博碩士論文 962411601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.16.218.62
姓名 阮玉俊(Nguyen Ngoc Tuan)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 Acinetobacter sp. OP5 與 Pseudomonas sp. TX1 參與辛基酚分解之基因群與OP5菌株之烷基鄰苯二酚2, 3加氧酵素
(Study of the genes involved in the degradation of 4-t-octylphenol in Pseudomonas sp. TX1 and Acinetobacter sp. OP5 and the properties of alkylcatechol 2, 3-dioxygenase from strain OP5)
相關論文
★ Pseudomonas putida TX2中辛基苯酚聚氧乙基醇類脫氫酶之初步純化與特性研究★ 以電泳膠體分離及質譜儀鑑定紅斑性狼瘡(活躍期)血漿中表現差異的蛋白質
★ 陰離子界面活性劑sodium dodecylbenzene sulfonate分解菌篩選與脫磺酸酵素研究★ 鄰苯二酚加氧酵素的熱穩定性提昇研究
★ Triton X-100 分解菌之分離和分解酵素之特性研究★ Triton X-100加氧酵素之純化與定性
★ Lactobacillus reuteri於酸性與膽鹽環境中之蛋白質體研究★ 蕃茄根部受銅逆境之基因調控
★ Pseudomonas nitroreducens TX1 異化辛基苯酚聚氧乙基醇之功能性蛋白質體學:以二維電泳法分析等電點4-8之蛋白質表現★ Pseudomonas nitroreducens TX1之具耗氧活性之麩胺酸合成酶之單離
★ 人類細胞株生產含多種亞型的 干擾素-a之蛋白質體學研究★ 辛基苯酚之分解:分解菌和生物復育之菌相研究
★ 分解辛基苯酚聚氧乙基醇之耗氧酵素(二氫硫辛醯胺脫氫酶)的純化與定性★ AtNPR1轉殖番茄之性狀分析及抗病機制研究
★ Pseudomonas putida TX2分解辛基苯酚聚氧乙基醇及其具雌激素活性代謝物之研究★ 以功能性蛋白質體學研究Pseudomonas nitroreducens TX1生長於辛基苯酚聚氧乙基醇之代謝與逆境反應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 長鏈之烷基酚 (C=8-12),如辛基與壬基酚等,能長期存在於環境中,且具有類似雌激素活性,該類化合物影響人類和動物的生長、繁殖與性發育,也與人類癌症有關。環境中菌株會將辛基酚與壬基酚降解至能進入細菌中央代謝途徑之代謝物而去除。前人研究發現中、短鏈烷基酚可由數個 Pseudomonas 屬的菌株經開環途徑降解;而長鏈烷基酚則可由Sphingomonas 屬的菌株以 alkylphenol monooxygenase 經 ipso-hydroxylation 機制進行降解, 其中 ipso-hydroxylation降解機制尚未被完全研究清楚。而自然環境中其他菌株之降解途徑尚不清楚,故快速篩選長鏈烷基酚降解菌株用以瞭解具雌激素活性之長碳鏈烷基酚在自然環境中的降解機制是很重要的。先前在黃雪莉教授團隊已分離出 18 株4-tert-辛基酚降解菌株,並再分離一株 Acinetobactor sp. OP5;本研究設計四組引子,經聚合酶鏈鎖反應篩選菌株內具有降解功能之基因。這些引子是設計來放大以下酵素的特定片段:其中包含對苯環進行加氧作用的: (1) multicomponent phenol hydroxylase、(2) single component monooxygenase;以及對苯環進行切割的 (1) catechol 1, 2-dioxygenase、(2) catechol 2, 3-dioxygenase genes。其中 18 株菌都有一段長度 232 bp 之 multicomponent phenol hydroxylase,並由中 鏈 (C=3-7) 和短鏈 (C=1-2) 之烷基酚降解菌株中分離出的 multicomponent phenol hydroxylase 有61% 至 92% 不等之相似度。而此18株中的13株均含有一段長度324 bp之catechol 1, 2-dioxygenase,與已發表且序列最接近之catechol 1, 2-dioxygenase有78% ~ 95% 之相似度。而以下三株菌同時具有multi-component phenol hydroxylase,catechol 1, 2-dioxygenase與catechol 2, 3-dioxygenase genes:Pseudomonas putida TX2、Pseudomonas sp. TX1 與 Acinetobacter sp. OP5,故本研究集中在Pseudomonas sp. TX1 與Acinetobacter sp. OP5兩株菌株的分解基因上。菌株TX1 的multicomponent phenol hydroxylase 基因簇與 catechol 2, 3-dioxygenase基因之全長已完全確認並轉殖。Acinetobacter sp. OP5 中 multicomponent phenol hydroxylase 的基因簇 (ophRBA1A2A3A4A5A6CEH) 包含調控子 (OphR)、alkylcatechol 2, 3-dioxygenase (OphB)、multicomponent phenol hydroxylase (OphA1A2A3A4A5A6)、2-hydroxymuconic semialdehyde dehydrogenase (OphC)、2-hydroxypent-2,4-dienoate hydratase (OphE), and 4-oxalocrotonate decarboxylase (OphH) 與 catechol 2, 3-dioxygenase (OphB) 的基因已被選殖,而此段基因簇對已發表之中等長度烷基酚基因群有高度的同源性。以 E. coli為宿主表達 ophB 的產物 alkylcatechol 2,3-dioxygenase 對 4-methylcatechol (1,435%)、 4-ethylcatechol (982%)、catechol (100%)、4-t-butylcatechol (16.6%),與 4-t-octylcatechol (3.2%) 均具有meta-cleavage之活性,證實該基因對具有甲基與乙基之鄰苯二酚之活性高於無支鏈之鄰苯二酚。但對碳數在四以上之烷基鄰苯二酚,其活性則隨著碳鏈增長而降低,亦可解釋大自然環境中辛、壬基酚之不易分解且易累積之機制。本論文結果顯示發展分子技術可以有效且簡單的偵測中長鏈烷基酚之分解菌和基因群,並發現對具有雌激素活性有開環作用之酵素,而可進而破壞類雌激素活性,我們並發表第一個對高度分支的烷基酚之開環酵素。
摘要(英) Long-chain alkylphenols (C=8-12), such as nonylphenols and octylphenols, are estrogen-like compounds that are persistent in the environment until they are degraded by bacteria. These compounds influence the growth, reproduction and sexual development of humans and other animals, therefore are a cause of health and ecology related concerns. Some studies of the biodegradation of long-chain alkylphenols have been reported. The mechanism of few Sphingomonas strains was reported using the ipso-hydroxylation mechanism by the analysis of degradation metabolites. For many other strains, the mechanism and pathways were still unknown. Therefore, it has become important to quickly screen the diversity of long-chain alkylphenol-degrading strains and hopefully gain a better understanding of how the estrogenic activity from long-chain alkylphenols is disrupted in the natural environment. In this study, nineteen 4-t-octylphenol-degrading bacteria were previously isolated by Huang’s team. They were screened for the presence of representative degradative genes by polymerase chain reaction method using four designed primer sets. The primer sets were designed to amplify specific fragments from (1) multicomponent phenol hydroxylase, (2) single component monooxygenase, (3) catechol 1, 2-dioxygenase and (4) catechol 2, 3-dioxygenase genes. None of the isolates showed amplification of a single component monooxygenase gene. Eighteen of the nineteen isolates exhibited the presence of a 232 bp amplicon that shared 61% to 92% identity to known multicomponent phenol hydroxylase gene sequences from short (C=1-2) and/or medium-chain (C=3-7) alkylphenol-degrading strains. Thirteen of the eighteen isolates were positive for a 324 bp region that exhibited 78% to 95% identity to the closest published catechol 1, 2-dioxygenase gene sequences. Interestingly, three strains, Pseudomonas putida TX2, Pseudomonas sp. TX1 and Acinetobactter sp. OP5 revealed the presence of three genes (multicomponent phenol hydroxylase, catechol 1, 2-dioxygenase genes and catechol 2, 3-dioxygenase). Therefore, strain TX1 and OP5 were further focused for their degradation genes. For strain TX1, the complete multicomponent phenol hydroxylase and catechol 2, 3-dioxygenase genes were identified. For strain OP5, a gene cluster (ophRBA1A2A3A4A5A6CEH) encoding regulator (OphR), alkylcatechol 2, 3-dioxygenase (OphB), multicomponent phenol hydroxylase (OphA1A2A3A4A5A6), 2-hydroxymuconic semialdehyde dehydrogenase (OphC), 2-hydroxypent-2,4-dienoate hydratase (OphE), and 4-oxalocrotonate decarboxylase (OphH) was then cloned from Acinetobacter sp. strain OP5 and showed the highest homology to those involved in the published medium-chain alkylphenol gene clusters. The purified enzyme from recombinant alkylcatechol 2, 3-dioxygenase showed meta-cleavage activities for 4-methylcatechol (1,435%), 4-ethylcatechol (982%), catechol (100%), 4-t-butylcatechol (16.6%), and 4-t-octylcatechol (3.2%), demonstrating the preference on the substrate bearing methyl and ethyl group than catehol. With the increase of the length of alkylchain, the activities decrease, this demonstrated the one of the possibilities of accumulation of octylphenol or nonylphenol in the environment. This study demonstrates the first alkylcatechol 2, 3-dioxygenase which work on a highly branched alkylcatechol. Considering the results, we conclude that the developed molecular technique is useful and easy in detection of medium/long-chain alkylphenol degradation gene cluster and bacterial strains which involved in the disruption of the aromatic ring of the structure which may cause the disruption of the estrogen-like activity.
關鍵字(中) ★ 生物降解
★ Catechol 1, 2-dioxygenase
★ Catechol 2, 3-dioxygenase
★ Phenol hydroxygenase
關鍵字(英) ★ Biodegradation
★ Catechol 1, 2-dioxygenase
★ Catechol 2, 3-dioxygenase
★ Phenol hydroxygenase
論文目次 ABSTRACT III
ACKNOWLEDGEMENTS V
TABLE OF CONTENTS VI
LIST OF FIGURES X
LIST OF TABLES XI
TABLE OF ABBREVIATIONS XII
CHAPTER I – LITERATURE REVIEW 1
1.1 Alkylphenols 1
1.2 Releases of alkylphenols to the environment 2
1.2.1 Air 5
1.2.2 Wastewater 6
1.2.3 Surface water and sediments 6
1.3 Hazards of long-chain Alkylphenols 8
1.3.1 Toxicity 8
1.3.2 Estrogenic effects 8
1.4 Alkylphenol-degrading bacteria and degradation mechanisms 10
1.4.1 Sphingomonads 13
1.4.2 Other genera 14
1.5 Degradation mechanisms targeting long-chain alkylphenols 15
1.5.1 Hydroxylation of the alkyl chain 16
1.5.2 Fission of the alkyl chain and phenol ring 17
1.6 Hydroxylation of the phenol ring and cleavage of the aromatic ring 19
1.6.1 Gene clusters involved in alkylphenol degradation 21
1.6.2 Cytochome P450 29
1.6.3 Multicomponent phenol hydroxylases and aromatic ring hydroxylation 30
1.6.4 Cleavage of aromatic ring of alkylcatechol by dioxygenases 34
1.6.4.1 Intradiol dioxygenases 35
1.6.4.2 Extradiol dioxygenases 43
CHAPTER II – MOTIVATION AND SPECIFIC AIM 52
2.1 Motivation 52
2.2 Specific aim 52
CHAPTER III - ANALYSIS OF BACTERIAL DEGRADATION PATHWAYS FOR LONG-CHAIN ALKYLPHENOLS 53
3.1 Introduction 53
3.2 Materials and methods 55
3.2.1 Chemicals 55
3.2.2 Bacterial strains and culture conditions 55
3.2.3 Identification of strains 56
3.2.4 Design of primers for general detection of the various catabolic genes 57
3.2.5 DNA extraction and PCR amplification 57
3.2.6 The limit of PCR detection for the various catabolic genes 58
3.2.7 Cloning of alkylphenol degradation gene cluster from Pseudomonas 58
3.2.8 Gene sequencing and phylogenetic analysis 59
3.2.9 Nucleotide sequence accession numbers 59
3.3 Results and discussions 60
3.3.1 Isolation and preliminary characterization of the long-chain 60
3.3.2 Carbon source utilization by the long-chain alkylphenol-degrading isolates 63
3.3.3 Design of primers for general detection of the various catabolic genes 65
3.3.4 The detection of alkylphenol degradation genes by PCR 70
3.3.5 Cloning of alkylphenol degradation genes from Pseudomonas sp. TX1 73
3.3.6 Phylogenetic analysis 74
CHAPTER IV - CATABOLISM OF 4-ALKYLPHENOLS BY ACINETOBACTER SP. OP5 79
4.1 Introduction 79
4.2 Materials and methods 82
4.2.1 Design of PCR primers for the specific detection of alkylcatechol 82
4.2.2 Bacterial strains, plasmids, media, and growth conditions 82
4.2.3 Chemicals 83
4.2.4 Carbon source utilization by Acinetobacter sp. OP5 83
4.2.5 Analysis of the biodegradation of 4-t-octylphenol by Acinetobacter sp. OP5 84
4.2.6 Molecular technique 85
4.2.7 Cloning of alkylphenol degradation gene cluster 85
4.2.8 Subcloning of ophB gene 86
4.2.9 Preparation of crude cell extract 87
4.2.10 Purification of AC23O 87
4.2.11 Enzyme assay for extradiol dioxygenases 88
4.2.12 DNA sequence analysis. 89
4.2.13 Nucleotide sequence accession numbers 89
4.3 Results and discussions 90
4.3.1 Design of primers for specific detection of the alkylcatechol 90
4.3.2 Carbon source utilization by the long-chain AP-degrading isolate 91
4.3.3 Analysis of the biodegradation of 4-t-octylphenol by Acinetobacter sp. OP5 94
4.3.4 Cloning and subcloning of alkylphenol degradation genes 95
4.3.5 Analysis of medium/long-chain AP degradation gene cluster and 97
4.3.6 Purification and biochemical properties of alkylcatechol 103
4.3.7 Enzymatic degradation of ACs by ophB gene product 105
CHAPTER V – CONCLUSION AND FUTURE WORK 112
5.1 Conclusion 112
5.2 Main contribution 114
5.3 Recommendation and future work 115
APPENDIX 1- PUBLICATIONS 116
APPENDIX 2- DNA SEQUENCES FROM ACINETOBACTER SP. OP5 119
APPENDIX 3- DNA SEQUENCES FROM PSEUDOMONAS SP. TX1 128
APPENDIX 4- OPTIMIZE CONDITION FOR AC23O FROM 132
APPENDIX 5- THE CATALYTIC PARAMETERS 136
APPENDIX 6- MAKING PRIMERS FOR DETECTION OF GENES 138
APPENDIX 7- CHEMICAL PROPERTIES 139
REFERENCES 143
參考文獻 1. Ahel, M., W. Giger, and C. Schaffner, Behavior of Alkylphenol Polyethoxylate Surfactants in the Aquatic Environment .2. Occurrence and Transformation in Rivers. Water Res, 1994. 28(5): p. 1143-1152.
2. Ahel., M. and W. Giger, Aqueous solubility of alkylphenols and alkylphenol polyethoxy- lates. Chemosphere, 1993a. 26: p. 1461–1470.
3. Tabira, Y., et al., Structural requirements of para-alkylphenols to bind to estrogen receptor. Eur J Biochem, 1999. 262(1): p. 240-5.
4. Vazquez, G.R., et al., Exposure to waterborne 4-tert-octylphenol induces vitellogenin synthesis and disrupts testis morphology in the South American freshwater fish Cichlasoma dimerus (Teleostei, Perciformes). Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 2009. 150(2): p. 298-306.
5. Jobling, S., et al., Inhibition of testicular growth in rainbow trout (Oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals. Environmental Toxicology and Chemistry, 1996. 15(2): p. 194-202.
6. Jobling, S. and J.P. Sumpter, Detergent Components in Sewage Effluent Are Weakly Estrogenic to Fish - an in-Vitro Study Using Rainbow-Trout (Oncorhynchus-Mykiss) Hepatocytes. Aquatic Toxicology, 1993. 27(3-4): p. 361-372.
7. Sumpter, J.P. and S. Jobling, Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment. Environ Health Perspect., 1995. 103: p. 173–178.
8. Montgomery-Brown, J. and M. Reinhard, Occurrence and behavior of alkylphenol polyethoxylates in the environment. Environmental Engineering Science, 2003. 20(5): p. 471-486.
9. Ahel., M. and W. Giger, Partitioning of alkylphenols and alkylphenol polyethoxylates between water and organic solvents. Chemosphere, 1993b. 26: p. 1471-1478.
10. John, D.M., W.A. House, and G.F. White, Environmental fate of nonylphenol ethoxylates: differential adsorption of homologs to components of river sediment Environ Toxicol Chem, 2000. 19: p. 293–300.
11. UKEA, UKEA (United Kingdom Environment Agency). 2005(Environmental Risk Evaluation Report: 4-tert-Octylphenol. London, UK).
12. Corporation., H., Technical Bulletin for Nonylphenol (NP), Austin, TX, USA, available from the Alkylphenols and Ethoxylates Research Council,. 1998a.
13. Staples. C. A, et al., C8- and C9-Alkylphenols and Ethoxylates: I. Identity, Physical Characterization, and Biodegradation Pathways Analysis Human and Ecological Risk, 2008. 14: p. 1007-1024.
14. White, R., et al., Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology, 1994. 135(1): p. 175-82.
15. Sharma, V.K., et al., Nonylphenol, octylphenol, and bisphenol-A in the aquatic environment: a review on occurrence, fate, and treatment. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2009. 44(5): p. 423-42.
16. Soares, A., et al., Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environ Int, 2008. 34(7): p. 1033-49.
17. Ying, G.G., B. Williams, and R. Kookana, Environmental fate of alkylphenols and alkylphenol ethoxylates--a review. Environ Int, 2002. 28(3): p. 215-26.
18. Guenther, K., et al., Endocrine disrupting nonylphenols are ubiquitous in food. Environmental Science & Technology, 2002. 36(8): p. 1676-1680.
19. Chen, M.L., et al., Biornonitoring of alkylphenols exposure for textile and housekeeping workers. International Journal of Environmental Analytical Chemistry, 2005. 85(4-5): p. 335-347.
20. Lu, Y.Y., et al., Daily intake of 4-nonylphenol in Taiwanese. Environ Int, 2007. 33(7): p. 903-10.
21. Ferrara, F., et al., Alkylphenols in adipose tissues of Italian population. Chemosphere, 2011. 82(7): p. 1044-9.
22. Lopez-Espinosa, M.J., et al., Nonylphenol and octylphenol in adipose tissue of women in Southern Spain. Chemosphere, 2009. 76(6): p. 847-52.
23. Smeds, A. and P. Saukko, Brominated flame retardants and phenolic endocrine disrupters in Finnish human adipose tissue. Chemosphere, 2003. 53(9): p. 1123-30.
24. Tan, B.L.L. and M.A. Mohd, Analysis of selected pesticides and alkylphenols in human cord blood by gas chromatograph-mass spectrometer. Talanta, 2003. 61(3): p. 385-391.
25. Chen, M.L., et al., Quantification of prenatal exposure and maternal-fetal transfer of nonylphenol. Chemosphere, 2008. 73(1): p. S239-S245.
26. Jing, X., et al., A study on bisphenol A, nonylphenol, and octylphenol in human urine amples detected by SPE-UPLC-MS. Biomed Environ Sci, 2011. 24(1): p. 40-6.
27. Otaka, H., A. Yasuhara, and M. Morita, Determination of bisphenol A and 4-nonylphenol in human milk using alkaline digestion and cleanup by solid-phase extraction. Anal Sci, 2003. 19(12): p. 1663-6.
28. Ademollo, N., et al., Nonylphenol and octylphenol in human breast milk. Environ Int, 2008. 34(7): p. 984-7.
29. Ye, X., et al., Measuring environmental phenols and chlorinated organic chemicals in breast milk using automated on-line column-switching-high performance liquid chromatography-isotope dilution tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci, 2006. 831(1-2): p. 110-5.
30. Bonefeld-Jorgensen, E.C., et al., Endocrine-Disrupting Potential of Bisphenol A, Bisphenol A Dimethacrylate, 4-n-Nonylphenol, and 4-n-Octylphenol in Vitro: New Data and a Brief Review. Environ Health Perspect, 2007. 115: p. 69-76.
31. Van Miller, J.P. and C.A. Staples, Review of the potential environmental and human health-related hazards and risks from long-term exposure to p-tert-octyl phenol. Human and Ecological Risk Assessment, 2005. 11(2): p. 319-351.
32. White, G.F., Bacterial Biodegradation of Ethoxylated Surfactants. Pesticide Science, 1993. 37(2): p. 159-166.
33. Jeong, J.J., et al., 3- and 4-alkylphenol degradation pathway in Pseudomonas sp. strain KL28: genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2,3-dioxygenase. Microbiology, 2003. 149(Pt 11): p. 3265-77.
34. Corvini, P.F., A. Schaffer, and D. Schlosser, Microbial degradation of nonylphenol and other alkylphenols--our evolving view. Appl Microbiol Biotechnol, 2006. 72(2): p. 223-43.
35. Saito, I., A. Onuki, and H. Seto, Indoor air pollution by alkylphenols in Tokyo. Indoor Air, 2004. 14(5): p. 325-32.
36. Dachs, J., D.A. Van Ry, and S.J. Eisenreich, Occurrence of estrogenic nonylphenols in the urban and coastal atmosphere of the lower Hudson River estuary. Environ Sci Technol, 1999. 33: p. 2676–2679.
37. Van Ry, D.A., et al., Atmospheric seasonal trends and environmental fate of alkylphenols in the Lower Hudson River estuary. Environ Sci Technol, 2000. 34(2410-2417).
38. Tomb, J.F., et al., The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature, 1997. 388(6642): p. 539-47.
39. Arukwe, A., et al., In vivo and in vitro metabolism and organ distribution of nonylphenol in Atlantic salmon (Salmo salar). Aquatic Toxicology, 2000. 49(4): p. 289-304.
40. Ding, W.H., et al., Identification of organic residues in tertiary effluents by GC/EI-MS, GC/CI-MS and GC/TSQ-MS. Fresenius Journal of Analytical Chemistry, 1996. 354(1): p. 48-55.
41. Snyder, S.A., et al., Analytical methods for detection of selected estrogenic compounds in aqueous mixtures. Environ Sci Technol, 1999. 33: p. 2814–2820.
42. Rudel, R.A., et al., Identification of alkylphenols and other estrogenic phenolic compounds in wastewater, septage, and groundwater on Cape Cod, Massachusetts. Environ Sci Technol, 1998. 32: p. 861-869.
43. Isobe, T., et al., Distribution and behaviour of nonylphenol, octylphenol, and nonylphenol monoethoxylate in Tokyo metropolitan area: their association with aquatic particles and sedimentary distributions. Environ Sci Technol, 2001. 35(1041-1049).
44. Kuch, H.M. and K. Ballschmitter, Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range. Environ Sci Technol, 2001. 35(3201-3206).
45. Lee, H.B. and T.E. Peart, Determination of 4-nonylphenol in effluent and sludge from sewage treatment plants. Anal Chem, 1995. 67(1976-1980).
46. Cruceru, I., et al., HPLC-FLD determination of 4-nonylphenol and 4-tert-octylphenol in surface water samples. Environ Monit Assess, 2012. 184(5): p. 2783-95.
47. Yang, D.K. and W.H. Ding, Determination of alkylphenolic residues in fresh fruits and vegetables by extractive steam distillation and gas chromatography-mass spectrometry. Journal of Chromatography A, 2005. 1088(1-2): p. 200-204.
48. Liu, J., et al., Distribution and bioaccumulation of steroidal and phenolic endocrine disrupting chemicals in wild fish species from Dianchi Lake, China. Environ Pollut, 2011. 159(10): p. 2815-22.
49. Barber, L., G. Brown, and S. Zaugg, Potential endocrine disrupting organic chemicals in treated municipal wastewater and river water. In: Keith LH, Jones-Lepp TL, and Need-ham LL (eds), Analysis of Environmental ENdocrine Disruptors, ACS Symposium Series 747, pp 97-123, American Chemical Society, Washington, DC, USA. 2000.
50. Glassmeyer, S.T., et al., Transport of chemical and microbial compounds from known wastewater discharges: potential for use as indicators of human fecal contamination. Environ Sci Technol, 2005. 39(14): p. 5157-69.
51. Ding, W.H., S.H. Tzing, and J.H. Lo, Occurrence and concentrations of aromatic surfactants and their degradation products in river waters of Taiwan. Chemosphere, 1999. 38: p. 2597-2606.
52. Bennie, D.T., et al., Occurrence of alkylphenols and alkylphenol mono- and diethoxylates in natural waters of the Laurentian Great Lakes basin and the upper St. Lawrence river. Sci Total Environ, 1997. 193: p. 263-275.
53. Wu, M., et al., Seasonal and spatial distribution of 4-tert-octylphenol, 4-nonylphenol and bisphenol A in the Huangpu River and its tributaries, Shanghai, China. Environ Monit Assess, 2013. 185(4): p. 3149-61.
54. Tsuda, T., et al., 4-Nonylphenols and 4-tert-octylphenol in water and fish from rivers flowing into Lake Biwa. Chemosphere, 2000. 41: p. 757-762.
55. Ferguson, P.L., C.R. Iden, and B.J. Brownwell, Distribution and fate of neutral alkylphenol ethoxylate metabolites in a sewage-impacted urban estuary. Environ Sci Technol. Environ Sci Technol, 2001. 35: p. 2428-2435.
56. Black, D., W. Hughes, and M. Gregory, Water quality and ecological assessment of Rottenwood and Sope Creeks, Marietta, Georgia., in In: Hatcher KJ (ed), Proceedings of the 2003 Georgia Water Resources Conference2003: Institute of Ecology, University of Georgia, Athens, GA, USA.
57. Fraser, C.M., et al., The minimal gene complement of Mycoplasma genitalium. Science, 1995. 270(5235): p. 397-403.
58. C. M. Lye, et al., Estrogenic Alkylphenols in Fish Tissues, Sediments, and Waters from the U.K. Tyne and Tees Estuaries. Environ. Sci. Technol., 1999. 33 (7): p. 1009–1014.
59. McLeese, D.W., et al., Lethality and accumulation of alkylphenols in aquatic fauna. 10, pp. 723–730. Chemosphere, 1981. 10: p. 723-730.
60. Argese, E., et al., Submitochondrial particles as toxicity biosensors of chlorophenols, Environmental Toxicology and Chemistry 14 (1995), pp. 363–368. 1995.
61. CSF, Chemicals Stakeholder Forum Fifth Meeting. 4-t-noylphenol and 4-t-octylphenol. 11 September 2001.
62. Korach, K.S., Surprising places of estrogenic activity. Endocrinology, 1993. 132(6): p. 2277-8.
63. Mueller, G.C. and U.H. Kim, Displacement of estradiol from estrogen receptors by simple alkyl phenols. Endocrinology, 1978. 102(5): p. 1429-35.
64. Soto, A.M., et al., p-Nonyl-phenol: an estrogenic xenobiotic released from "modified" polystyrene. Environ Health Perspect, 1991. 92: p. 167-73.
65. Huang, S.L., Y.W. Lin, and N.N. Tuan, Bacterial degradation of estrogen-like nonylphenol and octylphenol: A review. Environmental Microbiology Reports (Submitted), 2013.
66. Toyama, T., et al., Acceleration of nonylphenol and 4-tert-octylphenol degradation in sediment by Phragmites australis and associated rhizosphere bacteria. Environ Sci Technol, 2011. 45(15): p. 6524-30.
67. Tanghe, T., W. Dhooge, and W. Verstraete, Formation of the metabolic intermediate 2,4,4-trimethyl-2-pentanol during incubation of a Sphingomonas sp. strain with the xeno-estrogenic octylphenol. Biodegradation, 2000. 11(1): p. 11-9.
68. Tanghe, T., W. Dhooge, and W. Verstraete, Isolation of a bacterial strain able to degrade branched nonylphenol. Appl Environ Microbiol, 1999. 65(2): p. 746-751.
69. Corvini, P.F., et al., Degradation of a nonylphenol single isomer by Sphingomonas sp. strain TTNP3 leads to a hydroxylation-induced migration product. Appl Environ Microbiol, 2004. 70(11): p. 6897-900.
70. Corvini, P.F., et al., The degradation of alpha-quaternary nonylphenol isomers by Sphingomonas sp. strain TTNP3 involves a type II ipso-substitution mechanism. Appl Microbiol Biotechnol, 2006. 70(1): p. 114-22.
71. Corvini, P.F.X., et al., Metabolism of a nonylphenol isomer by Sphingomonas sp strain TTNP3. Environmental Chemistry Letters, 2005. 2(4): p. 185-189.
72. Fujii, K., et al., Sphingomonas cloacae sp. nov., a nonylphenol-degrading bacterium isolated from wastewater of a sewage-treatment plant in Tokyo. Int J Syst Evol Microbiol, 2001. 51(Pt 2): p. 603-10.
73. Gabriel, F.L., et al., A novel metabolic pathway for degradation of 4-nonylphenol environmental contaminants by Sphingomonas xenophaga Bayram: ipso-hydroxylation and intramolecular rearrangement. J Biol Chem, 2005. 280(16): p. 15526-33.
74. Porter, A.W. and A.G. Hay, Identification of opdA, a gene involved in biodegradation of the endocrine disrupter octylphenol. Appl Environ Microbiol, 2007. 73(22): p. 7373-9.
75. Porter, A.W., et al., Identification of the flavin monooxygenase responsible for ipso substitution of alkyl and alkoxyphenols in Sphingomonas sp. TTNP3 and Sphingobium xenophagum Bayram. Appl Microbiol Biotechnol, 2012. 94(1): p. 261-72.
76. Yuan, S.Y., C.H. Yu, and B.V. Chang, Biodegradation of nonylphenol in river sediment. Environ Pollut, 2004. 127(3): p. 425-30.
77. Ushiba, Y., Y. Takahara, and H. Ohta, Sphingobium amiense sp. nov., a novel nonylphenol-degrading bacterium isolated from a river sediment. Int J Syst Evol Microbiol, 2003. 53(Pt 6): p. 2045-8.
78. Soares, A., et al., Aerobic biodegradation of nonylphenol by cold-adapted bacteria. Biotechnol Lett, 2003. 25(9): p. 731-8.
79. Lin, Y.W., et al., Growth of Pseudomonas sp. TX1 on a wide range of octylphenol polyethoxylate concentrations and the formation of dicarboxylated metabolites. Bioresour Technol, 2010. 101(8): p. 2853-9.
80. Tuan, N.N., Y.W. Lin, and S.L. Huang, Catabolism of 4-alkylphenols by Acinetobacter sp. OP5: Genetic organization of the oph gene cluster and characterization of alkylcatechol 2, 3-dioxygenase. Bioresour Technol, 2013. In press.
81. Tuan, N.N., et al., Analysis of bacterial degradation pathways for long-chain alkylphenols involving phenol hydroxylase, alkylphenol monooxygenase and catechol dioxygenase genes. Bioresour Technol, 2011. 102(5): p. 4232-40.
82. Shibata, A. and A. Katayama, Anaerobic co-metabolic oxidation of 4-alkylphenols with medium-length or long alkyl chains by Thauera sp., strain R5. Appl Microbiol Biotechnol, 2007. 75(5): p. 1151-61.
83. Corvini, P.F., et al., Contribution to the Detection and Identification of Oxidation Metabolites of Nonylphenol in Sphingomonas sp. strain TTNP3. Biodegradation, 2007. 18(2): p. 233-45.
84. Corvini, P.F., et al., Microbial degradation of a single branched isomer of nonylphenol by Sphingomonas TTNP3. Water Sci Technol, 2004. 50(5): p. 189-94.
85. Gabriel, F.L., et al., ipso-substitution: a general biochemical and biodegradation mechanism to cleave alpha-quaternary alkylphenols and bisphenol A. Chem Biodivers, 2007. 4(9): p. 2123-37.
86. Gabriel, F.L., et al., Elucidation of the ipso-substitution mechanism for side-chain cleavage of alpha-quaternary 4-nonylphenols and 4-t-butoxyphenol in Sphingobium xenophagum Bayram. Appl Environ Microbiol, 2007. 73(10): p. 3320-6.
87. Gabriel, F.L., et al., Differential degradation of nonylphenol isomers by Sphingomonas xenophaga Bayram. Appl Environ Microbiol, 2005. 71(3): p. 1123-9.
88. Takeo, M., et al., Characterization of alkylphenol degradation gene cluster in Pseudomonas putida MT4 and evidence of oxidation of alkylphenols and alkylcatechols with medium-length alkyl chain. J Biosci Bioeng, 2006. 102(4): p. 352-61.
89. Cheng, C.Y., et al., Synthesis and determination of dicarboxylic degradation products of nonylphenol polyethoxylates by gas chromatography-mass spectrometry. J Chromatogr A, 2006. 1127(1-2): p. 246-253.
90. Di Corcia, A., et al., Characterization of recalcitrant intermediates from biotransformation of the branched alkyl side chain of nonylphenol ethoxylate surfactants. Environmental Science & Technology, 1998. 32(16): p. 2401-2409.
91. Montgomery-Brown, J., et al., Behavior of alkylphenol polyethoxylate metabolites during soil aquifer treatment. Water Res, 2003. 37(15): p. 3672-3681.
92. Thibaut, R., et al., Urinary metabolites of 4-n-nonylphenol in rainbow trout (Oncorhynchus mykiss). Science of the Total Environment, 1999. 233(1-3): p. 193-200.
93. Junghanns, C., et al., Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases. Microbiology, 2005. 151(Pt 1): p. 45-57.
94. van Beilen, J.B., D. Penninga, and B. Witholt, Topology of the membrane-bound alkane hydroxylase of Pseudomonas oleovorans. J Biol Chem, 1992. 267(13): p. 9194-201.
95. Nieboer, M., J. Kingma, and B. Witholt, The alkane oxidation system of Pseudomonas oleovorans: induction of the alk genes in Escherichia coli W3110 (pGEc47) affects membrane biogenesis and results in overexpression of alkane hydroxylase in a distinct cytoplasmic membrane subfraction. Mol Microbiol, 1993. 8(6): p. 1039-51.
96. Kok, M., et al., The Pseudomonas oleovorans alkane hydroxylase gene. Sequence and expression. J Biol Chem, 1989. 264(10): p. 5435-41.
97. van Beilen, J.B., et al., Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology-Sgm, 2001. 147: p. 1621-1630.
98. Shanklin, J. and E. Whittle, Evidence linking the Pseudomonas oleovorans alkane omega-hydroxylase, an integral membrane diiron enzyme, and the fatty acid desaturase family. FEBS Lett, 2003. 545(2-3): p. 188-92.
99. Ohe, T., T. Mashino, and M. Hirobe, Substituent elimination from p-substituted phenols by cytochrome P450. ipso-Substitution by the oxygen atom of the active species. Drug Metab Dispos, 1997. 25(1): p. 116-22.
100. Gonzalez-Toril, E., et al., Microbial ecology of an extreme acidic environment, the Tinto River. Appl Environ Microbiol, 2003. 69(8): p. 4853-65.
101. Powlowski, J. and V. Shingler, Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF600. Biodegradation, 1994. 5(3-4): p. 219-36.
102. Takeo, M., et al., Purification and characterization of catechol 2,3-dioxygenase from the aniline degradation pathway of Acinetobacter sp. YAA and its mutant enzyme, which resists substrate inhibition. Biosci Biotechnol Biochem, 2007. 71(7): p. 1668-75.
103. Arai, H., et al., Adaptation of Comamonas testosteroni TA441 to utilize phenol: organization and regulation of the genes involved in phenol degradation. Microbiology, 1998. 144 ( Pt 10): p. 2895-903.
104. Muller, C., et al., Carbon catabolite repression of phenol degradation in Pseudomonas putida is mediated by the inhibition of the activator protein PhlR. J Bacteriol, 1996. 178(7): p. 2030-6.
105. Zhu, C., L. Zhang, and L. Zhao, Molecular cloning, genetic organization of gene cluster encoding phenol hydroxylase and catechol 2,3-dioxygenase in Alcaligenes faecalis IS-46 World Journal of Microbiology and Biotechnology, 2008. 24: p. 1687-1695.
106. Zhang, H., H. Luo, and Y. Kamagata, Characterization of the Phenol Hydroxylase from Burkholderia kururiensis KP23 Involved in Trichloroethylene Degradation by Gene Cloning and Disruption. Microbes and Environments, 2003. 18: p. 167-173
107. Santos, P.M. and I. Sa-Correia, Characterization of the unique organization and co-regulation of a gene cluster required for phenol and benzene catabolism in Pseudomonas sp. M1. J Biotechnol, 2007. 131(4): p. 371-8.
108. Nordlund, I., J. Powlowski, and V. Shingler, Complete nucleotide sequence and polypeptide analysis of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J Bacteriol, 1990. 172(12): p. 6826-33.
109. Powlowski, J. and V. Shingler, In vitro analysis of polypeptide requirements of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J Bacteriol, 1990. 172(12): p. 6834-40.
110. Schirmer, F., S. Ehrt, and W. Hillen, Expression, inducer spectrum, domain structure, and function of MopR, the regulator of phenol degradation in Acinetobacter calcoaceticus NCIB8250. J Bacteriol, 1997. 179(4): p. 1329-36.
111. Soares, A., B. Guieysse, and B. Mattiasson, Biodegradation of nonylphenol in a continuous packed-bed bioreactor. Biotechnol Lett, 2003. 25(12): p. 927-33.
112. Sasaki, M., et al., Biodegradation of bisphenol A by cells and cell lysate from Sphingomonas sp. strain AO1. Biodegradation, 2005. 16(5): p. 449-59.
113. Sasaki, M., T. Tsuchido, and Y. Matsumura, Molecular cloning and characterization of cytochrome P450 and ferredoxin genes involved in bisphenol A degradation in Sphingomonas bisphenolicum strain AO1. J Appl Microbiol, 2008. 105(4): p. 1158-69.
114. Toyama, T., et al., Biodegradation of bisphenol A and 4-alkylphenols by Novosphingobium sp. strain TYA-1 and its potential for treatment of polluted water. Water Sci Technol, 2012. 66(10): p. 2202-8.
115. Harayama, S., M. Kok, and E.L. Neidle, Functional and Evolutionary Relationships among Diverse Oxygenases. Annual Review of Microbiology, 1992. 46: p. 565-601.
116. Kovacs, J.A., Biochemistry. How iron activates O2. Science, 2003. 299(5609): p. 1024-5.
117. Lipscomb, J.D., Biochemistry of the soluble methane monooxygenase. Annu Rev Microbiol, 1994. 48: p. 371-99.
118. Powlowski, J., et al., On the role of DmpK, an auxiliary protein associated with multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J Biol Chem, 1997. 272(2): p. 945-51.
119. Griva, E., et al., Phenol hydroxylase from Acinetobacter radioresistens S13. Isolation and characterization of the regulatory component. Eur J Biochem, 2003. 270(7): p. 1434-40.
120. Sazinsky, M.H., et al., X-ray structure of a hydroxylase-regulatory protein complex from a hydrocarbon-oxidizing multicomponent monooxygenase, Pseudomonas sp. OX1 phenol hydroxylase. Biochemistry, 2006. 45(51): p. 15392-404.
121. McCormick, M.S. and S.J. Lippard, Analysis of substrate access to active sites in bacterial multicomponent monooxygenase hydroxylases: X-ray crystal structure of xenon-pressurized phenol hydroxylase from Pseudomonas sp. OX1. Biochemistry, 2011. 50(51): p. 11058-69.
122. Harayama, S. and M. Rekik, Bacterial aromatic ring-cleavage enzymes are classified into two different gene families. J Biol Chem, 1989. 264(26): p. 15328-33.
123. Gadkar, K.G., et al., Estimating optimal profiles of genetic alterations using constraint-based models. Biotechnol Bioeng, 2005. 89(2): p. 243-51.
124. Que, L., Jr. and R.Y. Ho, Dioxygen Activation by Enzymes with Mononuclear Non-Heme Iron Active Sites. Chem Rev, 1996. 96(7): p. 2607-2624.
125. Orville, J.D.L.a.A.M., Metal Ions in Biological Systems. H. Sigel, A. Sigel ed. Vol. 28. 1992, Nwe York. 243.
126. Orville, A.M., et al., Structures of competitive inhibitor complexes of protocatechuate 3,4-dioxygenase: multiple exogenous ligand binding orientations within the active site. Biochemistry, 1997. 36(33): p. 10039-51.
127. Orville, A.M., J.D. Lipscomb, and D.H. Ohlendorf, Crystal structures of substrate and substrate analog complexes of protocatechuate 3,4-dioxygenase: endogenous Fe3+ ligand displacement in response to substrate binding. Biochemistry, 1997b. 36(33): p. 10052-66.
128. Sacco, C., et al., Alkylphenol polyethoxylate removal in a pilot-scale reed bed and phenotypic characterization of the aerobic heterotrophic community. Water Environ Res, 2006. 78(7): p. 754-63.
129. Ohlendorf, D.H., J.D. Lipscomb, and P.C. Weber, Structure and assembly of protocatechuate 3,4-dioxygenase. Nature, 1988. 336(6197): p. 403-5.
130. Dorn, E. and H.J. Knackmuss, Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad. Biochem J, 1978. 174(1): p. 73-84.
131. Broderick, J.B. and T.V. O’Halloran, Overproduction, purification, and characterization of chlorocatechol dioxygenase, a non-heme iron dioxygenase with broad substrate tolerance. Biochemistry, 1991. 30(29): p. 7349-58.
132. Briganti, F., et al., Purification, biochemical properties and substrate specificity of a catechol 1,2-dioxygenase from a phenol degrading Acinetobacter radioresistens. FEBS Lett, 1997. 416(1): p. 61-4.
133. Durham, D.R., et al., Intergeneric evolutionary homology revealed by the study of protocatechuate 3,4-dioxygenase from Azotobacter vinelandii. Biochemistry, 1980. 19(1): p. 149-55.
134. Travkin, V.M., et al., Characterization of an intradiol dioxygenase involved in the biodegradation of the chlorophenoxy herbicides 2,4-D and 2,4,5-T. FEBS Lett, 1997. 407(1): p. 69-72.
135. Saxena, P. and I.S. Thakur, Purification and characterization of catechol 1, 2-dioxygenase of Pseudomonas fluorescens for degradation of 4-chlorobenzoic acid. Indian Journal of Biotechnology, 2005. 4: p. 134-138.
136. Strachan, P.D., A.A. Freer, and C.A. Fewson, Purification and characterization of catechol 1,2-dioxygenase from Rhodococcus rhodochrous NCIMB 13259 and cloning and sequencing of its catA gene. Biochem J, 1998. 333 ( Pt 3): p. 741-7.
137. Suzuki, K., et al., Differential expression of two catechol 1,2-dioxygenases in Burkholderia sp. strain TH2. J Bacteriol, 2002. 184(20): p. 5714-22.
138. Shen, X.H., Z.P. Liu, and S.J. Liu, Functional identification of the gene locus (ncg12319 and characterization of catechol 1,2-dioxygenase in Corynebacterium glutamicum. Biotechnol Lett, 2004. 26(7): p. 575-80.
139. Wang, C.-L., S.-L. You, and S.-L. Wang, Purification and characterization of a novel catechol 1,2-dioxygenase from Pseudomonas aeruginosa with benzoic acid as a carbon source. Process Biochemistry, 2006. 41(7): p. 1594-1601.
140. Cha, C.-J., Catechol 1,2-dioxygenase from Rhodococcus rhodochrous N75 capable of metabolizing alkyl-substituted catechols. Microbiol. Biotechnol., 2006. 16(5): p. 778-785.
141. Matsumura, E., et al., Constitutive synthesis, purification, and characterization of catechol 1,2-dioxygenase from the aniline-assimilating bacterium Rhodococcus sp. AN-22. J Biosci Bioeng, 2004. 98(2): p. 71-6.
142. Di Nardo, G., et al., Catalytic properties of catechol 1,2-dioxygenase from Acinetobacter radioresistens S13 immobilized on nanosponges. Dalton Trans, 2009(33): p. 6507-12.
143. Patel, R.N., et al., Catechol 1,2-dioxygenase from Acinetobacter calcoaceticus: purification and properties. J Bacteriol, 1976. 127(1): p. 536-44.
144. Murakami, S., et al., Purification and characterization of four catechol 1,2-dioxygenase isozymes from the benzamide-assimilating bacterium Arthrobacter species BA-5-17. Microbiol Res, 1998. 153(2): p. 163-71.
145. Fujiwara, M., et al., Extradiol cleavage of 3-substituted catechols by an intradiol dioxygenase, pyrocatechase, from a Pseudomonad. J Biol Chem, 1975. 250(13): p. 4848-55.
146. Walsh, T.A., et al., Rapid reaction studies on the oxygenation reactions of catechol dioxygenase. J Biol Chem, 1983. 258(23): p. 14422-7.
147. Nakai, C., T. Nakazawa, and M. Nozaki, Purification and properties of catechol 1,2-dioxygenase (pyrocatechase) from Pseudomonas putida mt-2 in comparison with that from Pseudomonas arvilla C-1. Arch Biochem Biophys, 1988. 267(2): p. 701-13.
148. Wang, C.L., et al., Production of catechol from benzoate by the wild strain Ralstonia species Ba-0323 and characterization of its catechol 1,2-dioxygenase. Biosci Biotechnol Biochem, 2001. 65(9): p. 1957-64.
149. Aoki, K., et al., Purification and characterization of catechol 1,2-dioxygenase from aniline-assimilating Rhodococcus erythropolis AN-13. Biol. Chem. , 1984. 48: p. 2087-2095.
150. Solyanikova, I.P., et al., Isolation and characterization of catechol 1,2-dioxygenases from Rhodococcus rhodnii strain 135 and Rhodococcus rhodochrous strain 89: comparison with analogous enzymes of the ordinary and modified ortho-cleavage pathways. Biochemistry (Mosc), 1999. 64(7): p. 824-31.
151. Caglio, R., et al., Fine-tuning of catalytic properties of catechol 1,2-dioxygenase by active site tailoring. Chembiochem, 2009. 10(6): p. 1015-24.
152. Malaguarnera, G., et al., Toxic hepatitis in occupational exposure to solvents. World J Gastroenterol, 2012. 18(22): p. 2756-66.
153. Harwood, C.S. and R.E. Parales, The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol, 1996. 50: p. 553-90.
154. Zhan, Y., et al., Comparative analysis of the complete genome of an Acinetobacter calcoaceticus strain adapted to a phenol-polluted environment. Res Microbiol, 2012. 163(1): p. 36-43.
155. Jimenez, J.I., et al., Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ Microbiol, 2002. 4(12): p. 824-41.
156. Vetting, M.W. and D.H. Ohlendorf, The 1.8 A crystal structure of catechol 1,2-dioxygenase reveals a novel hydrophobic helical zipper as a subunit linker. Structure, 2000. 8(4): p. 429-40.
157. Earhart, C.A., et al., Crystallization of catechol-1,2 dioxygenase from Pseudomonas arvilla C-1. J Mol Biol, 1994. 236(1): p. 377-8.
158. Eulberg, D. and M. Schlomann, The putative regulator of catechol catabolism in Rhodococcus opacus 1CP--an IclR-type, not a LysR-type transcriptional regulator. Antonie Van Leeuwenhoek, 1998. 74(1-3): p. 71-82.
159. Eulberg, D., L.A. Golovleva, and M. Schlomann, Characterization of catechol catabolic genes from Rhodococcus erythropolis 1CP. J Bacteriol, 1997. 179(2): p. 370-81.
160. Ridder, L., et al., Quantitative structure/activity relationship for the rate of conversion of C4-substituted catechols by catechol-1,2-dioxygenase from Pseudomonas putida (arvilla) C1. Eur J Biochem, 1998. 257(1): p. 92-100.
161. Matera, I., et al., Catechol 1,2-dioxygenase from the Gram-positive Rhodococcus opacus 1CP: quantitative structure/activity relationship and the crystal structures of native enzyme and catechols adducts. J Struct Biol, 2010. 170(3): p. 548-64.
162. Sugiyama, K., et al., Crystallization and preliminary crystallographic analysis of a 2,3-dihydroxybiphenyl dioxygenase from Pseudomonas sp. strain KKS102 having polychlorinated biphenyl (PCB)-degrading activity. Proteins, 1995. 22(3): p. 284-6.
163. Han, S., et al., Crystal structure of the biphenyl-cleaving extradiol dioxygenase from a PCB-degrading pseudomonad. Science, 1995. 270(5238): p. 976-80.
164. Heiss, G., et al., Characterization of a 2,3-dihydroxybiphenyl dioxygenase from the naphthalenesulfonate-degrading bacterium strain BN6. J Bacteriol, 1995. 177(20): p. 5865-71.
165. Eltis, L.D. and J.T. Bolin, Evolutionary relationships among extradiol dioxygenases. J Bacteriol, 1996. 178(20): p. 5930-7.
166. Spence, E.L., et al., Catechol dioxygenases from Escherichia coli (MhpB) and Alcaligenes eutrophus (MpcI): sequence analysis and biochemical properties of a third family of extradiol dioxygenases. J Bacteriol, 1996. 178(17): p. 5249-56.
167. Wolgel, S.A., et al., Purification and characterization of protocatechuate 2,3-dioxygenase from Bacillus macerans: a new extradiol catecholic dioxygenase. J Bacteriol, 1993. 175(14): p. 4414-26.
168. Eltis, L.D., et al., Purification and crystallization of 2,3-dihydroxybiphenyl 1,2-dioxygenase. J Biol Chem, 1993. 268(4): p. 2727-32.
169. Boldt, Y.R., et al., A manganese-dependent dioxygenase from Arthrobacter globiformis CM-2 belongs to the major extradiol dioxygenase family. J Bacteriol, 1995. 177(5): p. 1225-32.
170. Merimaa, M., et al., Grouping of phenol hydroxylase and catechol 2,3-dioxygenase genes among phenol- and p-cresol-degrading Pseudomonas species and biotypes. Arch Microbiol, 2006. 186(4): p. 287-96.
171. Kukor, J.J. and R.H. Olsen, Catechol 2,3-dioxygenases functional in oxygen-limited (hypoxic) environments. Appl Environ Microbiol, 1996. 62(5): p. 1728-40.
172. Kim, K.P., et al., Characteristics of catechol 2,3-dioxygenase produced by 4-chlorobenzoate-degrading Pseudomonas sp. S-47. J. Microbiol., 1997. 35: p. 295-299.
173. Murakami, S., et al., Purification, characterization, and gene analysis of catechol 2,3-dioxygenase from the aniline-assimilating bacterium Pseudomonas species AW-2. Biosci Biotechnol Biochem, 1998. 62(4): p. 747-52.
174. Mars, A.E., et al., Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase region of Pseudomonas putida GJ31. J Bacteriol, 1999. 181(4): p. 1309-18.
175. Kim, D., et al., Functional characterization and molecular modeling of methylcatechol 2,3-dioxygenase from o-xylene-degrading Rhodococcus sp. strain DK17. Biochem Biophys Res Commun, 2005. 326(4): p. 880-6.
176. Viggiani, A., et al., The role of the conserved residues His-246, His-199, and Tyr-255 in the catalysis of catechol 2,3-dioxygenase from Pseudomonas stutzeri OX1. J Biol Chem, 2004. 279(47): p. 48630-9.
177. Cerdan, P., et al., Substrate specificity of catechol 2,3-dioxygenase encoded by TOL plasmid pWW0 of Pseudomonas putida and its relationship to cell growth. J Bacteriol, 1994. 176(19): p. 6074-81.
178. Takeo, M., et al., Purification and characterization of alkylcatechol 2,3-dioxygenase from butylphenol degradation pathway of Pseudomonas putida MT4. J Biosci Bioeng, 2007. 104(4): p. 309-14.
179. Kang, B.S., et al., Structure of catechol 2,3-dioxygenase gene from Alcaligenes eutrophus 335. Biochem Biophys Res Commun, 1998. 245(3): p. 791-6.
180. Ng, L.C., C.L. Poh, and V. Shingler, Aromatic effector activation of the NtrC-like transcriptional regulator PhhR limits the catabolic potential of the (methyl)phenol degradative pathway it controls. J Bacteriol, 1995. 177(6): p. 1485-90.
181. Hugo, N., et al., A novel -2Fe-2S- ferredoxin from Pseudomonas putida mt2 promotes the reductive reactivation of catechol 2,3-dioxygenase. J Biol Chem, 1998. 273(16): p. 9622-9.
182. Cho, J.H., et al., Crystal structure and functional analysis of the extradiol dioxygenase LapB from a long-chain alkylphenol degradation pathway in Pseudomonas. J Biol Chem, 2009. 284(49): p. 34321-30.
183. Vaillancourt, F.H., J.T. Bolin, and L.D. Eltis, The ins and outs of ring-cleaving dioxygenases. Crit Rev Biochem Mol Biol, 2006. 41(4): p. 241-67.
184. Ferguson, P.L., C.R. Iden, and B.J. Brownawell, Distribution and fate of neutral alkylphenol ethoxylate metabolites in a sewage-impacted urban estuary. Environ Sci Technol, 2001. 35(12): p. 2428-35.
185. Sahambi, S.K., et al., Oral p-tert-octylphenol exposures induce minimal toxic or estrogenic effects in adult female Sprague-Dawley rats. J Toxicol Environ Health A, 2010. 73(9): p. 607-22.
186. Martin, O.V. and N. Voulvoulis, Sustainable risk management of emerging contaminants in municipal wastewaters. Philos Transact A Math Phys Eng Sci, 2009. 367(1904): p. 3895-922.
187. Koh, Y.K., et al., Fate and occurrence of alkylphenolic compounds in sewage sludges determined by liquid chromatography tandem mass spectrometry. Environ Technol, 2009. 30(13): p. 1415-24.
188. Viggiani, A., et al., An airlift biofilm reactor for the biodegradation of phenol by Pseudomonas stutzeri OX1. J Biotechnol, 2006. 123(4): p. 464-77.
189. Toyama, T., et al., Isolation and characterization of a novel 2-sec-butylphenol-degrading bacterium Pseudomonas sp. strain MS-1. Biodegradation, 2009.
190. Reichlin, F. and H.P. Kohler, Pseudomonas sp. strain HBP1 Prp degrades 2-isopropylphenol (ortho-cumenol) via meta cleavage. Appl Environ Microbiol, 1994. 60(12): p. 4587-91.
191. Chen, H.J., S.L. Huang, and D.H. Tseng, Aerobic biotransformation of octylphenol polyethoxylate surfactant in soil microcosms. Environ Technol, 2004. 25(2): p. 201-10.
192. Youssef, N., et al., In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir. Appl Environ Microbiol, 2007. 73(4): p. 1239-47.
193. Ausubel, F.M., et al., Current Protocols in Molecular Biology. ringbou ed2003, John Wiley & Sons Inc.
194. Heuer, H., et al., Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol, 1997. 63(8): p. 3233-41.
195. Ferris, M.J., G. Muyzer, and D.M. Ward, Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol, 1996. 62(2): p. 340-6.
196. Thompson, J.D., et al., The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997: p. 25:4876-4882.
197. Llorca-Porcel, J., et al., Analysis of chlorophenols, bisphenol-A, 4-tert-octylphenol and 4-nonylphenols in soil by means of ultrasonic solvent extraction and stir bar sorptive extraction with in situ derivatisation. J Chromatogr A, 2009. 1216(32): p. 5955-61.
198. Passman, D.F.J., K. Rossmoore, and L. Rossmoore, Relationship between the presence of mycobacteria and non-mycobacteria in metalworking fluids. Tribology & lubrication technology, 2009(Special section): p. 52-55.
199. Tancsics, A., et al., Applicability of the functional gene catechol 1,2-dioxygenase as a biomarker in the detection of BTEX-degrading Rhodococcus species. J Appl Microbiol, 2008. 105(4): p. 1026-33.
200. Sei, K., et al., Design of PCR primers and gene probes for the general detection of bacterial populations capable of degrading aromatic compounds via catechol cleavage pathways. J Biosci Bioeng, 1999. 88(5): p. 542-50.
201. Nakai, C., et al., Complete nucleotide sequence of the metapyrocatechase gene on the TOI plasmid of Pseudomonas putida mt-2. J Biol Chem, 1983. 258(5): p. 2923-8.
202. Ferrara, F., et al., Alkylphenolic compounds in edible molluscs of the Adriatic Sea (Italy). Environ Sci Technol, 2001. 35(15): p. 3109-12.
203. Leboulch, P., et al., Mutagenesis of retroviral vectors transducing human beta-globin gene and beta-globin locus control region derivatives results in stable transmission of an active transcriptional structure. EMBO J, 1994. 13(13): p. 3065-76.
204. Toyama, T., et al., Isolation and characterization of 4-tert-butylphenol-utilizing Sphingobium fuliginis strains from Phragmites australis rhizosphere sediment. Appl Environ Microbiol, 2010. 76(20): p. 6733-40.
205. Thompson, J.D., et al., The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997: p. 25:4876-4882.
206. Jung, C.M., et al., Acetylation of fluoroquinolone antimicrobial agents by an Escherichia coli strain isolated from a municipal wastewater treatment plant. J Appl Microbiol, 2009. 106(2): p. 564-71.
207. Sambrook, J., E.F. Fristsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual. Vol. 1,2,3. 1989, NY: Cold Spring Harbor Laboratory Press.
208. Johnson, J., Similarity analyses of rRNAs. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds). Methods for General and Molecular Bacteriology. American Society for Microbiology: Washington, DC,, 1994: p. 683–700.
209. Lee, K. and D.T. Gibson, Toluene and ethylbenzene oxidation by purified naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. Appl Environ Microbiol, 1996. 62(9): p. 3101-6.
210. Routledge, E. and J. Sumpter, Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environmental Toxiclogy and Chemistry, 1996. 15: p. 241-248.
211. Ma, M., L. Jian, and Z. Wang, Assessing the Detoxication Efficiencies of Wastewater Treatment Processes Using a Battery of Bioassays/Biomarkers. Arch. Environ. Contam. Toxicol., 2005. 49: p. 480–487.
212. Ensley, B.D., et al., Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science, 1983. 222(4620): p. 167-9.
指導教授 黃雪莉(Shir-Ly Huang) 審核日期 2013-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明