博碩士論文 963203001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.149.213.209
姓名 黃晧庭(Hao-Ting Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以矽化鎳為催化劑成長奈米碳管機制之研究
(Study of growth mechanism of CNTs by the catalyst of nickel silicide)
相關論文
★ 凹形球面微電極與異形微孔的成形技術研究★ 二氧化鈦薄膜之製備與分析
★ 固態氧化物燃料電池連接板電漿鍍膜特性研究★ 碳奈米管微電極陣列之製造與性質檢測
★ 超塑性5083鋁合金快速成形空孔狀態之分析★ 微極彈性內凹結構波桑比之有限元素法分析
★ 不銹鋼微細槽放電加工及電化學拋光精修槽壁效果之研究★ 壓力容器與引流管接合處之軸對稱有限元素分析
★ 負波桑比結構之桁架有限元素法分析★ 具負波桑比性質之細胞型材料之有限元素法分析
★ 具負波桑比傘狀結構之分析與應用★ Ti-6Al-4V之超塑性成形製程模擬與分析
★ 利用微極彈性理論分析蜂巢式結構之波桑比效應★ 結合微細放電與高頻抖動研磨之微孔加工研究
★ 負波桑比機構之設計與分析★ 微雙材料熱變形樑之應用分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文應用Metal-RTA (金屬快速熱退火)製程使 (Bottom) p-Si/Silicon dioxide/Poly-Si/Ni/Metal lead (Top)多層催化劑系統,催化金屬鎳(3, 7 nm Ni)薄膜與不同厚度多晶矽(10 nm、25 nm、35 nm Poly-Si)薄膜反應形成不同相的矽化鎳(NiSix),接著使用Thermal CVD (熱化學氣相沉積法)成長奈米碳管,研究不同相的矽化鎳與其催化成長出之奈米碳管性質的關聯性,並與以鎳為催化劑所成長之奈米碳管作為對照組比較。進一步製作奈米碳管二極、三極元件。
因為成長的過程中相變持續變化的關係,矽化鎳的相與奈米碳管的關係並沒有被觀察到。使用鎳所成長出來的奈米碳管直徑比以使用矽化鎳所成長出來的奈米碳管直徑來的大。由製備出來的奈米碳管元件,量測其電性,可知道本實驗所成長出來的奈米碳管皆為金屬性奈米碳管。
摘要(英) In this thesis, the rapid thermal annealing (RTA) process was applied on (Bottom) p-Si/Silicon dioxide/Poly-Si/Ni/Metal lead (Top) for the reaction of nickel catalytic film (7 nm) with poly-silicon films (10 nm、25 nm、35 nm) to form nickel silicide (NiSix) of different phases. Thermal chemical vapor deposition (CVD) method was followed to grow carbon nanotubes (CNTs) by Ni catalyst from Ni or nickel silicide film. We study the correlation between NiSix phase and CNT property and compare with CNTs from Ni catalyst. Growth of self-aligned carbon nanotubes was used to fabricate lateral CNT diode and triode devices.
Due to the phase change of NiSix during CNT growth, no apparent correlation between NiSix phase and CNT property was found. The diameters of CNTs grown from Ni catalyst are larger than those of CNTs grown from NiSix catalyst. Linear I-V characteristics indicated the metallic property of the bridged CNTs.
關鍵字(中) ★ 快速熱退火
★ 催化金屬
★ 矽化鎳
★ 奈米碳管
★ 奈米碳管元件
關鍵字(英) ★ CNT device
★ carbon nanotube
★ nickel silicide
★ catalytic metal
★ Rapid thermal annealing
論文目次 摘 要 i
Abstract ii
目 錄 iii
表 目 錄 vi
圖 目 錄 vii
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 文獻回顧 5
第二章 奈米碳管的介紹 9
2-1 奈米碳管的起源 9
2-2 奈米碳管的結構及電學性質 12
2-3 奈米碳管之成長機制 15
2-4 奈米碳管之合成技術 18
2-5 奈米碳管之特性與應用 23
第三章 實驗方法與設備 27
3-1 實驗流程 28
3-2 製程設備與量測設備 30
3-2-1 製程設備 30
3-2-2 量測設備 34
3-3 試片製備 36
3-3-1 Control sample製備 37
3-3-2 NiSix sample製備 38
3-4 元件製備 41
3-4-1 以Ni為催化劑之元件 42
3-4-2 NiSix之元件(35 nm Poly-Si) 44
3-4-3 NiSix之元件(3~5 nm Poly-Si) 46
3-5 元件設計與光罩 47
3-6 Thermal CVD 成長奈米碳管之步驟 51
3-7 電場施加方式 52
3-8 奈米碳管品質的分析 53
第四章 結果與討論 55
4-1 不同Poly-Si厚度對奈米碳管成長影響 55
4-1-1 片電阻之改變 55
4-1-2 NiSix的相變化 58
4-1-3 Raman的奈米碳管石墨化分析 60
4-1-4 SEM分析 63
4-1-5 TEM分析 64
4-1-6 DES分析 68
4-2 N2流量對於奈米碳管成長的影響 70
4-2-1 Raman分析 70
4-2-2 SEM與TEM分析 70
4-2-3 EDS分析 71
4-3 Ni厚度對於奈米碳管成長的影響 72
4-4 電場對於奈米碳管成長的影響 74
4-4-1 IV量測 74
4-4-1-1 以Ni為催化劑之元件 74
4-4-1-2 以NiSix為催化劑之元件(35 nm Poly-Si) 76
4-4-1-3 以NiSix為催化劑之元件(3~5 nm Poly-Si) 80
4-4-2 電阻及接觸電阻之計算 81
第五章 結論 84
參考文獻 86
參考文獻 [1] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 3 (1991), 56
[2] Bower C, Zhou O, Zhu W, Werder D J and Jin S, “Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition ”, Applied Physics Letters, 77 (2000) ,2767
[3] Sohn J I, Choi C-J, Lee S and Seong T-Y, “ Growth behavior of carbon nanotubes on Fe-deposited .001. Si substrates ”, Applied Physics Letters, 78 (2001), 3130
[4] Teo K B K, Chhowalla M, Amaratunga G A J, Milne W I, Hasko D G, Pirio G, Legagneux P, Wyczisk F and Pribat D, “ Uniform patterned growth of carbon nanotubes without surface carbon”, Applied Physics Letters, 79 (2001), 1534
[5] A. M. Rao, D. Jacques, R. C. Haddon,W. Zhu, C. Bower, and S. Jin, “In situ-grown carbon nanotube array with excellent field emission characteristics”, Appl. Phys. Lett. 76 (2000), 3813
[6] Mizuhisa NIHEI, Akio KAWABATA and Yuji AWANO, “Direct Diameter-Controlled Growth of Multiwall Carbon Nanotubes on Nickel-Silicide Layer”, Jpn. J. Appl. Phys., 42 (2003), L721–L723
[7] Wei-Chang Yang, Tsung-Yeh Yang, Tri-Rung Yew, “Growth of self-aligned carbon nanotube for use as a field-effect transistor using cobalt silicide as a catalyst”, Carbon, 45 (2007), 1679–1685
[8] Sander J. Tans, Alwin R. M. Verschueren & Cees Dekker, “Room- temperature transistor based on a single carbon nanotube”, Nature, 393 (1998), 49
[9] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avouris, “Single- and multi-wall carbon nanotube field-effect transistors”, Applied Physics Letter,73 (1998), 2447
[10] V. Derycke, R. Martel, J. Appenzeller, and Ph. Avouris, “Carbon Nanotube Inter- and Intramolecular Logic Gates”, Nano Letter, 1 (2001), 453
[11] Hyongsok T. Soh , Calvin F. Quate, Alberto F. Morpurgo, Charles M. Marcusb,Jing Kong and Hongjie Dai,“Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes”, Applied Physics Letters, 75 (1999), 627
[12] Nathan R. Franklin, Qian Wang, Thomas W. Tombler, Ali Javey, Moonsub Shim,, Hongjie Dai, “Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems”, Applied Physics Letters, 81 (2002), 913
[13] Yuegang Zhang, Aileen Chang, Jien Cao, Qian Wang, Woong Kim, Yiming Li, Nathan Morris, Erhan Yenilmez, Jing Kong, and Hongjie Dai,“Electric-field-directed growth of aligned single-walled carbon nanotubes”, Applied Physics Letters, 79 (2001), 3115
[14] J. Phys. Chem,“Structures and electronic properties of peanut-shaped dimers and carbon Nanotubes”, Journal of Physical Chemistry B, v 109, n 21,(2005), 10957-10961
[15] Wikipedia encyclopedia: carbon nanotube。May 3rd,2009, from http://en.wikipedia.org/wiki/Carbon_nano_tube
[16] S. Iijima, T.Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, 363(1993), 603
[17] D.S. Bethune, C.H. Kiang, M.S. Deveries, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layers wells”, Nature, 363 (1993), 605
[18] W. Hoenlein et al.,“Carbon nanotube applications in microelectronics”,IEEE transactions on components and packaging technologies, 27 (2004), 629-634
[19] TH. Henning, F. Salama, “Carbon in the universe”, Science, 282(1998), 2204
[20] T. W. Odom﹐J. L. Huang﹐P. Kim﹐C. M. Lieber﹐“Structure and Electronic Properties of Carbon Nanotubes”, J. Phys. Chem. B, 104(2000), 2794
[21] Andreas Thess, Roland Lee, Pavel Nikolaev, Hongjie Dai, Pierre Petit, Jerome Robert, Chunhui Xu, Young Hee Lee, Seong Gon Kim, Andrew G. Rinzler, Daniel T. Colbert, Gustavo E. Scuseria, David Tomanek, John E. Fischer, Richard E. Smalley “Crystalline Ropes of Metallic Carbon Nanotubes”, Science, 273(1996), 483
[22] J. N. Wohlstadter et al. “Carbon nanotube-based biosensor”, Advanced Materials, Vol. 15, pp. 1184-1184, 2003.
[23] P. He, L. Dai, “Aligned carbon nanotube-DNA electrochemical sensors”,88Chem. Commun., pp. 348-349, 2004.
[24] J. Koehne, J. Li, A. M. Cassell, H. Chen, Q. Ye, H. T. Ng, J. Han, M. Meyyappan, “The fabrication and electrochemical characterization of carbon nanotube nanoelectrode arrays”, Journal of Materials Chemistry, 14 (2004) 676.
[25] R. T. K. Baker, R. J. Waite, “Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene”, Journal of catalysis, 26 (1972), 51
[26] G. G. Tibbetts et al., “Vapor-grown carbon fibers: status and prospectus” ,Carbon, 27 (1989) 745.
[27] 陳紹良,以微波化學氣相沉積法成長奈米碳管之研究,國立中央大學碩士論文,2003。
[28]Sergei Lebedkin et al., “Single-wall carbon nanotubes with diameters approaching 6 nmobtained by laser vaporization,” Carbon, 40 (2002) 417–423
[29] A. Star, J. C. P. Gabriel, K. Bradley, G. Gruner, “Electronic detection of specific protein binding using nanotube FET devices” ,Nano Letters, 3 (2003) 459.
[30] R. Andrews, D. Jacques, A.M. Rao, F. Derbyshire, D. Qian, X. Fan, E.C. Dickey, J. Chen, “Continuous production of aligned carbon nanotubes: a step closer to commercial realization”, Chem. Phys. Lett., 303(1999)467
[31] Y.S. Woo et al., “In situ diagnosis of chemical species for the growth of carbon nanotubes in microwave plasma-enhanced chemical vapor deposition”, Diamond and Related Materials, 11(2002)59
[32] Wolfgang Hoenlein et al., ”Carbon nanotube applications in microelectronics”, IEEE transactions on components and packaging technologies, v27, (2004) n4
[33] F. Kreupl, A. P. Graham, G. S. Duesberg, W. Steinhogl, M. Liebau, E. Unger, W. Honlein, “Carbon nanotube in interconnect applications” ,Microelectrinic Engineering, 64 (2002) 399.
[34] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display” ,Applied Physics Letters, 75 (1999) 3129.
[35] G. Z. Yue, Q. Qiu, B. Gao, Y. Cheng, J. Zhang, H. Shimoda, S. Chang, J. P. Lu, O. Zhou, “Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field- emission cathode” ,Applied Physics Letters, 81 (2002) 355.
[36] W. I. Milne, K. B. K. Teo, G. A. J. Amaratunga, P. Legagneux, L. Gangloff, J. P. Schnell, V. Semet, V. Thien, Binh, O. Groening, “Carbon nanotubes as field emission sources” ,Journal of Materials Chemistry, 14 (2004)
[37] S. Chopra, K. McGuire, N. Gothard, A. M. Rao, ”Selective gas detection using a carbon nanotube sensor” ,Applied Physics Letter, 83 (2003) 2280.
[38] Y. T. Jang, C. H. Choi, S. I. Moon, J. H. Ahn, Y. H. Lee, B. K. Ju,”A novel micro-gas sensor using laterally grown carbon nanotube”, Solid-State Sensor, Actuator, and Microsystems Workshop, Boston, (2003) 1363.
[39] T. Someya, J. Small, P. Kim, C. Nuckolls, J. T. Yardley, “Alcohol vapor sensors based on single-walled carbon nanotube field effect transistors” ,Nano Letters, 3 (2003) 877.
[40] J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai, “Nanotube molecular wires as chemical sensors“ ,Science, 287 (2000) 622.
[41] J. P. Novak, E. S. Snow, E. J. Houser, D. Park, J. L. Stepnowski, R. A. McGill, “Nerve agent detection using networks of single-walled carbon nanotubes” ,Applied Physics Letter, 83 (2003) 4026.
[42] J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, M. Meyyappan, “Carbon nanotubes sensors for gas and organic vapor detection” ,Nano Letters, 3 (2003) 929.
[43] J. Chung, K. H. Lee, J. Lee, “Multi-walled carbon nanotube sensors”, Solid-State Sensor, Actuator, and Microsystems Workshop, Boston, (2003) 718.
[44] 陳 志 豪,熱化學氣相沉積法成長橫向碳奈米管之電性研究,國立中央大學碩士論文,2006。
[45] MICHAEL E. ALPERIN, THOMAS C. HOLLAWAY, ROGER A. HAKEN, "Development of the Self-Aligned Titanium Silicide Process for VLSI Applications", IEEE OF SOLID-STATE CIRCUITS,
sc-20 NO1 (1985), 61
[46] 成會明、張勁燕,“奈米碳管”, 五南圖書出版股份有限公司, 2006 , 164
指導教授 黃豐元(Fuang-Yuan Huang) 審核日期 2009-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明