博碩士論文 963203035 詳細資訊


姓名 楊曜光(Yao-Kuang Yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 磁場輔助微電化學銑削加工特性之研究
(A Study on Magnetic Field Assisted Micro Electro-Chemical Milling)
檔案 至系統瀏覽論文 (永不開放)
摘要(中) 本研究主要是利用磁場輔助微電化學銑削微流道與3D微結構之研究。而本文大致分為兩大部份:
第一部份係運用螺旋電極進行微電化學銑槽加工特性之研究,並以銑槽加工後槽之形狀精度,與傳統圓柱電極銑槽加工作比較,結果得知微槽之擴槽量及槽深都以螺旋電極表現較佳,本研究亦運用螺旋電極針對各製程參數進行微電化學銑槽加工特性探討,實驗結果顯示雖然螺旋電極可改善加工精度,但由於加工進給速度難以提升,致使該技術於實務加工上受到限制,因此進行本論文第二部份之研究。
第二部份為磁場輔助微電化學銑削加工之研究,主要是利用勞倫茲力效應的方式,增加銑削加工之進給速度。參數實驗結果顯示,經由磁場輔助微電化學銑削後,最大之進給速度已能提升至8μm/sec,並且加工後槽寬尺寸與槽深尺寸降為344μm及98μm,當Y軸進給速度由1μm/sec增加至8μm/sec時,表面粗糙度由 Ra 1.6μm、Rmax 6.5μm降為Ra 0.36μm、Rmax 4.47μm,並將較佳參數運用於磁場輔助微電化學銑削幾何形狀微流道與3D微結構。故在磁場輔助之情形下,有較佳的加工效率,且當Y軸進給速度提升至8μm/sec時,具有較佳的加工精度及表面粗糙度。
摘要(英) The study presents micro channels and 3D micro structures are milled by using magnetic field-assisted electrochemical method. The study includes two major parts. The first part is electrochemical micro milling by using a helical tool. The shape accuracy of the micro groove machined by using the helical tool and cylindrical tool is compared. The results reveal that smaller groove width and depth expanding can be obtained by using a helical tool according to various parameters. Although the machining accuracy can be improved by using the helical tool, the feed rate still is not easily to rise.
The second part is magnetic field-assisted micro electrochemical milling to overcome the above issue. The effect of the Lorentz force is applied in the process. According to the experimental result, the feed rate can be increased to 8 μm/sec during the magnetic field-assisted micro electrochemical milling. Furthermore, the groove width and groove depth are reduced to 344 μm and 98 μm respectively. The surface roughness also is reduced from Ra 1.6μm (Rmax 6.5μm) to Ra 0.36μm, (Rmax 4.47μm). The better parameters are also used in magnetic field-assisted electrochemical milling for micro channel and 3D micro structures machining. The study shows that the magnetic field-assisted approach indeed can improve the machining efficiency, accuracy and surface roughness.
關鍵字(中) ★ 微電化學銑削
★ 磁場輔助
★ 螺旋電極
★ 微流道
★ 3D微結構
關鍵字(英) ★ micro electrochemical milling
★ magnetic field-assisted
★ helical tool
★ micro channel
★ 3D micro structures
論文目次 中文摘要 i
英文摘要 ii
誌 謝 iii
目 錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 3
1-3 文獻回顧 5
1-4 研究方法 7
第二章 實驗基礎原理 8
2-1 電化學加工的基礎理論 8
2-1-1 電化學反應機制 8
2-1-2 法拉第定律 10
2-1-3 電極電位-金屬與溶液界面雙電層理論 11
2-1-4 陽極極化曲線及其特徵 12
2-2 磁場理論 13
2-2-1 右手開掌定則 13
2-2-2 勞倫茲力 14
2-3 線放電研磨加工原理 15
第三章 微電化學銑槽加工特性之研究 19
3-1 實驗簡介 19
3-2 實驗設備 19
3-3 實驗材料 27
3-4 實驗流程與方法 31
3-5 結果與討論 35
3-5-1 螺旋電極與圓柱電極之微電化學銑槽加工結果之差異 35
3-5-2 螺旋電極實行於微電化學銑槽加工之參數影響探討 38
3-5-2-1 工作電壓對槽寬及槽深精度之影響 38
3-5-2-2 電極轉速對槽寬及槽深精度之影響 39
3-5-2-3 電解液濃度對槽寬及槽深精度之影響 40
3-5-2-4 脈衝時間對槽寬及槽深精度之影響 41
3-5-2-5 Y軸進給速度對槽寬及槽深精度之影響 42
3-6 結論 45
第四章 磁場輔助微電化學加工之研究 46
4-1 實驗簡介 46
4-2 實驗設備 47
4-3 實驗材料 50
4-4 實驗流程與方法 52
4-5 實驗架設與參數設定 53
4-6 結果與討論 56
4-6-1 磁場輔助下工作電壓對槽寬及槽深精度之影響 56
4-6-2 磁場輔助下磁鐵距離對槽寬及槽深精度之影響 58
4-6-3 磁場輔助下Y軸進給速度對槽寬及槽深精度之影響 59
4-7 磁場輔助下電化學銑削微流道之較佳單因子參數 63
4-8 幾何形狀微流道圖形與3D微結構圖形 64
4-9 結論 67
第五章 總結論 68
未來研究方向 69
參考文獻 70
個人簡歷 73
參考文獻 [1]J. F. Wilson, Practice and Theory of Electrochemical Machining, Wiley-interscience, pp.4-7, 1971.
[2]B. Bhattacharyya, M. Malapati, J. Munda, “Experimental study on electrochemical micromachining”, Journal of Materials Processing Technology, Vol.169, pp.485-492, 2005.
[3]K. P. Rajurkar, G. Levy, A. Malshe, M. M. Sundaram, J. McGeough, X. Hu1, R. Resnick, A. DeSilva, “Micro and Nano Machining by Electro- Physical and Chemical Processes”, Annals of the CIRP, Vol.55, pp.643-666, 2006.
[4]R. Schuster, V. Kirchner, P. Allongue, G. Ertl, “Electrochemical micromachining”, Science, Vol.289, pp.98-101, 2000.
[5]J. Kozak, K. P. Rajurkar, Y. Makkar, “Selected problems of micro-electrochemical machining”, Journal of Materials Processing Technology, Vol.149, pp426-431, 2004.
[6]S.H. Ahn, S.H. Ryu, D.K. Choi, C.N. Chu, “Electrochemical micro drilling using ultra short pulses”, Precision Engineering, Vol.28, pp.129-134, 2004.
[7]T. Kurita, K. Chikamori, S. Kubota, M. Hattori, “A study of three-dimensional shape machining with an ECμM system”, International Journal of Machine Tools & Manufacture, Vol.46, pp.1311-1318, 2006.
[8]K. Chikamori, “Possibilities of electrochemical micromachining”, International Journal of the Japan Society for Precision Engineering, Vol.32, pp37-38, 1998.
[9]Hattori, “Electrochemical machining under orbital motion conditions”, Journal of Materials Processing Technology, Vol.109, pp339-346, 2001.
[10]B. Bhattacharyya, J. Munda, “Experimental investigation on the influence of electrochemical machining parameters on machining rate and accuracy in micromachining domain, International Journal of Machine Tools & Manufacture, Vol.43, pp1301-1310, 2003.
[11]B. Bhattacharyya, J. Munda, M. Malapati, “Advancement in electrochemical micro-machining”, International Journal of Machine Tools & Manufacture, Vol.44, pp1577-1589, 2004.
[12]T. Kurita, M. Hattori, “Development of new-concept desk top size machine tool”, International Journal of Machine Tools & Manufacture, Vol.45, pp959-965, 2005.
[13]B. H. Kim, C. W. Na, Y. S. Lee, D. K. Choi, C. N. Chu, “Micro Electrochemical Machining of 3D Micro Structure Using Dilute Sulfuric Acid”, Vol.54, pp191-194, 2005.
[14]M. Sen, H.S. Shan, “A review of electrochemical macro- to micro-hole drilling processes”, International Journal of Machine Tools & Manufacture, Vol.45, pp.137-152, 2005.
[15]X. Lu, Y. Leng, “Electrochemical micromachining of titanium surfaces for biomedical applications”, Journal of Materials Processing Technology, Vol.169, pp.173-178, 2005.
[16]B. J. Park, B. H. Kim, C. N. Chu, “The Effect of Tool Electrode Size on Characteristics of Micro Electrochemical Machining”, Annals of CIRP, Vol.55, 2006.
[17]B. Bhattacharyya, M. Malapati, J. Munda, A. Sarkar, “Influence of tool vibration on machining performance in electrochemical micro-machining of copper”, International Journal of Machine Tools & Manufacture, Vol.47, pp.335-342, 2007.
[18]J. Munda, M. Malapati, B. Bhattacharyya, “Control of micro-spark and stray-current effect during EMM process”, Journal of Materials Processing Technology, Vol.194, pp151-158, 2007.
[19]W. Natsu, T. Ikeda, M. Kunieda, “Generating complicated surface with electrolyte jet machining”, Precision Engineering, Vol.31, pp33-39, 2007.
[20]M. S. Park, C. N. Chu, “Micro-electrochemical machining using multiple tool electrodes”, Journal of Micromechanics And Microengineering, Vol.17, pp.1451-1457, 2007.
[21]L. Staemmler, K. Hofmann, H. Kuck, “Hybrid tooling by a combination of high speed cutting and electrochemical milling with ultrashort voltage pulses”, Microsyst Technol, Vol.14, pp.249-254, 2008.
[22]Z. Fan, T. Wang, L. Zhong “The mechanism of improving machining accuracy of ECM by magnetic field”, Journal of Materials Processing Technology, Vol.149, pp.409-413, 2004.
[23]J. Fang, Z. Jin, et al., “ECM polishing research of assistant magneticfield Chin”, Surf. Eng. 15 (3), Vol.32, pp.24-26, 2002.
[24]H. P. Tsui, J. C. Hung, J. C. You, B. H. Yan, “Improvement of Electrochemical micro drilling accuracy using helical tool”, International Journal of Machine & Manufacture processes, Vol.5, pp.499-505, 2008.
[25]朱樹敏,電化學加工技術,化學工業出版社,2006。
[26]崔海平,電化學結合電泳精密拋光不銹鋼基材加工研究,國立中央大學機械工程系,博士論文,2008。
[27]尤俊欽,結合電化學與電泳沉積之微孔複合加工研究,國立中央大學機械工程系,碩士論文,2008。
[28]許玉山,硼矽玻璃的磁場輔助電化學放電加工技術研究,國立中央大學機械工程系,碩士論文,2008。
[29]陳抗生,電磁場與電磁波,新文京開發,2006。
[30]王薔、李國定、龔克,電磁場理論基礎,五南,2003。
指導教授 顏炳華(Bing-Hua Yan) 審核日期 2009-7-27

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡