博碩士論文 963203038 詳細資訊


姓名 吳奕德(Yi-De Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 不同輥軋及退火製程對AA5052-H32鋁陽極皮膜生長的影響
(The affect of AAO film in AA5052-H32 during different rolling and annealing procedure)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 ( 永不開放)
摘要(中) 鋁合金因其比強度高、耐腐蝕及表面處理特性佳,現今已廣泛的應用在各個領域,如3C製品、汽車零件等…。
不同製程下的鋁合金,會造成其微結構有所差異,進而產生不同的織構(texture)情形,如輥軋、擠製等…,但在進行不同階段退火製程後,加工下所產生的差排也會有消失的現象,微結構進而產生回復、再結晶及晶粒生長等情形,因而造成晶粒高低角度變化的現象。
鋁鎂合金屬擁有加工硬化的特性,由於鎂的疊差能(stacking fault energy)較鋁低,再加工時會有阻擋差排爬升(climb)及滑移(cross slip)的現象,因此,隨著加工量的上昇,而使得材料的強度有逐漸上升的趨勢。
本實驗中使用AA5052-H32,觀察鋁合金在不同加工量及退火條件下,基地結構對陽極氧化膜(Anodic Aluminum Oxide film, AAO film)的影響,並擷取陽極時電壓與時間變化曲線(V-t curve)來觀察鋁合金試片在陽極處理後所造成的差異,進而討論陽極皮膜的特性。由實驗結果發現到,在經過加工及退火,陽極膜的厚度及色澤皆有改變。對陽極膜進行化學成分分析後,發現製程對氧化膜的組成也有影響。由此可發現到,隨著前處理的不同,陽極膜內的成分以及孔洞排列性皆會改變,進而影響其厚度以及光學性質。
摘要(英) As the high specific strength and high corrosion resistance, aluminum alloy is well used in many industry field, ex: 3C product and auto mobile component.
Aluminum alloy have different microstructure and texture in different procedure, like rolling or extrusion processes, the dislocations bring from the procedure will disperse in different anneal condition, to following the recovery, recrystallization and grain growth, make the grain boundaries to form high angle or low angle.
Aluminum-Magnesium alloy possession a work hardening property, because of the stacking fault energy in magnesium is lower than aluminum, it’s will bind the dislocations and block to cross slip or climb, therefore, the more working ratio, the more strength.
This study using the 5052-H32 as the material, observation the relationship between substrate and AAO film in different working and annealing condition, moreover, monitoring the V-t curve to observation the AAO properties. When annealing and rolling condition changed, the film thickness and color will different, following affected the AAO film chemical composition.
關鍵字(中) ★ 輥軋
★ 退火
★ 陽極皮膜
關鍵字(英) ★ rolling
★ annealing
★ AAO film
論文目次 摘要.....................................................I
Abstract................................................II
第一章 前言..............................................1
第二章 文獻回顧..........................................2
2-1 輥軋(rolling)簡述....................................2
2-2 織構(texture)........................................2
2-2-1 輥軋及退火的織構...................................2
2-2-2 織構對陽極皮膜的影響...............................5
2-2 鎂對結構造成的影響...................................8
2-2-1 添加鎂對鋁合金的影響...............................9
2-2-2 加工溫度對鋁鎂合金的影響...........................9
2-3 差排與高低角度晶界..................................12
2-3-1 差排(dislocation).................................12
2-3-2 差排圈(dislocation loop)與差排胞(dislocation cell)14
2-3-3 高低角度晶界 ......................................15
2-4 表面處理............................................19
2-4-1 陽極處理..........................................19
2-4-3 陽極皮膜的種類....................................20
2-4-4 多孔型陽極皮膜的生成機制..........................20
2-4-2 鋁陽極皮膜的應用..................................21
2-4-5 鋁陽極皮膜生成的電壓-時間曲線(V-t curve)..........22
2-4-6 鎂在鋁中對陽極電壓時間曲線之影響..................24
2-4-7 陽極電流對鋁鎂陽極皮膜之影響......................25
第三章 實驗方法與步驟...................................29
3-1 實驗材料............................................29
3-2 實驗儀器............................................29
3-3 實驗步驟............................................30
第四章 結果與討論.......................................34
4-1 輥軋對基材產生的變化................................34
4-1-1 輥軋對晶粒型態的影響..............................34
4-1-2 退火時間對晶粒型態的影響..........................35
4-1-3 輥軋對差排的影響..................................39
4-1-4 輥軋及退火對晶界角度(grain boundary angle)的影響..39
4-1-5 輥軋及退火對導電度的影響..........................40
4-1-6 輥軋及退火對硬度的影響............................41
4-2 輥軋及退火對陽極的影響..............................42
4-2-1 鎂含量對陽極電壓-時間曲線的影響...................42
4-2-2 輥軋對陽極電壓-時間曲線的影響.....................43
4-2-3 差排對陽極處理的影響..............................45
4-2-4 退火對陽極電壓-時間曲線的影響.....................46
4-2-5 陽極皮膜色澤的變化................................49
4-2-6 長時間陽極對陽極皮膜的影響........................49
第五章 結論.............................................51
參考文獻................................................52
附錄....................................................56
參考文獻 [1].W.C. Liu, J.G. Morris, Comparison of the texture evolution in cold rolled DC and SC AA 5182 aluminum alloys, Materials Science and Engineering A , 339, pp.183-193, 2003.
[2].W.C. Liu, J.G. Morris, Effect of hot and cold deformation on the β fiber rolling texture in continuous cast AA 5052 aluminum alloy, Scripta Materialia, 52, pp.1317-1321, 2005.
[3].W.C. Liu, J.G. Morris, Kinetics of the formation of the β fiber rolling texture in continuous cast AA 5xxx series aluminum alloys, Scripta Materialia, 47, pp.743-748, 2002.
[4].W.C. Liu, J.G. Morris, Quantitative Analysis of the Texture Evolution in Cold-Rolled, Continuous-Cast AA 5xxx-Series Aluminum Alloys, Metallurgical and Materials Transactions A, 35A, pp.265-277, 2004.
[5].W.C. Liu, C.-S. Man, Lattice rotation of the cube orientation to the β fiber during cold rolling of AA 5052 aluminum alloy, J.G. Morris, Scripta Materialia, 45, pp.807-814, 2001.
[6].W.C. Liu, C.-S. Man, D. Raabe, J.G. Morris, Effect of hot and cold deformation on the recrystallization texture of continuous cast AA 5052 aluminum alloy, Scripta Materialia, 53, pp.1273-1277, 2005.
[7].Y.M. Zhao, W.C. Liu, J.G. Morris, Quantitative Analysis of Texture Evolution of Cold-Rolled Direct-Chill-Cast and Continuous-Cast AA5052 and AA5182 Aluminum Alloys during Isothermal Annealing, Metallurgical and Materials Transactions A, 35A, pp.3613-3629, 2004.
[8].G. Beck, Kerstin Petrikowski, Influence of the microstructure of the aluminum substrate on the regularity of the nanopore arrangement in an alumina layer formed by anodic oxidation, Surface and Coating Technology, pp.5084-5091, 2008.
[9].Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, THE PROCESS OF GRAIN REFINEMENT IN EQUAL-CHANNEL ANGULAR PRESSING, Acta Materialia, 46, pp.3317-3331, 1998.
[10].Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, Factors Influencing the Equilibrium Grain Size in Equal-Channel Angular Pressing: Role of Mg Additions to Aluminum, Metallurgical and Materials Transactions A, 29A, pp.2503-2510, 1998.
[11].N.Yu. Zolotorevsky, A.N. Solonin, A.Y. Churyumov, V.S. Zolotorevsky, Study of work hardening of quenched and naturally aged Al-Mg and Al-Cu alloys, Materials Science and Engineering A, 502, pp.111-117, 2009.
[12].A. Yamashita, D. Yamaguchi, Z. Horita, T. G. Langdon, Influence of pressing temperature on microstructural development in equal-channel angular pressing, Materials Science and Engineering A, 287, pp.100-106, 2000.
[13].T. L. Tsai, P. L. Sun, P. W. Kao, C. P. Chang, Microstructure and tensile properties of a commercial 5052 aluminum alloy processed by equal channel angular extrusion, Materials Science and Engineering A, 342, pp.144-151, 2003.
[14].M. Popovic, E. Romhanji, Characterization of microstructural changes in an Al-6.8 wt.% Mg alloy by electrical resistivity measurement, Materials Science and Engineering A, 492, pp.460-467, 2008.
[15].D.Y. Park, M. Niewczas, Plastic deformation of Al and AA5754 between 4.2K and 295K, Materials Science and Engineering A, 491, pp.88-102, 2008.
[16].S.C. Wang, Z. Zhu, M.J. Starink, Estimation of dislocation densities in cold rolled Al-Cu-Mn alloys by combination of yield strength data, EBSD and strength models, Journal of Microscopy, 217, pp.174-178, 2005.
[17].G. Horvath, N.Q. Chinh, J. Gubicza, J. Lendvai, Plastic instabilities and dislocation densities during plastic deformation in Al-Mg alloys, Materials Science and Engineering A, 445-446, pp.186-192, 2007.
[18].N. Rangaraju, T. Ranghuram, B.V. Krishna, K.P. Rao, P. Venugopal, Effect of cryo-rolling and annealing on microstructure and properties of commercially pure aluminum, Materials Science and Engineering A, 398, pp.246-251, 2005.
[19].J.H. Driver, J.M. Papazian, Dsc and Tem Study of the Cyclic and Monotonic Hardening of Al-5Mg, Strength of Metal and Alloys (ICSMA 7), pp.1429-1434, 1986.
[20].M. de Koning, W. Cai, V.V. Bulatov, Anomalous Dislocation Multiplication in FCC Metals, Physics Review Letters, 91, 2003.
[21].T. Zhai, J.W. Martin, G..A.D Briggs, FATIGUE DAMAGE AT ROOM TEMPERATURE IN ALUMINUM SINGLE CRYSTALS-II. TEM, Acta Materialia, 44, pp.1729-1739, 1996.
[22].H. Christoffersen, T. Leffers, THE ORIENTATION OF DISLOCATION WALLS IN ROLLED COPPER RELATIVE TO THE SAMPLE COORDINATE SYSTEM, Acta Materialia, 46, pp.4093-4102, 1998.
[23].J. Liu, and J. G. Morris, Texture and Grain-Boundary Evolutions of Continuous Cast and Direct Chill Cast AA 5052 Aluminum Alloy during Cold Rolling, Materials Science and Engineering A, 34A, pp.951-966, 2003.
[24].S.K. Panigrahi, R. Jayaganthan, Effect of rolling temperature on microstructure and mechanical properties of 6063 Al alloy, Materials Science and Engineering A, 492, pp.300-305, 2008.
[25].R. Dannenberg, A.H. King, Behavior of grain boundary resistivity in metals predicted by a two-dimensional model, Journal of Applied Physics, 88, pp.2623-2633, 2000.
[26].H.M. Chen, C.F. Hsin, R.S. Liu, S.F. Hu, C.Y. Huang, Controlling Optical Properties of Aluminum Oxide Using Electrochemical Deposition, Journal of The Electrochemical Society, K11-K14, 2007.
[27].Y. Li, G.W. Meng, L.D. Zhang, Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties, Applied Physics Letters, 76, pp.2011-2013, 2000.
[28].M.J. Zheng, L.D. Zhang, G.H. Li, W.Z. Shen, Chemical Physics Letters, 363, pp.123-128, 2002.
[29].Q.T. Wang, G.Z. Wang, B. Xu, J.S. Jie, X.H. Han, G.P. Li, J.G. Hou, Non-aqueous cathodic electrodeposition of large-scale uniform ZnO nanowire arrays embedded in anodic alumina membrane, Materials Letters, 59, pp.1378-1382, 2005.
[30].H. Masuda, K. Fukuda, Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honey comb Structures of Anodic Aluminum, Science, 268, pp.1466-1468, 1995.
[31].H. Masuda, H. Yamada, M. Satoh, H. Asoh, Highly ordered nanochannel-array architecture in anodic alumina, Applied Physics Letters, 71, pp.2770-2772, 1997.
[32].G.D. Sulka, S. Stroobants, V. Moshchalkov, G. Borghs, J. P. Celis, Synthesis of Well-Ordered Nanopores by Anodizing Aluminum Foil in Sulfuric Acid, Journal of The Electrochemical Society, 149, D97-D103, 2002.
[33].G.E. Thompson, Porous anodic alumina: fabrication, characterization and applications, Thin Solid Films, 297, pp.192-201, 1997.
[34].P.S. Wei, T.S. Shin, Monitoring the progressive Development of an Anodized Film on Aluminum, Journal of The Electrochemical Society, 154, C678-C683, 2007.
[35].X. Zhou, G.E. Thompson, P. Skeldon, G.C. Wood, K. Shimizu, H. Habazaki, Film formation and detachment during anodizing of Al-Mg alloys, Corrosion Science, 41, pp.1599-1613, 1999.
[36].Y. Liu, P. Skeldon, G.E. Thompson, X. Zhou, H. Habazaki, K. Shimizu, Influence of surface treatment on detachment of anodic film from Al-Mg alloys, Corrosion Science, 43, pp.2349-2357, 2001.
[37].Y. Liu, P. Skeldon, G.E. Thompson, H. Habazaki, K. Shimizu, Anodic film growth on an Al-21at.% Mg alloy, Corrosion Science, 44, pp.1133-1142, 2001.
[38].D.A. Jones, PRINCIPLES AND PREVENTION OF CORROSION, SECOND EDITION.
指導教授 施登士(Teng-Shih Shih) 審核日期 2009-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡