博碩士論文 963202046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.145.18.3
姓名 鐘文煥(Wun-Huan Jheng)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 爐碴細粒料應用於製作鹼活化還原碴混凝土可行性研究
(無英文名稱)
相關論文
★ 電弧爐氧化碴特性及取代混凝土粗骨材之成效研究★ 路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討
★ 工業廢棄物再利用於營建工程粒料策略之研究★ 以鹼活化技術資源化電弧爐煉鋼還原碴之研究
★ 低放處置場工程障壁之溶出失鈣及劣化敏感度分析★ 以知識本體技術與探勘方法探討台北都會區道路工程與管理系統之研究
★ 電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究★ 三維有限元素應用於柔性鋪面之非線性分析
★ 放射性廢料處置場緩衝材料之力學性質★ 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究
★ 路基土壤受反覆載重作用之累積永久變形研究★ 還原碴取代部份水泥之研究
★ 路基土壤反覆載重下之回彈與塑性行為及模式建構★ 重載交通荷重對路面損壞分析模式之建立
★ 鹼活化電弧爐還原碴之水化反應特性★ 電弧爐氧化碴為混凝土骨材之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 還原碴與爐碴細粒料皆為電弧爐煉鋼之副產品,還原碴經適當處理後能表現出類似水泥的膠結效果,而爐碴細粒料經過前置處理後則在某些情況下能取代部分天然粒料使用。如能將兩者結合製作成取代水泥混凝土的環保混凝土材料,不僅可處理這些工業副產品,同時更可減少水泥混凝土的使用,進一步達到多重效益。
本研究主要以鹼活化技術活化還原碴,並加入爐石取代部分還原碴以降低活化劑用量,再以此膠結材料結合爐碴細粒料進行抗壓強度、體積穩定性與耐久性等相關詴驗。最後設計製作28天抗壓強度為210 kgf/cm2 之鹼活化還原碴混凝土,並進行可行性評估。
研究顯示爐石取代量50%,鹼活化劑之含鹼當量4%,鹼模數比0.75的配比配合爐碴細粒料取代,抗壓強度可達規範標準,耐久性方面則優於使用水泥漿體的詴體,但仍有乾燥收縮量遠大於水泥的問題。混凝土方面,使用天然粒料的混凝土強度可達28天的目標強度,而使用爐碴細粒料完全取代的混凝土雖未達目標強度,但已相當接近目標,評估所有實驗結果,爐碴細粒料應用於製作鹼活化還原碴混凝土是可行的。
摘要(英) The reductive slag and slag fine aggregates are the by-products of EAF steel-making. After an appropriate process, reductive slag can show a similar cementation effect as the cement, and slag fine aggregates can be used in certain cases to replace part of the natural aggregates after the pre-processing is made. If we can combine both products to make environmentally friendly concrete material which replaces the cement concrete, we not only deal can with these industrial by-products, but also reduce the use of cement concrete, further to achieve multiple benefits.
This study aims at activating reductive slag by using alkali-activated technology, adding furnace slag to replace part of reductive slag to reduce the dosage of activating agent, and then conducting experiments related to concrete compressive strength, volume stability and durability using the combination of this cementing material and slag fine aggregates. Finally, we design a production of the alkali-activated reductive slag concrete with 28-day compressive strength of 210 kgf / cm 2, and conduct the feasibility studies.
Study shows that with the furnace slag replacement rate of 50%, alkaline activator 4%(by Na2O), alkali modulus 0.75, replacing natural aggregates with slag fine aggregates, the compressive strength of the mortar can reach normative standards, and its durability is superior to those of cement paste samples. However, its drying shrinkage is much greater than those of cement. As for concrete, the compressive strength of concrete using natural aggregates can reach the 28-day targeted strength, while the compressive strength of concrete with natural aggregates completely replaced with slag fine aggregates doesn’t reach the target, yet is very close to it. Assessing all the experimental results of this study, it is feasible to use slag fine aggregates in the production of alkali-activated reductive slag concrete.
關鍵字(中) ★ 鹼活化還原碴混凝土
★ 爐碴細粒料
★ 乾燥收縮
關鍵字(英) ★ alkali-activated reductive slag concrete
★ slag fine aggregates
★ drying shrinkage
論文目次 目錄
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 V
表目錄 VIII
第一章 前言 1
1.1研究動機 1
1.2 研究目的 2
1.3 研究內容 2
第二章 文獻回顧 4
2.1 電弧爐煉鋼 4
2.1.1電弧爐煉鋼簡介 4
2.1.2 還原碴特性 5
2.2 鹼活化處理技術 6
2.2.1 鹼活化技術之反應機理 6
2.2.2 使用之鹼活化劑及其相關變數 7
2.3 影響鹼活化成效之因素與爐石取代部分還原碴之影響 9
2.3.1 還原碴細度對鹼活化成效之影響 9
2.3.2 鹼活化劑濃度對抗壓強度之影響 10
2.3.3 鹼活化劑濃度對砂漿試體收縮之影響 12
2.3.4 爐石取代部分還原碴之成效 13
2.4 鹼活化爐石混凝土之特性 16
2.4.1 鹼活化爐石混凝土之工作性 16
2.4.2 抗硫酸鹽侵蝕 17
2.4.3 鹼質粒料反應 18
2.5 鹼活化爐石混凝土配比設計與鹼活化還原碴混凝土成效 22
2.5.1 鹼活化爐石混凝土配比設計 22
2.5.2 鹼活化還原碴混凝土成效 26
2.6 爐碴粒料應用於水泥混凝土之成效 31
第三章 實驗計畫 35
3.1 實驗材料 35
3.2 實驗設備及儀器 40
3.3實驗流程及方法 46
3.3.1 實驗流程 46
3.3.2 實驗方法 54
3.4 鹼活化劑劑量調配 57
第四章 結果與分析 60
4.1 還原碴基本性質與爐碴細粒料基本物性分析 61
4.1.1 還原碴物理性質 61
4.1.2 還原碴化學性質 63
4.1.3 爐碴細粒料基本物理性質 64
4.2 最佳鹼活化劑用量與爐石取代量 66
4.2.1 還原碴品質檢定 66
4.2.2 鹼活化劑濃度與爐石取代量 68
4.3 爐碴細粒料取代比例 75
4.4 爐碴細粒料對鹼活化漿體體積穩定性的影響 79
4.5 爐碴細粒料對鹼活化還原碴耐久性的影響 86
4.5.1鹼質粒料反應 86
4.5.2硫酸鹽侵蝕 94
4.6 爐碴細粒料應用於鹼活化還原碴混凝土配合設計 101
4.6.1 鹼活化還原碴混凝土配比與性質 101
4.6.2 爐碴細粒料應用於鹼活化還原碴混凝土 105
4.6.3 改變鹼活化劑濃度的影響 108
第五章 結論與建議 112
5.1 結論 112
5.2 建議 114
參考文獻 116
參考文獻 蕭遠智,「鹼活化電弧爐還原碴之水化反應特性」,國立中央大學土木工程研究所碩士學位論文(2002)。
李宜桃,「鹼活化還原碴漿體之收縮及抑制方法研究」,國立中央大學土木工程研究所碩士學位論文(2003)。
郭硯華,「以鹼活化技術資源化電弧爐煉鋼還原碴之研究」,國立中央大學土木工程研究所碩士學位論文(2007)。
黃慶慶,「鹼活化電弧爐還原碴製作混凝土可行性研究」,國立中央大學土木工程研究所碩士學位論文(2008)。
陳立,「電弧爐氧化碴為混凝土骨材可行性之研究」,國立中央大學土木工程研究所博士學位論文(2003)。
黃兆龍,「混凝土性質與行為」,詹氏書局,台北市(1999)
ASTM C227 (1998). “Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Conbination.” ASTM Designation.
ASTM C490.(2000) “Standard Practice for Use of Apparatus for the Determination of Length Change of Hardened Cement Paste, Mortar, and Concrete.” ASTM Designation.
Bakharev, T., Sanjayan, J. G., and Cheng, Y. B. (1999). “Alkali activation of Australian slag cement. ” Cement and Concrete Research, 29 (1),113-120.
Bakharev, T., Sanjayan, J. G., and Cheng, Y. B. (2000). “Effect of admixtures on properties of alkali-activated slag concrete.” Cement and Concrete Research, 30 (9), 1367-1374.
Bakharev, T., Sanjayan, J. G., and Cheng, Y. B. (2001). “Resistance of alkali-activated salg concrete to alkali-aggregate reaction. ” Cement and Concrete Research, 31 (2), 331-334.
Brough, A. R., and Atkinson, A. (2002). “Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure.” Cement and Concrete Research, 32 (6), 865-879.
Bakharev, T., Sanjayan, J. G., and Cheng, Y. B. (2003). “Sulfate attack on alkali-activated slag concrete.” Cement and Concrete Research, 32 (2), 211-216.
Collins, F., and Sanjayan, J. G. (1999). “Workability and mechanical properties of alkali-activated slag concrete.” Cement and Concrete Research, 29 (3), 455-458.
Collins, F., and Sanjayan, J. G. (1999). “Effects of ultra-fine materials on workability and strength of concrete containing alkali-activated slag as the binder.” Cement and Concrete Research, 29 (3), 459-462.
Collins, F., and Sanjayan, J. G. (1999). “Strength and shrinkage properties of alkali-activated slag concrete containing porous coarse aggregate. ” Cement and Concrete Research, 29 (9), 607-610.
Collins, F., and Sanjayan, J. G. (2000). “Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete.” Cement and Concrete Research, 30 (9), 1401-1406.
Fernandez-Jimenez, A., and Puertas, F. (2002). “The alkali-silica reaction in alkali-activated granulated slag mortars with reactive aggregate” Cement and Concrete Research, 32 (7), 1029-1024.
Krizan, D., and Zivanovic, B. (2002). “Effects of dosage and modulus of water glass on early hydration of alkali-slag cements.” Cement and Concrete Research, 32 (8), 1181-1188.
Mehta, P. K. (1986). Concrete structure properties and materials, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A.
Palacios, M., Puertas, F. (2007). “Effect of shrinkage-reducing admixtures on the of alkali-activated slag mortars and pastes.” Cement and Concrete Research, 37 (5), 691-702.
Shi, C., and Li, Y. (1989). “Investigation on some factors affecting the characteristics of alkali-activated phosphorus slag cement.” Cement and Concrete Research, 19 (4), 527-533.
Shi, C., and Day, R. L. (1995). “A calorimetric study of early hydration of alkali slag cement.” Cement and Concrete Research, 25 (6), 1333-1346.
Shi, C., and Day, R. L. (1996). “Some factors affecting early hydration of alkali slag cement.” Cement and Concrete Research, 26 (3), 439- 447.
Shi, C., (1996). “Strength, Pore Structure and Permeability of Alkali-Activated Slag Mortars.” Cement and Concrete Research, 26 (12), 1789-1799.
Shi, C., and Xie, P. (1998). “Interface between cement paste and quartz sand in alkali-activated slag mortars.” Cement and Concrete Research, 28 (6), 887-896.
Shi, C., Krivenko, P. V., Roy, D. (2006). Alkali-activated cements and concretes. Taylor & Francis, New York.
Song, S., and Jennings, H. M. (1999). “Pore solution chemistry of alkali-activated ground granulated blast-furnace slag.” Cement and Concrete Research, 29 (2), 159-170.
Sioulas, B., and Sanjayan, J.G. (2001). “The coloration phenomenon associated with slag blended cements.” Cement and Concrete Research, 31 (2), 313-320.
Wang, S. D., Scrivener, K. L., and Pratt, P. L. (1994). “Factors affecting the strength of alkali-activated slag.” Cement and Concrete Research, 24 (6), 1033-1043.
Young, J. F., Mindess, S. and Darwin, D. (2002). Concrete, Prentice-Hall, Inc., Upper Saddle River, New Jersey, U.S.A.
指導教授 黃偉慶(Wei-Shing Hwang) 審核日期 2010-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明