博碩士論文 963203033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:54.210.158.163
姓名 劉仕國(Shih-Kuo Liu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 二氧化鈦奈米管層製作及其於碳酸根離子水溶液之電化學性質
(Fabrication of TiO2 nanotubes and the electrochemical properties in carbonate aqueous solution)
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
★ 微陽極引導電鍍與監測★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為
★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以電化學陽極氧化法來製作由二氧化鈦奈米管所組成之孔層膜試片。在含1.0 M硫酸之0.2 M氟化鈉溶液中,調整pH 在2~6之間,控制兩極電位在5~20 V,可以製作出由不同管徑二氧化鈦奈米管組成之多孔膜。經場發射掃描式電子顯微鏡觀察,顯示多孔膜中奈米管之直徑隨兩極電位之增高(由5至20 V)而增加(由20增加至100 nm),同時有顏色之變化。低掠角X-光繞射分析(GAXRD)結果顯示:電化學陽極氧化法製作之多孔膜屬於非晶質結構,此膜經450℃加熱1小時後,由非晶態轉變成銳鈦礦結構。退火後之多孔膜分別進泡於銀、銅、鐵之0.5M 硝酸鹽溶液中30分鐘,以紫外光(256nm波長)照射60分鐘後,即在0.5M碳酸氫鈉水溶液及紫外光照射下進行下列各種測試。包括開路電位、循環伏安、定電位還原及氣體層析(gas chromatography, GC)分析來研究其光觸媒特性。
開路電位量測得知多孔膜經450℃熱處理後,其開路電位由0.5V降至0.0 V,摻雜銀、銅、鐵之試片,其開路電位亦有降低。
循環伏安(cyclic voltammetry, CV)之結果得知:不同多孔膜試片,經450℃退火後,置於0.5M NaHCO3水溶液中,經紫外光照射,顯示出下列還原峰,分別為純TiO2(-0.228V, -0.057mA)、Ag-doped TiO2(-0.090V, -0.078mA) 、Cu-doped TiO2(-0.209V,-0.102mA)、 Fe-doped TiO2(-0.272V,-0.120mA)。所得還原峰之電位,推定為CO32- 之特性還原電位。
選定由CV所得之特性還原電位,進行定電位還原反應一小時,監測其對應之電流,獲得電流之大小,依序為 Fe-doped TiO2(-90mA) > Cu-doped TiO2(-30mA) > Ag-doped TiO2(-20mA) > pure TiO2(-15mA)。GC分析,以甲醇產生率計算,結果顯示:摻雜試片之催化活性,以Fe-doped TiO2(1.85ppm)試片最高,Ag-doped TiO2(0.80ppm)試片居次,Cu-doped TiO2(0.55ppm)試片第三,Pure TiO2(0.40ppm)試片最低。掺雜金屬之二氧化鈦奈米管之光觸媒還原活性優於單純之二氧化鈦奈米管多孔試片。
摘要(英) Porous films constructed by TiO2 nano tubes were prepared by electrochemical anodizing on the titanium substrate. The diameter of the nano tubes in the film was determined by the electrical voltage applied between the electrodes and the pH (in the range from 2 to 6) of the electrolyte containing 1.0 M sulfuric acid and 0.2 M sodium fluoride. f Ti metal. Examining through field emission scanning electron microscope (FESEM), we found that the diameter of the nano-tubes in the films increases with increasing the electrical voltage. The pore size influences the color of the film under illumination. Grazing Incident x-ray diffractometer analysis depicted that the as-deposited anodizing film belongs to amorphous, and it turns to anatase crystals characterized by (101) and (211) planes after annealing at 450℃ for 1 h. The annealed film was immersed in 0.5 M silver (I), copper (II) and iron (III) nitrate solution, respectively, for 30 min. and removed to be illuminated by ultraviolet (UV) light (wavelength at 256 nm) for 60 min and prepare for photo-catalytic tests including measurement of open circuit potential (OCP), cyclic voltammtery, potentiostatic reduction and gas chromatography.
The OCP for the as-deposited film was at 0.50 V and it shifted to 0.0 V post 450℃-annealing. This shift implied the enhancement of photo-catalytic activity by annealing. The dope of Ag, Cu, Fe on the porous film shift the OCP to the active end to different extent. This reflects that the catalytic activity of the films varies with different impurity doped.
Cyclic Voltammetry (CV) of the annealed films in 0.5 sodium bicarbonate solution illuminated by ultraviolet light (UV) was useful to find the characteristic reduction peak of the carbonate ions. The characteristic potential and current estimated from CV are listed in the following: pure TiO2 (-0.228V, -0.057mA),Ag-doped TiO2 (-0.09V,-0.078mA), Cu-doped TiO2 (-0.209V,-0.102mA) and Fe-doped TiO2 (-0.272V,-0.120mA). The reduction on Ag-doped film takes place at higher potential but the reduction current is the highest on the Fe-doped film.
Potentiostatic reduction was carried out at the characteristic potential for different film for 1 h and the reduction current was monitored. The reduction current measured decreases in the order: Fe-doped TiO2(90mA) > Cu-doped TiO2(30mA) > Ag-doped TiO2(20mA) > pure TiO2(15mA). This order is parallel to the catalytic activity of the film. Gas chromatography(GC) analysis provided another estimation of catalytic activity by determination the formation of methanol reduced from carbonate. The quantity of methanol was in the order Fe-doped TiO2(1.85ppm) > Ag-doped TiO2(0.80ppm) > Cu-doped TiO2(0.55ppm) > Pure TiO2(0.40ppm). The catalytic activity of Ag, Cu, and Fe-doped films are superior to the pure TiO2 films on carbonate reduction.
關鍵字(中) ★ 二氧化鈦
★ 奈米管
★ 電化學陽極氧化
★ 光觸媒
關鍵字(英) ★ TiO2
★ photo-catalyst
★ nanotubes
★ electrochemical anodizing
論文目次 摘要 i
摘要(英文版) iii
目錄 vi
圖目錄 viii
第一章 前言 1
1-1 研究背景 1
1-2研究目的 2
1-3研究範圍 2
第二章 文獻回顧 3
2-1光觸媒發展及應用 3
2-2二氧化鈦光觸媒 3
2-3二氧化鈦結構特性 5
2-4二氧化鈦製作方式 6
第三章 研究方法 8
3-1多孔性二氧化鈦奈米管製備 8
3-2 含銀、銅、鐵奈米微粒之二氧化鈦奈米管工作電極製備 8
3-3 實驗與檢測設備儀器 9
3-4 光電化學試驗環境 9
第四章 研究結果 10
4-1 二氧化鈦奈米管特性 10
      4-1-1 二氧化鈦奈米管形貌FESEM分析 10
4-1-2 二氧化鈦奈米管之X-Ray繞射分析(XRD) 11
4-2無光環境下之開路電位量測(OCP)實驗 11
4-3紫外光環境下之開路電位量測(OCP)實驗 12
4-4紫外光環境下之循環伏安量測(CV)實驗 12
4-5 定電位還原實驗 13
4-6 交流阻抗(AC)實驗 14
4-7 定電位還原溶液GC分析 15
第五章 討論 17
5-1二氧化鈦奈米管形貌特性 17
5-2紫外光及熱處理對試片開路電位(OCP)之影響 17
5-3試片循環伏安(CV)討論 19
5-4掺雜銀、銅、鐵微粒試片定電位還原討論 19
5-5交流阻抗(AC)討論 21
第六章 結論與未來展望 22
6-1 結論 22
6-2 未來展望 23
第七章 參考文獻 24
圖目錄
圖 1-1 實驗流程圖 27
圖 2-1 半導體能隙示意圖 28
圖 2-2 銳鈦礦(Anatase)與金紅石(Rutile)之晶格結構 29
圖 3-1 光電化學試驗環境示意圖 30
圖 4-1 5V陽極氧化之二氧化鈦奈米管層結構 31
圖 4-2 10V陽極氧化之二氧化鈦奈米管層結構 31
圖 4-3 12.5V陽極氧化之二氧化鈦奈米管層結構 32
圖 4-4 15V陽極氧化之二氧化鈦奈米管層結構 32
圖 4-5 17.5V陽極氧化之二氧化鈦奈米管層結構 33
圖 4-6 20V陽極氧化之二氧化鈦奈米管層結構 33
圖 4-7 25V陽極氧化之二氧化鈦奈米管層結構 34
圖 4-8 未經熱處理(a)及經450℃熱處理1小時(b)之多孔性二氧化鈦XRD圖譜 35
圖 4-9 於黑暗之0.5M NaHCO3環境中,pure TiO2和Ag-doped Cu-doped、Fe-doped 等摻雜之TiO2試片在450℃加熱一小時前後,其開路電位對時間變化圖 36
圖 4-10 於UV光之0.5M NaHCO3環境中,pure TiO2和Ag-doped、Cu-doped、Fe-doped 等摻雜之TiO2試片在450℃加熱一小時前後,其開路電位對時間變化圖 37
圖 4-11 UV照光下之0.5M NaHCO3環境中,四種經450℃熱處理試片循環伏安測試曲線圖 38
圖 4-12 經過450℃熱處理1小時之四組試片pure TiO2、Ag-doped、Cu-doped 和Fe-doped TiO2試片,在UV光照射下之0.5M碳酸氫鈉水溶液中,分別在定電位下反應,所得還原電流對時間的變化圖。 39
圖 4-13 TiO2試片定電位還原實驗前(●)、後(▲)之AC曲線圖 40
圖 4-14 Ag-doped TiO2試片定電位還原實驗前(●)、後(▲)之AC曲線圖41
圖 4-15 Cu-doped TiO2試片定電位還原實驗前(●)、後(▲)之AC曲線圖42
圖 4-16 Fe-doped TiO2試片定電位還原實驗前(●)、後(▲)之AC曲線圖
43
圖 4-17 TiO2試片、Ag-doped TiO2試片、Cu-doped TiO2試片、Fe-doped TiO2試片定電位還原溶液GC分析曲線圖 44
圖 5-1 黑暗環境與紫外光照射環境下未經450℃熱處理之試片開路電位量測 45
圖 5-2 黑暗環境與紫外光照射環境下經過450℃熱處理之試片開路電位量測 46
圖 5-3 未經熱處理與經過450℃熱處理試片在黑暗環境下之開路電位量測。 47
圖 5-4 未經熱處理與經過450℃熱處理試片在紫外光照射下之開路電位量測 48
圖 5-5 經450℃熱處理後之試片在UV照光下之0.5M NaHCO3溶液中開路電位比較 49
圖 5-6 UV照光下之0.5M NaHCO3環境中,經450℃熱處理試片之循環伏安(CV)測試 50
圖 5-7 銀在25℃的電位-pH值平衡圖 51
圖 5-8 四種試片定電位還原實驗前之AC曲線圖 52
圖 5-9 四種試片定電位還原實驗後之AC曲線圖 53
參考文獻 [1] Fujishima, R. X. Cai, J. Otsuki, K. Hashimoto, K. Itoh, T. Yamashita and Y. Kubota Electrochimica Acta Volume 38, Issue 1, January 1993, Pages 153-157
[2]Hideki Sakai, Ryo Baba, Kazuhito Hashimoto and Akira Fujishima
Journal of Electroanalytical Chemistry Volume 379, Issues 1-2, 12 December 1994, Pages 199-205
[3]Yoshihiko Kikuchi, Kayano Sunada, Tomokazu Iyoda, Kazuhito Hashimoto and Akira Fujishima
Journal of Photochemistry and Photobiology A: Chemistry Volume 106, Issues 1-3, 1 June 1997, Pages 51-56
[4]T. Watanabe , A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima and K. Hashimoto
Thin Solid Films Volume 351, Issues 1-2, 30 August 1999, Pages 260-263
[5]Akira Fujishima , Tata N. Rao and Donald A. Tryk
Journal of Photochemistry and Photobiology C: Photochemistry Reviews Volume 1, Issue 1, 29 June 2000, Pages 1-21
[6]W.Choi, A. Termin, Hoffmann,
Journal of Physical Chemistry vol. 98,73 13669-13679(1994)
[7] G.Zhao, H.Kozuka, H.Lin, T.Yoko,
Thin Solid Films Vol.339 123-128(1999)
[8]R.Asahi, T.Morikawa, T.Ohwaki, K.Aoki, Y.Taga,
Science, Vol.293 269-271(2001)
[9]Hua Long, Aiping Chen, Guang Yang , Yuhua Li and Peixiang Lu
Thin Solid Films Volume 517, Issue 19, 3 August 2009, Pages 5601-5604
[10]I. Blumberg, J. Starosvetsky, D. Bilanovic and R. Armon
Journal of Colloid and Interface Science Volume 336, Issue 1, 1 August 2009, Pages 107-110
[11] Yu-Chuan Hsu, Huang-Ching Lin, Chien-Wei Lue, Yi-Ting Liao and Chia-Min Yang Applied Catalysis B: Environmental Volume 89, Issues 3-4, 15 July 2009, Pages 309-314
[12] N. Masahashi , Y. Mizukoshi, S. Semboshi and N. Ohtsu
Applied Catalysis B: Environmental Volume 90, Issues 1-2, 25 July 2009, Pages 255-261
[13] E.C. Bucharsky, G. Schell, R. Oberacker and M.J. Hoffmann
Journal of the European Ceramic Society Volume 29, Issue 10, July 2009, Pages 1955-1961
[14] Chi Lu and Zhi Chen
Sensors and Actuators B: Chemical Volume 140, Issue 1, 18 June 2009, Pages 109-115
[15] Ingela U. Petersson , Johanna E.L. Löberg, Anette S. Fredriksso and Elisabet K. Ahlberg Biomaterials Article in Press, Corrected Proof - Note to users
[16] Fa-Min Liu, Peng Ding, Xin-An Yang and Jian-Qi Li
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms Article in Press, Accepted Manuscript - Note to users
[17] Yijie Zhang, Xianfeng Li, Xiaoshe Hua, Naiheng Ma, Dong Chen and Haowei Wang Scripta Materialia Volume 61, Issue 3, August 2009, Pages 296-299
[18] Smail Merabet, Abdelkrim Bouzaza and Dominique Wolbert
Journal of Hazardous Materials Volume 166, Issues 2-3, 30 July 2009, Pages 1244-1249
[19] Hongyong Xie, Guilan Gao, Zhen Tian, Naici Bing and Lijun Wang
Particuology Volume 7, Issue 3, June 2009, Pages 204-210
[20] Valentin Bessergenev
Materials Research Bulletin Volume 44, Issue 8, 5 August 2009, Pages 1722-1728
[21] Paolo Zurlini , Andrea Lorenzi , Ilaria Alfieri , Guglielmina Gnappi , Angelo Montenero, Nicola Senin , Roberto Groppetti and Paola Fabbri
Thin Solid Films Volume 517, Issue 20, 31 August 2009, Pages 5881-5887
[22] Zhihuan Zhao , Jimin Fan, Shaohua Liu and Zhizhong Wang
Chemical Engineering Journal Volume 151, Issues 1-3, 15 August 2009, Pages 134-140
[23] Yijie Zhang, Xianfeng Li, Xiaoshe Hua, Naiheng Ma, Dong Chen and Haowei Wang Scripta Materialia Volume 61, Issue 3, August 2009, Pages 296-299
[24] Yanbiao Liu, Baoxue Zhou , Jing Bai, Jinhua Li, Jialing Zhang, Qing Zheng, Xinyuan Zhu and Weimin Cai
Applied Catalysis B: Environmental Volume 89, Issues 1-2, 3 July 2009, Pages 142-148
[25] Gregorio F. Ortiz, Ilie Hanzu, Philippe Knauth, Pedro Lavela, José L. Tirado and Thierry Djenizian Electrochimica Acta Volume 54, Issue 17, 1 July 2009, Pages 4262-4268
[26] Hua Long, Aiping Chen, Guang Yang , Yuhua Li and Peixiang Lu
Thin Solid Films Volume 517, Issue 19, 3 August 2009, Pages 5601-5604
[27] C.M.T. Sanchez, H.D. Fonseca-Filho, M.E.H. Maia da Costa and F.L. Freire Jr
Thin Solid Films Volume 517, Issue 19, 3 August 2009, Pages 5683-5688
[28] Biljana F. Abramović , Daniela V. Šojić, Vesna B. Anderluh, Nadica D. Abazović and Mirjana I. Čomor Desalination Volume 244, Issues 1-3, August 2009, Pages 293-302
[29] J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki Current Opinion in Solid State and Materials Science 11 (2007) 3–18
[30] F.H.B. Lima, J.F.R. de Castro, Edson A. Ticianelli, Journal of Power Sources, 161, 2006 pp. 806-812.
指導教授 林景崎(Jing-Chie Lin) 審核日期 2009-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明