博碩士論文 962406027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.235.66.217
姓名 羅美鈴(Mei-ling Lo)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 藍尾翠鳳蝶(Papilio blumei)的結構色、光學特性
(Research on the structural color, optical properties of Papilio blumei butterfly and biomimic technology)
相關論文
★ 半導體雷射控制頻率★ 比較全反射受挫法與反射式干涉光譜法在生物感測上之應用
★ 193nm深紫外光學薄膜之研究★ 超晶格結構之硬膜研究
★ 交錯傾斜微結構薄膜在深紫外光區之研究★ 膜堆光學導納量測儀
★ 紅外光學薄膜之研究★ 成對表面電漿波生物感知器應用在去氧核糖核酸及微型核糖核酸 雜交反應檢測
★ 成對表面電漿波生物感測器之研究及其在生醫上的應用★ 探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 掃描式白光干涉儀應用在量測薄膜之光學常數
★ 量子點窄帶濾光片★ 以量測反射係術探測光學薄膜之特性
★ 嵌入式繼光鏡顯微超頻譜影像系統應用在口腔癌切片及活體之設計及研究★ 軟性電子阻水氣膜之有機層組成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要是探討藍尾翠鳳蝶(Papilio blumei)的成色機制與光學特性。因其翅膀上有兩種特殊的虹彩:分佈成帶狀且貫穿前後翅之綠色鱗片及位於後翅尾突之青色鱗片,引起我們的興趣。使用光學/電子顯微鏡觀察,可了解鱗片的表面輪廓與內部結構:發現鱗片表面為二維凹洞陣列,而內部為二維光子晶體結構,主要成分是由幾丁質及空氣共同組成的。如此微妙的凹洞二維光子晶體結構,造就了蝴蝶鱗片的特殊結構色及混光效果之成色機制、偏極轉換的光學特性。
此外,利用有限時域差分法(Finite-Difference Time-Domain, FDTD)模擬蝴蝶鱗片的二維光子晶體結構,藉由調變材料特性(消光係數)、結構(膜層厚度、孔洞寬度或堆疊層數)與光源入射角,可模擬出各種色相、亮度或飽和度的反射光譜。並對蝴蝶鱗片的成色機制有完整分析;掌握了結構與光譜的調變機制,可設計出紅、綠、藍三原色光譜,達到預期的色域範圍,應用於顯示器領域。再者,我們利用等效介質法將複雜的二維光子晶體結構,等效成一維多層膜結構,提供一個容易預測結構色的方式。據我們所知,在光源斜向入射下的擬真模擬反射光譜,及可調式二維光子晶體結構的設計應用,目前尚未有文獻完整提出。
除了基本特性量測與模擬設計外,本論文利用聚苯乙烯小球(polystyrene spheres)、感應耦合電漿離子蝕刻技術(Inductively coupled plasma etching)及雙電子槍蒸鍍法,成功仿造出蝴蝶鱗片的凹洞多層膜結構,並具有結構色與偏極轉換的光學特性。
摘要(英) In this study, we aim on the research of iridescence green band and cyan tail of the wing on Papilio blumei Fruhstorferi butterfly. The wing scales consist of regular concave multilayer stack that are made from alternating chitin and chitin-air layers. The structural color found in biological systems has complicated nanostructure that it is difficult to determine its color mechanism. The FDTD (Finite-Difference Time-Domain) simulation method can help us to understand the mechanism responsible for structural color on butterfly’s wing. The variable optical constant of material, dimension of structure, and incident angle of light source lead to different reflectance spectrum. Analyze these reflectance spectra can help us to understand the hue, brightness and saturation of structural color on the butterfly wing. Those phenomena have inspired us to obtain tunable structural color by adjusting the dimension of the photonic crystal structure. Consequently, the structural color is the useful technology to reflective display application. Furthermore, the 2D photonic-crystal model can be replaced by an equivalent 1D multilayer model successfully by Bruggeman effective medium approximation. It implies the simple 1D model can be used to predict the butterfly’s color and the reflectance spectrum.
Finally, the concave multilayer replica of Papilio blumei butterflies were successfully fabricated mainly by the following three steps:polystyrene spheres self-assembly, electron-beam gun deposition and inductively coupled plasma etching. The concavities array of Papilio blumei butterflies was made from alternating high and low refractive indices multilayer stack (tantalum pentoxide and silicon dioxide). Therefore, the mimic structure, iridescence color and polarization rotation effect of Papilio blumei butterfly has been manufactured and analysed.

關鍵字(中) ★ 結構色
★ 虹彩
★ 蝴蝶
★ 光子晶體
★ 薄膜干涉
★ 顯示器
關鍵字(英) ★ structural color
★ iridescence
★ butterfly
★ photonic crystal
★ interference of thin-film
★ display
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VIII
表目錄 XII
第1章 緒論 1
1-1 前言 1
1-2 文獻回顧 6
1-2-1 生物結構色的觀察 6
1-2-2 蝴蝶的色彩來源 7
1-2-3 蝴蝶鱗片結構 8
1-2-4 Urania型鱗片的模擬光譜 11
1-2-5 蝴蝶鱗片的光學特性與仿生技術 18
1-3 研究動機 23
1-4 論文架構 24
第2章 理論 25
2-1 光子晶體(Photonic Crystal) 25
2-2 有限時域差分法 (Finite-Difference Time-Domain Method) 28
2-3 等效介質理論 32
2-4 多層膜干涉理論 33
2-5 色度座標 35
第3章 儀器介紹 42
3-1 量測儀器與方法 42
3-1-1 光學顯微鏡 42
3-1-2 掃描式電子顯微鏡 45
3-1-3 積分球光譜儀 49
3-2 仿生結構製程儀器與方法 50
3-2-1 雙電子槍蒸鍍系統 50
3-2-2 蝕刻技術 52
第4章 量測結果與結構-光學現象分析 54
4-1 蝴蝶介紹 54
4-2 翅膀鱗片的表面輪廓與顏色分佈 56
4-2-1 鱗片的SEM俯視圖 56
4-2-2 鱗片的光學顯微圖 58
4-2-3 鱗片的SEM剖面圖 61
4-3 顯微鏡量測結果分析 66
4-3-1 凹洞中的色彩分布 66
4-3-2 偏振轉換(polarization rotation)效應 66
4-4 反射率光譜圖與1931 CIE x-y色度座標圖 71
4-4-1 光源正向入射 71
4-4-2 光源斜向入射 72
第5章 Papilio blumei蝴蝶翅膀上鱗片結構的模擬結果與分析 75
5-1 二維光子晶體結構模擬 75
5-1-1 光學常數中的消光係數(k)對反射光譜造成的影響 78
5-1-2 調變幾丁質-空氣層厚度(da)之模擬反射光譜圖結果 79
5-1-3 調變空氣孔洞寬度(wa)之模擬反射光譜圖結果 81
5-1-4 調變堆疊層數(N)之模擬反射光譜圖結果 82
5-1-5 光源斜向入射下的反射光譜 83
5-1-6 等效一維多層膜結構 86
5-1-7 凹洞多層膜結構驗證混光現象 88
5-2 二維光子晶體結構模擬結果分析 90
5-2-1 色相(反射光譜的波峰位置) 91
5-2-2 亮度(反射光譜的強度) 93
5-2-3 飽和度(反射光譜的半高寬) 94
5-3 綠色與青色鱗片結構色彩產生機制的分析 96
5-4 利用可調式結構色來製作反射式RGB三原色 100
第6章 蝴蝶仿生結構製程 102
6-1 實驗流程 102
6-1-1 PS小球陣列的前製作業 103
6-1-2 矽基板上凹洞陣列的製程 104
6-1-3 多層膜模堆的設計與製作 106
6-2 仿生實驗結果與分析 110
6-2-1 光譜特性 112
6-2-2 偏振轉換(polarization rotation)特性 113
第7章 結論 115
參考文獻 117
參考文獻 [1] http://physicsworld.com/cws/article/news/2009/feb/09/moth-eyes-inspire-more-efficient-solar-cell
[2] D. H. Ko, J. R. Tumbleston, K. J. Henderson, L. E. Euliss, J. M. DeSimone, R. Lopez and E. T. Samulski, “Biomimetic microlens array with antireflective ‘‘moth-eye’’ surface”, Soft Matter, 7(14), 6404–6407 (2011).
[3] Vukusic, P., Sambles, J. R., Lawrence, C. R. & Wootton, R. J. “Quantified interference and diffraction in single Morphobutterfly scales.” Proc. R. Soc. Lond. B266, 1402–1411 (1999).
[4] Kinoshita, S., Yoshioka, S. & Kawagoe, K. “Mechanisms of structural colour in the Morphobutterfly: cooperation of regularity and irregularity in an iridescent scale.” Proc. R. Soc. Lond. B.269, 1417–1421 (2002).
[5] J. Han, H. Su, F. Song, D. Zhang, and Z. Chen, “Controllable reflection properties of nanocomposite photonic crystals constructed by semiconductor nanocrystallites and natural periodic bio-matrices ”, Nanoscale 2, 2203 (2010).
[6] Silvia Vignolini, Paula J Rudall, Alice V Rowland, Alison Reed, Edwige Moyroud, Robert B Faden, Jeremy J Baumberg, Beverley J Glover, Ullrich Steiner, “Pointillist structural color in Pollia fruit”, Proceedings of the National Academy of Sciences, 109(39):15712-5 (2012).
[7] Pete Vukusic and J. Roy Sambles, “Photonic structures in biology”, Nature, 424, 852-855 (2003).
[8] Shuichi Kinoshita, Structural Colors in the Realm of Nature, (World Scientific Publishing Co. Pte. Ltd, 2008).
[9] Kinoshita, S., Yoshioka, S. and Miyazaki, J., "Physics of structural colors," Rep. Prog. Phys., 71(7), 076401 (2008).
[10] Ghiradella, H., "Structure of butterfly scales: patterning in an insect cuticle," Microsc. Res. Tech., 27(5), 429-438 (1994).
[11] Serge Bethier, "Iridescences, les Couleurs Physiques des Insectes,", Paris, 2003.
[12] R. O. Prum, in Bird coloration , Vol 1 (Eds: G. E. Hill , K. J. McGraw ), Ch. 7, Harvard University Press , USA 2006.
[13] S. Kinoshita , S. Yoshioka , J. Miyazaki , Rep. Prog. Phys., 71, 076401, 2008.
[14] Oxford English Dictionary, second edition, 1989.
[15] http://en.wikipedia.org/wiki/Iridescence.
[16] H. Noh, S. F. Liew, V. Saranathan, S. G. J. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. (Deerfield Beach Fla.) 22(26-27), 2871–2880 (2010).
[17] S. Berthier, Iridescences: the Physical Colors of Insects, Springer, 2007.
[18] H. Ghiradella , J. Morphol. , 202, 69 (1989).
[19] P. Vukusic , J. R. Sambles , C. R. Lawrence , R. J. Wootton , Proc. Biol. Sci., 266, 1403 (1999).
[20] S. Kinoshita , S. Yoshioka , Chem. Phys. Chem., 6, 1442 (2005).
[21] R. Hooke, Micrographia, reprinted by Dover Publications, Inc., New York 2003.
[22] I. Newton, Opticks, reprinted by Dover Publications, Inc., p. 252, New York 1952.
[23] B. Walter, Die Oberflachen-oder Schillerfarben, Braunschweig, 1895.
[24] A. A. Michelson, Philos. Mag., 21, 554 –567 (1911).
[25] Lord Rayleigh, Roy. Soc. Proc., A93, 565– 577(1917).
[26] Lord Rayleigh, Philos. Mag., 37, 98– 121 (1919).
[27] Lord Rayleigh, Roy. Soc. Proc., A103, 233 –239 (1923).
[28] H. Onslow, Philos. Trans. R. Soc. Lond., B211, 1 –74 (1921).
[29] E. Merritt, J. Opt. Soc. Am. Rev. Sci. Instrum., 11, 93 –98 (1925).
[30] C. W. Mason, J. Phys. Chem., 27, 401–447(1923).
[31] C. W. Mason, J. Phys. Chem., 30, 383– 395 (1926).
[32] C. W. Mason, J. Phys. Chem., 31, 321 –354 (1927).
[33] C. W. Mason, J. Phys. Chem., 31, 1856 – 1872 (1927).
[34] Neville, A. C., and Caveney, S. “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystal.” Biol. Rev.,44 , 531-562. (1969).
[35] Durrer, H. and Villiger, W. “Schillerfarben von Euchroma gigantea (L.): (Coleoptera: Buprestidae): Elektronenmikroskopische Untersuchung der Elytra.” Int J Insect Morphol Embryol 1, 233-240 (1972)..
[36] Yagi Nobumasa, "Note of electron microscope research on pterin pigment in the scales of pierid butterflies," Annotationes zoologicae Japonenses, 27,113-114 (1954).
[37] Descimon, H., "Biology of pigmentation in Pieridae butterflies," In Chemistry and biology of pteridines, 805-840 (1975).
[38] Nathan I Morehouse, Peter Vukusic and Ron Rutowski, "Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies," Proc Roy Soc B, 274(1908), 359-366 (2007).
[39] B. Wijnen, H.L. Leertouwer, D.G. Stavenga, "Colors and pterin pigmentation of pierid butterfly wings," J Insect Physiol, 53(12), 1206-1217 (2007).
[40] Vukusic, P., Sambles, J.R., Lawrence, C.R., Wootton, R.J., "Quantified interference and diffraction in single Morpho butterfly scales," Proceedings of the Royal Society B, 266(1427), 1403-1411 (1994).
[41] Yoshioka, S., Kinoshita, S., "Single-scale spectroscopy of structurally colored butterflies: measurements of quantified reflectance and transmittance," Journal of the Optical Society of America A, 23(1), 134-141 (2006).
[42] 秦佑華, 劉鋒, 殷海瑋, “碧鳳蝶翅膀上的一維光子結構,” 科學通報, 52(18), 2101-2106 (2007).
[43] Parker A R., "The diversity and implications of animal structural colours," J Exp Bio, 201(16), 2343-2347 (1998).
[44] Ghiradella H, Aneshansley D, Eisner T, et al., "Ultra-violet reflection of a male butterfly: interference colour caused by thin layer elabo-ration of wing scales," Science, 178, 1214-1217 (1972).
[45] Boris G, Gerard T, Stefan E., "Morpho butterflies wings color modeled with lamellar grating theory," Opt Express, 9(11), 567-578 (2001).
[46] Kinoshita S, Yoshioka S, Kawagoe K., "Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregu-larity in an iridescent scale," Proc R Soc Lond B, 269(1499), 1417-1421 (2002).
[47] You-Hua Qin, Feng Liu, Hai-Wei Yin, Yu-Lan Wang, Xiao-Han Liu, Li Zhao, “ Photonic structure in the wings of Papilio bianor ganesa”, Chinese Science Bulletin, 52(23), 3183-3188 (2007).
[48] P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, Proc. R. Soc. Lond. B 266, 1403 (1999).
[49] Luca Plattner, “Optical properties of the scales of Morpho rhetenor butterflies: theoretical and experimental investigation of the back-scattering of light in the visible spectrum”, J. R. Soc. Interface, 1(1), 49-59, (2004).
[50] R. Todd Lee and Glenn S. Smith, “Detailed electromagnetic simulation for the structural color of butterfly wings”, Applied Optics, 48(21), PP. 4177-4190 (2009).
[51] Jiawen Li, Xi Li, Fei Yu ,Yuhang Chen and Wenhao Huang, “Mechanism and analysis of structural color in two typical butterfly scales” Proceedings of 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), 723-727 (2010).
[52] D. G. Stavenga, H. L. Leertouwer, P. Pirih, and M. F.Wehling, Opt. Express 17, 193 (2009).
[53] H. Ghiradella, in: Microscopic Anatomy of Invertebrates, Vol. 11A, Insecta, edited by F. N. Harrison and M. Locke, p. 257 (Wiley-Liss, New York, 1998).
[54] Tada H, Mann S E, Miaoulis I N, et al, "Effects of a butterfly scale microstructure on the iridescent color observed at different angles," Opt Express, 5(4), 87-92 (1999).
[55] Davy P. Gaillot, Olivier Deparis, Victoria Welch, Brent K. Wagner, Jean Pol Vigneron, and Christopher J. Summers, "Composite organic-inorganic butterfly scales: Production of photonic structures with atomic layer deposition," PHYSICAL REVIEWE, 78(3), 031922-1-6 (2008).
[56] Feng Liu, GuobingWang, Liping Jiang and Biqin Dong, “Structural colouration and optical effects in the wings of Papilio peranthus”, J. Opt. 12, 065301(2010).
[57] Ying-Ying Diao and Xiang-Yang Liu, “Mysterious coloring: structural origin of color mixing for two breeds of Papilio butterflies”, OPTICS EXPRESS, 19(10), 9232-9241 (2011).
[58] H. L. Tam, K. W. Cheah, David T. P. Goh, and Joseph K. L. Goh, “Iridescence and nano-structure differences in Papilio butterflies”, Optical Materials Express, 3(8), 1087-1092 (2013).
[59] P. Vukusic, J. R. Sambles and C. R. Lawrence, "Colour mixing in wing scales of a butterfly”, Nature, 404, 457 (2000).
[60] P. Vukusic, J. R. Sambles, C. R. Lawrence, and W. Gavin, "Sculpted-multilayer optical effects in two species of Papilio butterfly," Applied Optics, 40(7), 1116-1125 (2001)
[61] P. Vukusic, J. R. Sambles and C. R. Lawrence, "Structurally assisted blackness in butterfly scales," Proc. R. Soc. Lond. B, 271, S237-S239 (2004).
[62] Zhang W, Zhang D, Fan T, Ding J, Guo Q and Ogawa H, "Morphosynthesis of hierarchical ZnO replica using butterfly wing scales as templates," Microporous Mesoporous Mater.,92, 227–33 (2006).
[63] Huang J, Wang X and Wang Z L, "Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano Lett., 6, 2325–32 (2006).
[64] Pulsifer D P, Lakhtakia A, Mart’?n-Palma R J and Pantano C G, "Engineered biomimicry: polymeric replication ofsurface features found on insects," Proc. SPIE, 7975, 79750O (2011).
[65] Pulsifer D P, Lakhtakia A, Mart’?n-Palma R J and Pantano C G, "Mass fabrication technique for polymeric replicas ofarrays of insect corneas," Bioinsp. Biomim., 5, 036001-9 (2010).
[66] Mathias Kolle, Pedro M. Salgard-Cunha, Maik R. J. Scherer, Fumin Huang, Pete Vukusic, Sumeet Mahajan, Jeremy J. Baumberg and Ullrich Steiner, "Mimicking the colourful wing scale structure of the Papilio blumei butterfly," Nature Nanotechnoloby, 5(7), 511-515 (2010).
[67] E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[68] S. John, Phys. Rev. Lett. 58, 2486 (1987).
[69] A. R. Parker, J. Exp. Biol. 201, 2343 (1998).
[70] M. Srinivasarao, Chem. Rev. 99, 1935 (1999).
[71] R. Hooke, Micrographia: Or Some Physiological Descriptions of Minute Bodies made by Magnifying Glasses with Observations and Inquiries thereupon (1665) (Dover, New York, 1961).
[72] I. Newton, Opticks: Or, a Treatise of the Reflections, Refractions, Inflections and Colours of Light (1704) (Dover, New York, 1952).
[73] Lord Rayleigh, Phil. Mag. 37, 98 (1919).
[74] R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, Nature Photon. 1, 123 (2007).
[75] L. P. Bir’o, K. Kert’esz, Z. V’ertesy, and Zs. B’alint, Proc. SPIE 7057, 705706 (2008).
[76] G. Zhang, J. Zhang, G. Xie, Z. Liu, and H. Shao, Small 2, 1440 (2006).
[77] J. Huang, X. Wang, and Z. L. Wang, Nano Lett. 6, 2325 (2006).
[78] J. Silver, R. Withnall, T. G. Ireland, G. R. Fern, and S. Zhang, Nanotechnology 19, 095302 (2008).
[79] S. Zhu, D. Zhang, Z. Li, H. Furukawa, and Z. Chen, Langmuir 24, 6292 (2008).
[80] K. Kert’esz, G. Moln’ar, Z. V’ertesy, A.A. Ko’os, Z. E. Horv’ath, G. I. M’ark, L. Tapaszt’o, Zs. B’alint, I. Tam’aska, O. Deparis, J. P. Vigneron, and L. P. Bir’o, Mater. Sci. Eng. B 149, 259 (2008).
[81] J. P. Vigneron, M. Rassart, C. Vandenbem, V. Lousse, O. Deparis, L. P. Bir’o, D. Dedouaire, A. Cornet, and P. Defrance, Phys. Rev. E 73, 041905 (2006).
[82] J. Wang, J. Liang, H. Wu, W. Yuan, Y. Wen, Y. Song, and L. Jiang, Polym. Int. 57, 509 (2007).
[83] S. Berthier, J. Boulenguez, and Z. B’alint, Appl. Phys. A 86, 123 (2007).
[84] W. Zhang, D. Zhang, T. Fan, J. Gu, J. Ding, H.Wang, Q. Guo, and H. Ogawa, Chem. Mater. 21, 33 (2009).
[85] YeeK.S, "Numerical solution of initial boundary value problems involving Maxwell′s equations in isotropic media," IEEE Trans.Antennas Propagat., 14(3), 302-307 (1966).
[86] F. Zheng, Z. Chen, and J. Zhang, “A finite-difference time-domain method without the Courant stability conditions,” IEEE Microwave Guided Wave Lett. 9, 441 (1999).
[87] D. E. Aspnes, "Local-field effects and effective-medium theory:A microscopic perspective," American Journal of Physics, 50, 704-709 (1982).
[88] Shuichi Kinoshita and Shinya Yoshioka, "Structural Colors in Nature: The Role of Regularity and Irregularity in the Structure," ChemPhysChem, 6(8), 1442-1459 (2005).
[89] Malacara, D.,Color Vision and Colorimetry,Theory and Application, Bellingham, 2002.
[90] F. Grum, “Artificial Light Sources for Simulating Natural Daylight and Skylight”, Applied Optics, Vol.7, No.1, pp.183-187, 1968.
[91] 湯順清, ”色度學”, 北京理工大學出版社, 1990.
[92] 荊其誠, ”色度學”, 北京科學出版社, 1991.
[93] Wyszecki, G. , Stiles, W. S., Color Science, John Wiley & Sons, 1982.
[94] Robertson, A. R., “Computation of correlated color temperature and distribution temperature.”, Journal Of the Society America, Vol.58, pp.1528-1535 (1968).
[95] Tortora, G. J., Funke, B. R., and Case, C. L.. Microbiology: An introduction. 7th Addison Wesley Longman, Inc. p. 887, 2001.
[96] http://www.materialsnet.com.tw/AD/ADImages/AAADDD/MCLM100/
[97] Hideo F., Jun Y., Hiroto S., Yoshiki I., Masahiro K., Yuzuru T., Kenichi I., Shinya U., “Automatic color-temperature compensator with guest-host liquid-crystal filter for video image sensing.,” Applied Optics, 40(14), 2275-81 (2001).
[98] S. H. Chen, S. Z. Tseng, W. Chen, W. H. Cho, and C. H. Chan, “Wide-angle antireflection ZnO films on bullet-like nanostructures of multi-crystalline silicon,” J. Vac. Sci. Technol. A 30(1), 01A1411-01A1415 (2011).
[99] Tada H, Mann S E, Miaoulis I N, et al, "Effects of a butterfly scale microstructure on the iridescent color observed at different angles," Opt Express, 5(4), 87-92 (1995).
[100] Mathias Kolle, Pedro M. Salgard-Cunha, Maik R. J. Scherer, Fumin Huang, Pete Vukusic, Sumeet Mahajan, Jeremy J. Baumberg and Ullrich Steiner, "Mimicking the colourful wing scale structure of the Papilio blumei butterfly," Nature Nanotechnoloby, 5(7), 511-515 (2010).
[101] Kertesz K, Balint Z, Vertesy Z, et al., "Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus," Phys Rev E, 74(2), 021922 (2006).
[102] C.H. Hou, S. Z. Tseng, C. H. Chan, T. J. Chen, H. T. Chien et al. ” Output power enhancement of light-emitting diodes via two-dimensional hole arrays generated by a monolayer of microspheres,” Appl. Phys. Lett. 95, 1331051-1331053 (2009).
[103] C. H. Chan, C. C. Chen, C. K. Huang, W. H. Weng, H. S. Wei, H. Chen, H. T. Lin, H. S. Chang, W. Y. Chen, W. H. Chang and T. M. Hsu, “Self-assembled free-standing colloidal Crystals,” Nanotechnology 16, 1440–1444 (2005).
[104] C. H. Chan, A. Fischer, A. Martinez-Gil, P. Taillepierre, C. C. Lee, S. L. Yang, C. H. Hou, H. T. Chien, D. P. Cai, K. C. Hsu, C. C. Chen, “Anti-reflection layer formed by monolayer of microspheres,” Appl Phys B 100, 547–551 (2010).
[105] Hill R. J., Physical Vapor Deposition, 2nd ed., Temescal Inc., Berkley CA., (1986).
[106] H. A. Macleod, Thin-Film Optical Filters, 4th ed., Chap. 6. (CRC Press, 2010).
指導教授 李正中(Cheng-chung Lee) 審核日期 2014-5-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明