博碩士論文 963203043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:13.59.205.0
姓名 胡浩斌(Hau-bin Hu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 多晶矽覆蓋層對植入矽中之氫離子聚合影響
(The Influence of Polysilicon Cover Layer on the Coagulation of Implanted Hydrogen Ions in Silicon)
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 石墨材料時變劣化微結構分析
★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響★ 可程式控制器機構設計之流程研究
★ 伺服沖床運動曲線與金屬板材成型關聯性分析★ 鋁合金7003與630不銹鋼異質金屬雷射銲接研究
★ 應用銲針尺寸與線徑之推算進行銲線製程第二銲點參數優化與統一之研究★ 複合式類神經網路預測貨櫃船主機油耗
★ 熱力微照射製作絕緣層矽晶材料之研究★ 微波活化對被植入於矽中之氫離子之研究
★ 矽/石英晶圓鍵合之研究★ 奈米尺度薄膜轉移技術
★ 光能切離矽薄膜之研究★ 氮矽基鍵合之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在現今超大型積體電路的應用上,SOI基板有著許多比傳統矽基板更好的優點,而由Bruel等人所發明的Smart-Cut®技術可製造高品質的SOI結構,成為了最被期待與接受的技術,也因此Smart-Cut® 技術開始吸引了大家的關注,相關的研究也一直被學者們探討著,其中關於晶圓鍵合前後對氫離子聚集影響的研究,有學者們提出了他們的看法,認為鍵合後會等同於加深離子佈植的深度,促使氫氣泡傾向於橫向地發展,但是這麼多年以來卻沒有太多相關的實驗加以佐證。
本研究便是利用了多晶矽沉積層存在與否,藉以代替晶圓鍵合前後,討論氫氣泡的發展情況,由實驗結果得知,多晶矽沉積層的確會促使氫氣泡橫向地發展,驗證了學者們對鍵合後氫氣泡發展的說法,而實驗中所使用到的多晶矽層僅有150nm厚,發現了如此薄的薄膜層即可對氫離子聚集有很大的影響,期盼此發現能在未來有所應用。
摘要(英) SOI technology has substantial advantages over traditional bulk Si processing for a wide range of ULSI applications. Smart-Cut® Process technology is a promising technology recently developed by Bruel and his co-workers to fabricate high quality SOI structures. The Smart-Cut® technique has attracted increasingly extensive attentions and has found practical applications in the field of SOI. Many related research have also been discussed. And about wafer bonding to hydrogen ions assemble effect influence research has some views, the scholars thought bonded wafer will deepen the depth of implantation. The hydrogen bubble will tend to transversely develop. But it did not have any related experiment evidences since these years.
In this study, We use a layer of polysilicon, so as to substitute for bonded wafer, and we will discuss the development of the hydrogen bubble. By experimental result we can find that hydrogen bubble indeed tend to transversely develop. The views of scholars can be verified. We also can find that the thickness of polycrystalline silicon layer is only 150nm. It can make a great impact on the development of hydrogen bubble. We hope that this discovery could be applied in the future.
關鍵字(中) ★ 絕緣層矽晶材料
★ 半導體
★ 薄膜轉移
關鍵字(英) ★ layer transfer
★ silicon on insulator
★ smart cut
論文目次 總目錄
摘要..................................................i
英文摘要..............................................ii
誌謝..................................................iv
總目錄................................................v
圖目錄................................................vii
表目錄................................................xi
第一章 緒論.........................................- 1 -
1.1 研究背景........................................- 1 -
1.2 研究動機........................................- 3 -
第二章 文獻回顧.....................................- 6 -
2.1 離子佈植應用於薄膜轉移技術......................- 6 -
2.2 智切法製程(Smart-Cut Process)...................- 6 -
2.3 低壓化學氣相沉積(Low Pressure CVD,LPCVD)簡介....- 7 -
2.4 蝕刻機制........................................- 8 -
2.5 TMAH應用於濕式蝕刻技術..........................- 9 -
第三章 理論背景.....................................- 15 -
3.1 氫在矽晶圓中現象................................- 15 -
3.2 氣泡與微裂縫形成機制............................- 17 -
3.3 微裂縫成長動力學................................- 18 -
3.4 晶圓鍵合前後對氫氣泡成長的影響..................- 21 -
第四章 實驗方法與步驟...............................- 34 -
4.1 實驗流程........................................- 34 -
4.1.1 晶圓準備與清洗................................- 34 -
4.1.2 氧化層生成....................................- 34 -
4.1.3 多晶矽層沉積..................................- 35 -
4.1.4 氫離子佈植....................................- 36 -
4.1.5 多晶矽層移除..................................- 36 -
4.1.6 高溫熱處理....................................- 37 -
4.1.7 影像分析......................................- 37 -
第五章 實驗結果與討論...............................- 45 -
5.1 多晶矽沉積層對氫氣泡大小與數量的影響............- 45 -
5.2 多晶矽沉積層對氫氣泡隆起的影響..................- 48 -
5.3 討論............................................- 50 -
第六章 結論.........................................- 76 -
參考文獻............................................- 78 -
參考文獻 [1] P.K. Bondyopadhyay,” Moore's law governs the silicon revolution”, IEEE, Vol. 86, Issue: 1, pp. 78-81, 1998.
[2] S. Hamilton,” Taking Moore's law into the next century”, IEEE, Vol 32, Issue: 1, pp. 43-48, 1999.
[3] G. K. Celler and S. Cristoloveanu, “Frontiers of silicon-on-insulator”, Journal of Applied Physics, Vol. 93, Issue 9, pp. 4955-4978, 2003.
[4] 莊達人,VLSI製造技術,五版,高立圖書有限公司,臺北縣,民國九十一年。
[5] J. B. Kuo and K.-W. Su, CMOS VLSI Engineering: Silicon-on-Insulator (SOI), Kluwer Academic Publishers, Boston, 1998.
[6] 李隆盛,「非正統之金氧半導體場效電晶體」,電子與材料雜誌, 14, pp.80-85, 2002。
[7] J.P. Colinge, Silicon-on-Insulator Technology: Materials to VLSI ,Springer Science Business Media, Inc., New York, 2004.
[8] M. Bruel, “Silicon-on-insulator material technology”, Electron. Lett., 31, p. 1201–1202 ,1995.
[9] M. Bruel, “Application of hydrogen ion beams to Silicon on Insulator material technology”,Nucl. Instrum. Methods Phys., 108 , pp. 313–319,1996.
[10] B. Aspar, M. Bruel, H. Moriceau et al.,” Basic mechanisms involved in the Smart-Cut(R) process“,Microelectron. Engng., 36 ,pp. 233–240,1997.
[11] T. H. Lee, Q. Y. Tong, Y. L. Chao, L. J. Huang and U. Gosele, ”Silicon on quartz by a Smarter Cut process”, Electrochem. Soc., Proceeding of the 8th International Symposium of Silicon-on-Insulator Technology and Devices, Pennington, NJ, USA, pp. 27-32,1997.
[12] Q. Y. Tong, T. H. Lee, P. Werner, U. Gosele, R. B. Bergmann, and J.H. Werner, J., “Fabrication of Single Crystalline SiC Layer on High Temperature Glass”, Electrochem. Soc., 144,p.111-113, 1997.
[13] E. Jalaguier, B. Aspar, S. Pocas, J. F. Michaud, M. Zussy, A. M. Papon, and M. Bruel, “Transfer of 3 in GaAs film on silicon substrate by protonimplantation process”, Electron. Lett., 34 p. 408-409, 1998.
[14] U. M. Gosele and Q. Y. Tong, IEEE 12th International Conference of InP and related materials, 9-12, Williamsburq, VA, USA ,2000.
[15] M. Bruel, B. Aspar, H. Moriceau, E. Jalaguier, and Lagahe, Electrochem. Soc. Proceeding of the Third International Symposium on Defect in Silicon, Pennington, NJ, USA, Vol. 99-1, pp. 203-214 ,1999.
[16] R.E. Hurley, “Studies of co-implanted helium and hydrogen with an intermediate annealing step for thermal splitting of bonded silicon to oxide-coated wafers”, Vacuum, Vol.76, pp.291-297, 2004.
[17] von Herrn Ionut Radu, “Layer transfer of semiconductors and complex oxides by helium and/or hydrogen implantation and wafer bonding”, Martin Luther University, Ph.D dissertation, pp.77-88, 2003.
[18] J.-P. Colinge, Silicon-on-Insulator Technology: Materials to VLSI, 3rd Edition, Springer Science Business Media Inc., New York, 2004.
[19] Q.Y. Tong and U. M. Gosel , Semiconductor Wafer Bonding: Science and Technology, John Wiley & Sons, Inc., New York, 1999.
[20] T.-H. Lee, “Semiconductor Thin Film Transfer by Wafer Bonding and Advanced Ion Implantation Layer Splitting Technologies,” Duke University, Doctoral Dissertation, 1998.
[21] T. Yonehara, K. Sakaguchi and N. Sato, “Epitaxial Layer Transfer by Bond and Etch Back of Porous Si”, Applied Physics Letters, Vol. 64, Issue 16, pp. 2108- 2110,1994.
[22] J. B. Lasky, et al., “Silicon-on-Insulator (SOI) by Bonding and Etch-Back”, Electron Devices Meeting, 1985 International, Vol. 31, pp. 684-687, 1985.
[23] H. Habuka, et al., “Roughness of Silicon Surface Heated in Hydrogen Ambient”, Journal of The Electrochemical Society, Vol. 142, Issue 9 pp. 3092-3098, 1995,.
[24] T. Yonehara and K. Sakaguchi, “ELTRANR; Novel SOI Wafer Technology”, JSAP International, No. 4, pp. 10-16, 2001.
[25] S. S. Iyer and A. J. Auberton-Herv'e, “Silicon Wafer Bonding Technology for VLSI and MEMS Applications”, Inspec , London, 2002.
[26] M. Burel, United States Patent, Patent Number:5374564.
[27] C. Maleville and C. Mazure, “Smart-CutR Technology: from 300mm Ultrathin SOI Production to Advanced Engineered Substrates”, Solid-State Electronics, Vol. 48, Issue 6, pp. 1055-1063, 2004.
[28] Michael Quirk, Julian Serda, Semiconductor manufacturing technology, Upper Saddle River, NJ : Prentice Hall, 2001.
[29] H. Xiao著,半導體製程技術導論,羅正忠和張鼎張譯,二版,臺灣培生教育出版,臺北市,民國九十三年。
[30] H. Wu, J.Cargo and M. White, “Characterization of Various Etching Techniques for Gate Level Failure Analysis and Substrate Decoration for Advanced Cu/low k Technologies”, Physical and Failure Analysis of Integrated Circuits, 2005. IPFA 2005. Proceedings of the 12th International Symposium on the, pp. 242-248, Singapore, 2005.
[31] C. H. Seager and D. S. Ginley, “Studies of the hydrogen passivation of silicon grain boundaries”, Journal of Applied Physics, Vol. 52, Issue 2, pp. 1050-1055, 1981.
[32] J. I. Pankove and N. M. Johnson., “Hydrogen in Semiconductors”, Semiconductors and Semimetetals, 34 , NY, 1991.
[33] B. Sun et al., “Vibrational Lifetimes of Hydrogen in Silicon”, Hydrogen in Materials and Vacuum System, pp. 67-73 , 2003.
[34] S. Estreicher et al., “First-principles calculations of vibrational lifetimes in silicon ”, Texas Tech University, 2006.
[35] Eugene E. Haller, “Hydrogen in crystalline semiconductors”, Semicond. Sci. Technol., 6, pp.73-84, 1991.
[36] A. Y. Usenko and W. N. Carr, “Blistering on Silicon Surface Caused by Gettering of Hydrogen on Post-Implantation Defects”, Mat. Res.Soc. Symp. Proc., Vol. 681E, pp.I331-336, 2001.
[37] Jing Wang et al., “Microstructure evolution of hydrogen-implanted silicon during the annealing process”, Microelectronic Engineering, 66, pp. 314-319, 2003.
[38] S. Romani and J.H. Evans, “Platelet Defects in Hydrogen Implanted Silicon”, Nucl. Instr and Meth. in Phys. Res. B, 44, pp. 313-317, 1990.
[39] G. F. Cerofolini, et al., “Hydrogen-related complexes as the stressing species in high-fluence, hydrogen-implanted, single-crystal silicon”, Physical Review B, Vol. 46, Issue 4, pp. 2061-2070, 1992.
[40] M. Gao, et al., “A transmission electron microscopy study of microstructural defects in proton implanted silicon”, Journal of Applied Physics, Vol. 80, Issue 8, pp. 4767-4769, 1996.
[41] C. G. Van de Walle, et al., “Theory of hydrogen diffusion and reactions in crystalline silicon”, Physical Review B, Vol. 39, Issue 15, pp. 10791-10808, 1989.
[42] KJ. Chang and DJ Chadi, “Hydrogen bonding and diffusion in crystalline silicon”, Physical Review B, Vol.40, pp.644-653, 1989.
[43] Bo Chen, “Mechanisms of layer-transfer related to silicon-on-insulator structures”, New Jersey Institute of Technology, Ph.D. Dissertation, 2004.
[44] Jing Wang et al., “Microstructure evolution of hydrogen-implanted silicon during the annealing process”, Microelectronic Engineering, 66, pp. 314-319, 2003.
[45] NC. Bartelt et al., “Ostwald ripening of two-dimensional islands on Si (001)”, Physical Review B., Vol.54, pp.741-751, 1996.
[46] L. Huang, “Layer transfer of semiconductor and insulator materials by wafer bonding and hydrogen implantation”, Duke University, Ph.D. Dissertation, 1999.
[47] A. K. El-Senussi and J. P. H. Webber, “On the double cantilever beam technique for studying crack propagation”, Journal of Applied Physics, Vol. 56, Issue 4, pp. 885-889, Aug 1984.
[48] MK Weldon et al., “On the mechanism of the hydrogen-induced. exfoliation of silicon,” J. Vac. Sci. Technol., vol. B 15, pp. 1065–1073 (1997)
[49] T. Hochbauer, “On the Mechanisms of Hydrogen Implantation Induced Silicon Surface Layer Cleavage”, Marburg University, Ph.D. Dissertation, 2001.
指導教授 李天錫(Tien-his Lee) 審核日期 2009-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明