博碩士論文 963202017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:13.58.82.79
姓名 梁家源(Chia-yuan Liang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 FRP筋對混凝土柱圍束效應之研究
(Investigation on Concrete Confined Effectiveness with FRP Bars)
相關論文
★ 變厚度X形消能裝置初步研究★ 高強度鋼筋混凝土剪力牆連接梁耐震配筋之研究
★ 高拉力SD690鋼筋截斷設計之研究★ 高強度鋼筋混凝土梁構件耐震設計參數之研究
★ 鋼筋混凝土梁疲勞行為之初步研究★ 高拉力鋼筋混凝土滑移剪力設計之研究
★ 鋼筋混凝土梁有斜向鋼筋配置之耐震性能提升研究★ 非韌性鋼筋混凝土梁柱外接頭補強之研究
★ 新澆置鋼筋混凝土梁受反覆荷重之影響★ 非韌性鋼筋混凝土梁柱內接頭補強之研究
★ 鋼筋混凝土擴柱補強工法對非韌性梁柱接頭耐震能力提升之探討★ 雙層兩跨鋼筋混凝土抗彎構架耐震測試
★ 受損RC梁柱接頭補強之耐震成效評估★ 現有鋼筋混凝土建築物之耐震能力評估 ―以紐西蘭評估方法為基礎
★ 桁架軟化模式應用於無水平箍筋梁柱接頭剪力及變形曲線預測之研究★ 鋼筋混凝土三軸拱圍束效應用於補強柱受軸向及撓曲變形之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 所謂纖維加勁筋(Fiber Reinforced Polymer Bars,簡稱FRP筋) ,泛指一般所謂碳纖維或玻璃纖維複合環氧樹脂成一鋼筋型式。這類加勁筋,已開始在先進國家大量採用以取代現有鋼筋,尤其像在台灣之高腐蝕環境中。
美國混凝土學會ACI440規範編訂小組,於2006年出版有關FRP筋混凝土設計方針,但只針對梁抗彎、抗剪、及握裏檢核作設計規定,對於柱方面圍束效應計算,並未提出說明,也因此構成本研究。
本研究製作10個矩形短柱試體,以FRP箍筋取代一般橫向鋼筋,用於柱中作為圍束材料,同時也將FRP筋用於柱中作為縱向主筋。實驗採單點荷重方式,對試體進行軸壓,同時量測混凝土、主筋與箍筋應變,並觀察試體的破壞情形。實驗結果顯示,FRP縱向筋具有一定抗壓能力,而GFRP(Glass Fiber Reinforced Polymer,玻璃纖維加勁)箍筋展現出優於CFRP(Carbon Fiber Reinforced Polymer,碳纖維加勁)箍筋之圍束能力。
摘要(英) What we called “Fiber Reinforced Polymer Bars” is made from carbon or glass fibers mixed with polymer resin to a shape similar to steel reinforcing bars, initial as FRP bars. Nowadays, FRP bars are widely adopted in newly constructed RC structures in many countries. With respect to the highly corrosive environment as Taiwan, FRP bars as reinforcement can be considered to the new or green RC structures for sustaining their service lives.
ACI committee 440 has published a new design guideline for FRP concrete members in 2006. However, the content is limited to the specifications on how to design FRP RC beams, such as moment, shear, and bond strength designs. There is no other design guide for RC columns, especially for the confined effectiveness of FRP hoops. Therefore, the research is to investigate the confining effectiveness of RC columns using FRP hoops.
Ten short column specimens with rectangular section were manufactured from a local FRP industrial firm. The FRP tie bars are used as the transverse reinforcement instead of steel tie bars to confine the column. The FRP longitudinal reinforcement in some concrete columns is used. The columns were subjected to monotonically axial loading. Deformations of concrete, rebars and tie bars were measured electronically. Main results showed that the compressively carried capacity of FRP rebars cannot be ignored. The GFRP tie bars performed better behavior of confinement than the CFRP tie bars.
關鍵字(中) ★ 鋼筋混凝土
★ 圍束效應
★ FRP筋
★ 強度
關鍵字(英) ★ Strength
★ FRP Bars
★ Confined Effectiveness
★ Reinforced Concrete
論文目次 第一章 緒論 1
1-1 研究動機 1
1-2 研究目的及方法 2
第二章 文獻回顧 3
2-1 FRP箍筋文獻回顧 3
2-2 FRP筋混凝土柱 5
2-2-1 FRP筋抗壓強度 5
2-2-2 FRP筋抗壓彈性模數 6
2-2-3 FRP筋混凝土柱受壓性能 7
2-3 小型混凝土圓柱試體抗壓試驗 7
2-4 Popovics混凝土模型 8
2-5 圍束理論概述 9
第三章 圍束混凝土強度推導 11
3-1 Mander 圍束理論 11
3-2 圍束混凝土抗壓應力f_cc^'計算 12
3-2-1 有效圍束壓力與有效圍束係數 12
3-2-2 圓形斷面混凝土柱圍束強度 12
3-2-3 矩形斷面混凝土柱圍束強度 14
3-3 數值分析步驟 15
3-4 範例 18
3-5 修正Mander圍束混凝土應力—應變預測曲線 19
第四章 小型圓柱試體圍束試驗 21
4-1 試體規劃 21
4-2 試體材料 21
4-2-1 鋼筋 21
4-2-2 混凝土 22
4-3 試體設計製作 23
4-3-1 試體設計 23
4-3-2 試體製作 23
4-4 實驗設置 24
4-5 實驗步驟 25
4-6 實驗結果討論 25
4-6-1 第一部分:驗證Mander之圍束model 25
4-6-2 第二部分:評估FRP筋抗壓構材貢獻 26
第五章 FRP箍筋之矩形混凝土短柱實驗 28
5-1 試體材料 28
5-1-1 鋼筋 28
5-1-2 混凝土 29
5-1-3 無收縮水泥砂漿 29
5-2 試體設計 30
5-3 試體製作 30
5-3-1 鋼筋籠製作 30
5-3-2 模板製作 31
5-3-3 試體澆置 31
5-3-4 試體養護 32
5-4 實驗設置 32
5-5 實驗步驟 33
第六章 FRP箍筋之矩形混凝土短柱實驗結果討論分析 35
6-1 S3柱試體(控制試體S3)破壞結果 35
6-1-1 一般混凝土(無箍筋)柱試體 35
6-1-2 150mm箍筋間距柱試體 36
6-1-3 75mm箍筋間距柱試體 37
6-2 C7柱試體(控制試體C7)破壞結果 39
6-2-1 一般混凝土(無箍筋)柱試體 39
6-2-2 含箍筋柱試體 40
6-3 不同類型箍筋圍束效果 41
6-4 #7CFRP筋抗壓性能探討 42
6-5 Mander預測模式探討 43
第七章 結論與建議 44
7-1 結論 44
7-2 建議 44
參考文獻 47
參考文獻 1. Maruyama, T., Honma, M., and Okamaru, H., “Experimental Study on Tensile Strength of Bent Portion of FRP Rods,” ACI Special Publication, Vol. 138, pp. 163-176(1993).
2. Nagasaka, T.,Fukuyama, H., and Tanigaki, M., “Shear Performance of Concrete Beams Reinforced With FRP Stirrups,” ACI Special Publication, Vol. 138, pp. 789-811(1993).
3. El-Sayed, A. K., El-Salakawy, E., and Benmokrane, B., “Mechanical and Structural Characterization of New Carbon FRP Stirrups for Concrete Members,” Journal of Composites for Construction, Vol. 11, No. 4, pp. 352-362(2007).
4. ACI Committee 440, Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars, ACI 440.1R-06(2002).
5. Wu, W. P., Thermomechanieal Properties of Fiber Reinforced Plastic (FRP) Bars, pp. 292(1990).
6. Kobayashi, K., and Fujisaki, T., “Compressive Behavior of FRP Reinforcement in Non-Prestressed Concrete Member,” Non-metallic (FRP) Reinforcement for Concrete Structure, pp. 267-274(1995).
7. Deitz, T. H., Harik, I. E., and Gesund, H., “Physical Properties of Glass Fiber Reinforced Polymer Rebars in Compression,” Journal of Composites for Construction, Vol. 7, No. 4, July/August, pp. 363-366(2003).
8. Mallick, P. K., Fiber Reinforced Composites, Materials, Manufacturing, and Design, pp. 469(1988).
9. Gong, Y., “Research Progress of FRP Reinforced Concrete Column,” Architecture Technology, Vol. 37, No. 11, November, pp. 836-838(2006).
10. Paramanantham, N., Investigation of the Behavior of Concrete Columns Reinforced with Fiber Plastic Rebar, (1993).
11. Ahmad, S. H., and Shah, S. P., “Behavior of Hoop Confined Concrete Under High Strain Rates,” ACI Journal Proceedings, Vol. 82, No. 5, November-December, pp. 652-659(1989).
12. Sheikh, S. A., and Tokluku, M. T., “Reinforced Concrete Columns Confined by Circular Spirals and Hoops,” ACI Structural Journal, Vol. 90, No. 5, September-October, pp. 542-553(1993).
13. Xiao, Y., and Wu, H., “Compressive Behavior of Concrete Confined by Carbon Fiber Composite Jackets,” Journal of Materials in Civil Engineering, Vol. 12, No. 2, May, pp. 139-146(2000).
14. Popovics, S., “A Numerical Approach to the Complete Stress-Strain Curves for Concrete,” Cement and Concrete Research, Vol. 3, pp. 583-599(1973).
15. Richart, F. E., Brandtzaeg, A., and Brown, R. L., “A Study of the Failure of Concrete under Combined Compressive Stresses,” University of Illinois Engineering Experimental Station, Bulletin 105(1928).
16. Balmer, G. G., “Shearing Strength of Concrete under High Triaxial Stress-Computation of Mohr’s Envelope as a Curve,” SP-23, Structural Research Laboratory, U.S. Bureau of Reclamation(1944).
17. Mander, J. B., Priestley, M. J. N., and Park, R., “Theoretical Stress-Strain Model for Confined Concrete,” Journal of Structural Engineering, Vol. 114, No. 8, pp. 1804-0826(1988).
18. Sheikh, S. A., and Uzumeri, S. M., “Strength and Ductility of Tied Concrete Columns,” Journal of the Structural Division, A.S.C.E., Vol. 106, No. 5, pp. 1079-1102(1980).
19. Mander, J. B., Seismic Design of Bridge Piers, pp. 47-66(1983).
20. Elwi, A. A., and Murray, D. W., “A 3D Hypoelastic Concrete Constitutive Relationship,” Journal of the Engineering Mechanics Division, Vol. 105, No. 4, August, pp. 623-641(1979).
21. William, K. J., and Warnke, E. P., “Constitutive Model for the Triaxial Behavior of Concrete,” International Association for Bridge and Structural Engineering Proceedings, Vol. 19, pp. 1-30(1975).
22. 金財興股份有限公司,製造FRP筋產品。
23. 祥世實業有限公司,研發、生產水泥添加劑、土木建材。
24. 洪一德,「FRP筋混凝土梁設計與實驗印證」,碩士論文,王勇智教授指導,國立中央大學土木研究所,桃園(2008)。
25. 章文皇,「鋼筋混凝土三軸拱圍束效應用於補强柱受軸向及撓曲變形之探討」,碩士論文,王勇智教授指導,國立中央大學土木研究所,桃園(2004)。
26. GangaRao, H. V. S., Taly, N., and Vijay, P. V., Reinforced Concrete Design With FRP Composite, CRC(2006).
指導教授 王勇智(Yung-chih Wang) 審核日期 2009-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明