博碩士論文 962916013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:34.204.189.171
姓名 陳憬憲(Jing-sian Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 穩態紅外線LED封裝熱阻量測
(Measurement of thermal resistance of LED package with infrared at Steady state)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ CCD 量測儀器之研究與探討★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用
★ 多光束繞射光學元件應用在DVD光學讀取頭之設計★ 高位移敏感度之全像多工光學儲存之研究
★ 利用亂相編碼與體積全像之全光學式光纖感測系統★ 體積光柵應用於微物3D掃描之研究
★ 具有偏極及光強分佈之孔徑的繞射極限的研究★ 三維亂相編碼之體積全像及其應用
★ 透鏡像差的量測與MTF的驗證★ 二位元隨機編碼之全像光學鎖之研究
★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究
★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測★ 發光二極體導光機構之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文中,我們以高功率紅外線光源擬似熱源,建立出一套新的熱阻量測系統。此量測系統藉由紅外線熱像儀量測溫度,並求得待測物之熱阻,本論文中以此系統針對各種目前市面上可獲得不同之LED封裝基板做熱阻量測,並與有限元素分析法建立之模型得到理想熱阻值加以比照。另外針對同一製程的基板和晶片不同bonding在基板上之熱阻表現可由實驗結果與模擬結果相互比對以推估不同基板之接面熱阻值。
摘要(英) In this thesis, we used a high power infrared light source to emulate the heat source and built a novel system for thermal resistance measurement. In this system, a thermal camera is used to measure the temperature distribution. With the temperature distribution over the entire sample measured, we can obtain the thermal resistance of the test sample. All commercially available high power LED packages’ thermal resistances were measured based on the system that we constructed. The measurement results were compared with theoretical models which base on the finite element analysis method. Contact thermal resistance can also be estimated by comparing the experimental measurement results with the FEA simulation results. A brief discussion was provided about the contact thermal resistance contributed by different bonding methods which using different bonding material based on the analysis developed.
關鍵字(中) ★ 發光二極體
★ 熱阻
關鍵字(英) ★ LED
★ thermal resistance
論文目次 摘要.............................................................................................................I
Abstract.....................................................................................................II
致謝..........................................................................................................III
第一章 緒論………………………………………………………………1
1.1 前言………………………………………………………….1
1.2 研究動機與目的…………………………………………….3
1.3 論文大綱…………………………………………………….3
第二章 基本理論………………………………………………………...4
2.1 引言………………………………………………………….4
2.2 基本熱傳導原理…………………………………………….5
2.2.1 傳導…………………………………………………..…5
2.2.2 對流……………………………………………..………7
2.2.3 輻射……………………………………………..………7
2.3 熱阻……………………………………………..…………...8
第三章 熱阻量測實驗………………………………………………....10
3.1 實驗架構………………………………………...…………10
3.2 量測結果與討論……………………………………....…...10
第四章 有限元素數值模擬分析與實驗結果討論................................32
4.1 有限元素分析簡介…………………………...………...….32
4.2物件之幾何參數及材料參數……………………….……...33
4.3定義數值模擬之邊界條件……………………………….....38
4.4模擬數值分析與量測結果之比對……………………..…...49
4.5 不同LED封裝bonding接面熱阻之分析…………………59
第五章 結論與未來展望…………………….………………………...65
5.1 結論………………...…………….………………………...65
5.2 未來展望………………………...…………….………...…66
參考文獻……………………………………………………………….67
中英文名詞對照表…………………………………………………….69
參考文獻 [1] N. Holonyak Jr. and S. F. Bevaqua, “Coherent(visible) Light Emission Form Ga(As1-xPx) Junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
[2] S. Nakamura and G. Fasol, The Blue Laser Diode: GaN based light emitters and laser Spinger (1997).
[3]Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925, DEC. 7,1999.
[4] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diode,” Appl. Phys. Lett. 64, 1687-1689 (1994).
[5] 孫慶成,LED的效率極限與照明光學設計的極致,2009 LED 固態照明研討
會,中華民國九十八年
[6] F. Wall, P. S. Martin, and G. Harbers, “High power LED package Requirment,” Proc. SPIE 5187, 85-92 (2004).
[7] Y. Xi and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett. 85, 2163-2165 (2004).
[8] S. Todoroki, M. Sawai, and K. Aiki, “Temperature distribution along the striped active region in high-power GaAlAs visible lasers,” J. Appl. Phys. 58, 1124-1128 (1985).
[9] S. Murata and H. Nakada, “Adding a heat bypass improves the thermal characteristics of a 50μm spaced 8-beam laser diode array,” J. Appl. Phys. 72, 2514-2516 (1992).
[10] W. Epperlein and G. L. Bona, “Influence of the vertical structure on the mirror facet temperatures of visible GaInP quantum well lasers,” Appl. Phys. Lett. 61, 3074 -3076 (1993).
[11] D. C. Hall, L. Goldberg, and D. Mehuys, “Technique for lateral temperature profiling in optoelectronic devices using a photoluminescence microprobe,” Appl. Phys. Lett. 61, 384-386 (1992).
[12] Y. Gu and N. Narendran, “A noncontact method for determining junction temperature of phosphor-converted white LEDs,” Proc. SPIE 5187, 107-114 (2004).
[13] L. Kim and M. W. Shin, “Thermal resistance measurement of LED package with multichips,” IEEE T.ransactions on Components and Packaging Technologies 30, 632-636 (2007).
[14] D. A. Neamen, Semiconductor Physics and Devices (McGraw-Hill, New York 2003).
[15] Siegfried Luger, “Thermal Management White LED Challenges LED lighting Control System, ” LED professional Magazine 04, 15-17 (2007).
[16] C. Kittel, and H Kroemer Thermal physics (W. H. Freeman and Company, San Francisco 1980).
[17] J. P. Holman, Heat Transfer (McGraw-Hill, New York 1996).
[18] R. Siegel, and J. R. Howell Thermal radiation heat transfer (Hemisphere Pub. Corp, Washington 1981).
指導教授 孫慶成、鍾德元
(Ching-Cherng Sun、Te-Yuan Chung)
審核日期 2010-5-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明