, H. C. Yoon, S. S. Yang, and S. J. Sim, “A strategy for sensitivity and specificity enhancements in prostate specific antigen-1-antichymotrypsin detection based on surface plasmon resonance,” Biosens. Bioelectron. 21, 2106–2113 (2006).
[18] Y. Li, H. J. Lee, and R. M. Corn, “Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging,” Anal. Chem. 79, 1082–1088 (2007).
[19] M. Maisonneuve, I.-H. Song, S. Patskovsky, M. Meunier, “Polarimetric total internal reflection biosensing,” Opt. Express 19, 7410–7416 (2011).
[20] G. D. VanWiggeren, M. A. Bynum, J. P. Ertel, S. Jefferson, K. A. Robotti, E. P. Thrush, D. A. Baney, and K. P. Killeen, “A novel optical method providing for high-sensitivity and high-throughput biomolecular interaction analysis,” Sens. Actuators B 127, 341–349 (2007).
[21] S. Slavik and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B 123, 10–12 (2007).
[22] L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
[23] A. W. Wark, H. J. Lee, A. J. Qavi, and R. M. Corn, “Nanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensing,” Anal. Chem. 79, 6697–6701 (2007).
[24] T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130 (2000).
[25] K. S. Phillips and Q. Cheng, “Recent advances in surface plasmon resonance based techniques for bioanalysis,” Anal. Bioanal. Chem. 387, 1831–1840 (2007).
指導教授 周晟、李正中
(Chien Chou、Cheng-Chung Lee)
審核日期 2012-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明