博碩士論文 963203058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:102 、訪客IP:3.145.66.215
姓名 陳孟怡(Meng-Yi Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 金屬發泡材質子交換膜燃料電池之研究
(Metal Foam in Proton Exchange Membranes Fuel Cell)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究是使用金屬雙極板與金屬發泡材,組成質子交換膜燃料電池之單電池與電池堆,且搭配不同的商用膜組,探討反應物流量、操作溫度、加濕溫度等,對電池性能之影響。
金屬板導電性能佳、機械性能強度好,適合作為雙極板的材料;使用金屬發泡材取代傳統內流道的作法,在單電池上已被證實有傑出的性能。本研究目的即是在觀察,此組合應用在電池堆時,其性能表現與運作特徵。另外,亦進行電池堆之長效測試與電池堆之交流組抗分析。
由實驗結果可知,增加空氣流量對於電池性能有顯著的增加;而氧氣流量對於電池堆的影響,則有其極限值存在。電池溫度與加濕溫度的適當配合,有助於電堆性能的提昇。長時間測試,對於電堆研究開發有著很大的影響,定時的增加陰極端流量,有助於陰極端的排水控制,也可改善濃差極化的現象。而由電池放電的極化曲線、及交流組抗分析的結果,可建立出一合理的等效電路模型,並確認此電池系統中,最主要的反應阻力來源為質傳阻抗。並藉此分析結果,以討論未來電池堆的性能提昇之研發方向。
摘要(英) Metal foam is used in this study to replace the traditional graphite flow field plate. Along with commercial catalyst coated membranes, single and multi-cell fuel cell stacks are assembled to investigate the effects of the reactant flow rate, operation temperature, and humidification temperature on the cell performance.
Metals have good electrical conductance and mechanical strength, which are suitable for bipolar plates in fuel cell stacks. Previous studies have shown that fuel cells using metal foam to replace traditional flow channels can have very good performance. The purpose of this study is to study the operation performance and characteristic of the fuel cell stack. In addition, the long-term performance and AC impedance are also investigated in this study.
The results show that the performance of the fuel cell stack is improved by increasing the air flow rate. If oxygen is used as the oxidant, the required flow rate is lower. In order to get better cell performance, suitable humidification in the reactant is required. For long-term operation, periodic purging in the cathode can reduce the polarization loss due to mass transfer.
Equivalent circuit model of the fuel cell stack system can be built from the AC impedance analysis. The results show that the main resistance in this system is mass transfer resistance.
關鍵字(中) ★ 交流阻抗
★ 電池堆
★ 質子交換膜
★ 金屬發泡材
關鍵字(英) ★ fuel cell stack
★ proton exchange membrane fuel cell
★ AC impedance
★ metal foam
論文目次 目錄
中文摘要....................................................................................................................I
Abstracts...................................................................................................................II
誌謝.........................................................................................................................III
目錄..........................................................................................................................V
圖目錄..................................................................................................................VIII
表目錄..................................................................................................................XIII
第一章 緒論..........................................................................................................1
1.1 前言........................................................................................................1
1.2 質子交換膜電池堆主要元件分析........................................................2
1.2.1質子交換膜...................................................................................2
1.2.2觸媒層...........................................................................................3
1.2.3氣體擴散層...................................................................................4
1.2.4流道板(雙極板)............................................................................5
1.2.5氣密墊片.......................................................................................5
1.3 質子交換膜燃料電池發電原理與極化現象........................................6
1.4 研究動機與方向....................................................................................8
第二章 文獻回顧...................................................................................................10
2.1 電池堆..................................................................................................10
2.2 水熱管理..............................................................................................12
2.3 交流阻抗分析......................................................................................15
2.4金屬發泡材...........................................................................................17
第三章 實驗裝置與方法.......................................................................................22
3.1 PEMFC電池堆設計..............................................................................22
3.2 燃料電池測試平台..............................................................................23
3.3 交流阻抗分析......................................................................................24
3.4實驗製程與步驟...................................................................................25
3.4.1 疏水微孔層實驗步驟與方法...................................................25
3.4.2 金屬發泡材疏水處理...............................................................26
3.4.3 實驗所需藥品與材料...............................................................27
3.5 實驗流程..............................................................................................28
3.5.1 電池測漏....................................................................................28
3.5.2活化程序.....................................................................................29
3.5.3實驗設定.....................................................................................29
第四章 結果與討論...............................................................................................39
4.1流量對電池堆性能之影響...................................................................39
4.1.1空氣流量.....................................................................................39
4.1.2氧氣流量.....................................................................................40
4.2溫度對反應氣體與加濕程度電池性能之影響..................................48
4.2.1陰極和陽極雙邊加濕................................................................48
4.2.1.1氧化劑為空氣..........................................................................48
4.2.1.2氧化劑使用氧氣......................................................................50
4.2.2陽極單邊加濕.............................................................................51
4.3電池堆之長效測試...............................................................................71
4.4電池堆之交流阻抗分析.......................................................................76
第五章 結果與未來方向建議...............................................................................82
5.1結論.......................................................................................................82
5.2未來方向...............................................................................................83
附錄一.....................................................................................................................85
附錄二.....................................................................................................................90
參考文獻:.............................................................................................................93
圖目錄
圖2.1 (A)具氣體擴散層之電極示意圖與其(B)等效電路示意圖 [17]20
圖2.2 (a)觸媒層之結構示意圖與其 (b)等效電路模擬圖 [18].....21
圖3.1 金屬發泡材...........................................30
圖3.2 電池堆組裝爆炸圖.....................................30
圖3.3 電池堆組裝爆炸圖 (有鰭片)............................31
圖3.4 燃料電池測試系統示意圖...............................31
圖3.5 氣體鋼瓶與管路.......................................32
圖3.6 溫控器與液氣分離瓶...................................32
圖3.7 電源供應器與電子負載.................................33
圖3.8 等效電路圖1.........................................33
圖3.9 等效電路圖2.........................................33
圖3.10 恆電位儀測試機台....................................34
圖4.1 雙電池(5621)電堆,氧化劑為空氣,電池溫度40℃,在不同的初始流量下,電池性能的比較....................................42
圖4.2 雙電池(5710)電堆,氧化劑為空氣,電池溫度40℃,在不同的初始流量下,電池性能的比較....................................42
圖4.3 八顆電池(5710)電堆,氧化劑為空氣,在不同的初始流量下,電池性能的比較...............................................43
圖4.4 雙電池(5621)電堆,氧化劑為氧氣,電池溫度40℃,在不同的初始流量下,電池性能的比較....................................43
圖4.5 雙電池(5710)電堆,氧化劑為氧氣,電池溫度40℃,在不同的初始流量下,電池性能的比較....................................44
圖4.6 八顆電池(5710)電堆,氧化劑為氧氣,在不同的初始流量,電池性能的比較.................................................44
圖4.7 單電池(5621)氧化劑為空氣,氫氣流量200c.c./min與空氣流量600c.c./min(A)電池溫度40℃,在不同的加濕溫度下,電池性能比較;(B)電池溫度的提高,在不同的加濕溫度下,電池性能比較............53
圖4.8 單電池(5710)氧化劑為空氣,氫氣流量200c.c./min與空氣流量600c.c./min(A)電池溫度40℃,在不同的加濕溫度下,電池性能比較;(B)電池溫度的提高,在不同的加濕溫度下,電池性能比較............54
圖4.9 雙電池(5621),氧化劑為空氣,氫氣流量500c.c./min與空氣流量3000c.c./min(A)電池溫度40℃,在不同的加濕溫度下,電池性能比較;(B)電池溫度的提高,在不同的加濕溫度下,電池性能比較.........55
圖4.10 雙電池(5710)氧化劑為空氣,氫氣流量500c.c./min與空氣流量3000c.c./min(A)電池溫度40℃,在不同的加濕溫度下,電池性能比較;(B)電池溫度的提高,在不同的加濕溫度下,電池性能比較............56
圖4.11 八顆電池(5710)氧化劑為空氣,氫氣流量1200c.c./min與空氣
流量6000c.c./min,在不同的加濕溫度下,電池性能比較.........57
圖4.12 單電池(5621)氧化劑為氧氣,氫氣流量200c.c./min與氧氣流量200c.c./min(A)電池溫度40℃,在不同的加濕溫度下,電池性能比較;(B)電池溫度的提高,在不同的加濕溫度下,電池性能比較............58
圖4.13 單電池(5710)氧化劑為氧氣,氫氣流量200c.c./min與氧氣流量200c.c./min(A)電池溫度40℃,在不同的加濕溫度下,電池性能比較;(B)電池溫度的提高,在不同加濕溫度下,電池性能比較..............59
圖4.14 雙電池(5621),氧化劑為氧氣,氫氣流量500c.c./min與氧氣流量500c.c./min(A)電池溫度40℃,在不同的加濕溫度下,電池性能比較;(B)電池溫度的提高,不同的加濕溫度下,電池性能比較...........60
圖4.15 雙電池(5710)氧化劑為氧氣,氫氣流量500c.c./min與氧氣流量500c.c./min(A)電池溫度40℃,在不同的加濕溫度下,電池性能比較;(B)電池溫度的提高,不同的加濕溫度下,電池性能比較..............61
圖4.16 八顆電池(5710)氧化劑為氧氣,氫氣流量1200c.c./min與氧氣流量1200c.c./min,在不同的加濕溫度下,電池性能比較.........62
圖4.17 雙電池(5621)電堆,氧化劑為空氣,電池溫度40℃,在不同的陽極氣體加濕溫度下,電池性能比較............................63
圖4.18 雙電池(5710)電堆,氧化劑為空氣,在不同的陽極氣體加濕溫度下,電池性能的比較.........................................63
圖4.19 雙電池(5621)電堆,氧化劑為氧氣,電池溫度40℃,在不同的陽極氣體加濕溫度下,電池性能比較............................64
圖4.20 雙電池(5710)電堆,氧化劑為氧氣,電池溫度40℃,電池溫度40℃,在不同的加濕溫度下,電池性能的比較....................64
圖4.21 雙電池(5710)電堆,氧化劑為氧氣,電池溫度為40℃,加濕溫度為室溫加濕,負載40安培,定電流模式.........................74
圖4.22 八顆電池(5710)電堆,氧化劑為氧氣,加濕溫度為室溫加濕,負載20安培,定電流模式.........................................74
圖4.23 八顆電池(5710)電堆,氧化劑為氧氣,加濕溫度為室溫加濕,負載20安培,為80個小時的擷取圖................................75
圖4.24 單電池(5710)氧化劑為空氣,在電池溫度40℃,9A下的阻抗值...........................................................78
圖4.25 金屬發泡材電池之等效電路圖..........................78
圖4.26 單電池(5621)氧化劑為氧氣,在電池溫度40℃,分別在1A、30A、60A下的阻抗值..............................................79
圖4.27 單電池(5710)氧化劑為氧氣,在電池溫度40℃,分別在1A、30A、60A下的阻抗值..............................................79
圖4.28 單電池(5621)氧化劑為空氣,在電池溫度40℃,分別在1A、9A、15A下的阻抗值..............................................80
圖4.29 單電池(5710)氧化劑為空氣,在電池溫度40℃,分別在1A、9A、18A下的阻抗值..............................................80
圖4.30 雙電池(5710)電堆,氧化劑為氧氣,在電池溫度40℃,分別在1A、21A、51A下的阻抗值.....................................81
圖4.31 八顆電池(5710)電堆,氧化劑為氧氣,在電池溫度40℃,分別在1A、21A、45A下的阻抗值...................................81
參考文獻 [1] 黃鎮江, “燃料電池”, 全華科技圖書, 中華民果92年11月,pp 2-21
[2] H. I. Lee, C. H. Lee , T. Y. Oh, “Development of 1kW class polymer electrolyte membrane Fuel cell power generation system,” Journal of Power Sources, Vol. 107, pp. 110-119, (2002)
[3] M. W. Knobbe, W. He, P. Y. Chong, T. V. Nguyen, “Active gas management for PEM fuel cell stacks,” Journal of Power Sources, Vol. 138, pp. 94-100, (2004)
[4] D. Buttin, M. Straumann, M. Dupont, “Development and operation of a 150 W air-feed direct methanol fuel cell stack,” Journal of Applied Electrochemistry, Vol. 31, No. 3, pp. 275-279, (2001)
[5] D. Chu, R. Jiang, “Comparative studies of polymer electrolyte membrane fuel cell stack and single cell,” Journal of Power Source, Vol. 80, pp. 226-234, (1999)
[6] R Jiang, D. Chu, “Stack design and performance of polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol. 93, pp. 25-31, (2001)
[7] R. Jiang, D. Chu, “Voltage time behavior of a polymer electrolyte membrane fuel cell stack at constant current discharge,” Journal of Power Sources, Vol. 92, pp. 193-198, (2001)
[8] W. H. Zhu , R. U. Payne , D. R. Cahela and B. J. Tatarchuk, “ Uniformity analysis at MEA and stack Levels for a Nexa PEM fuel cell system,” Journal of Power Sources, Vol.128, pp. 231-238, (2004)
[9] P. Rodatz, F. Büchi, C. Onder, L. Guzzella, “ Operational aspects of a large PEFC stack under practical conditions,” Journal of Power Sources, Vol.128, pp. 208-217, (2004)
[10] Y. J. Sohn, G. G. Park, T. H. Yang, Y. G. Yoon, W. Y. Lee, S. D. Yim and C. S. Kim, “Operating characteristics of an air-cooling PEMFC for portable applications,” Journal of Power Sources, Vol. 145, pp.604-609, (2005)
[11] J. Zhang, Y. Tang, C. Song, X. Cheng, J. Zhang, H. Wang, “PEM fuel cells operated at 0% relative humidity in the temperature range of 23-120℃,” Electrochimica Acta, Vol. 52, pp.5095-5101, (2007)
[12] Y. J. Sohn, G. G. Park, T. H. Yang, Y. G. Yoon, W. Y. Lee, S. D. Yim, C. S. Kim, “Operating characteristics of an air-cooling PEMFC for portable applications,” Journal of Power Sources, Vol.145, pp.604-609, (2005)
[13] V. A. Paganin, E. A. Ticianelli, E. R. Gonzalez, “Development of small polymer electrolyte fuel cell stacks,” Journal of Power Source, Vol.70, pp.55-58, (2001)
[14] R. Eckl, W. Zehtnera, C. Leub, U. Wagner, “Experimental analysis of water management in a self-humidifying polymer electrolyte fuel cell stack,” Journal of Power Sources, Vol.138, pp.137-144, (2004)
[15] A. Taniguchi, K. Yasuda, “Highly water-proof coating of gas flow channels by plasma polymerization for PEM fuel cells,” Journal of Power Sources, Vol.141, pp.8-12, (2005)
[16] C. Y. Wen, G. W. Huang, “Application of a thermally conductive pyrolytic graphite sheet to thermal management of a PEM fuel cell,” Journal of Power Sources, Vol.178, pp.132-140, (2007)
[17] R. De Levie, “On porous electrodes in electrolyte solutions,” Electrochim. Acta, Vol.8, pp.751, (1963)
[18] T. E. Springer, I. D. Raistrick, “Electrical Impedance of a Pore Wall for the Flooded‐Agglomerate Model of Porous Gas‐Diffusion Electrodes,” Journal of the Electrochemical Society, Vol.136, pp.1594-1603, (1989)
[19] M. Eikerling, A. A. Kornyshev, “Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol.475, pp.107-123, (1999)
[20] X. Yuan, J. C. Sun, M. Blanco, H. Wang, J. Zhang, D. P. Wilkinson, “AC impedance diagnosis of a 500W PEM fuel cell stack Part I:Stack impedance,” Journal of Power Sources, Vol.161, pp.920-928, (2006)
[21] X. Yuan, J. C. Sun, M. Blanco, H. Wang, J. Zhang, D. P. Wilkinson, “AC impedance diagnosis of a 500W PEM fuel cell stack Part II:Individual cell impedance,” Journal of Power Sources, Vol.161, pp.929-937, (2006)
[22] X. Yan, M. Hou, L. Sun, D. Liang, Q. Shen, H. Xu, P. Ming, B.Yi, “AC impedance characteristics of a 2kW PEM fuel cell stack under different operating conditions and load changes,” International Journal of Hydrogen Energy, Vol.32, pp.4358-4364, (2007)
[23] A. Kumar, R.G. Reddy, “Modeling of polymer electrolyte membrane fuel cell with metal foam in the flow-field of the bipolar/end plates,” Journal of Power Sources, Vol.114, pp.54-62, (2003)
[24] A. Kumar, R. G. Reddy, “Materials and design development for bipolar/end plates in fuel cells,” Journal of Power Sources, Vol.129, pp.62-67, (2004)
[25] S. Arisetty, A. K. Prasad, S. G. Advani, “Metal foams as flow field and gas diffusion layer in direct methanol fuel cells,” Journal of Power Sources, Vol.165, pp.49-57, (2007)
[26] 蔡秉蒼, 曾重仁, “金屬發泡材質子交換膜燃料電之性能分析”,第三屆全國氫能與燃料電池學術研討會,FC043, 國立台南大學, 台南市, 2008年11月
[27] X. Yuan, J. C. Sun, H. Wang, J. Zhang, “AC impedance technique in PEM fuel cell diagnosis- A review,” International Journal of Hydrogen Energy, Vol.32, pp.4365-4380, (2007)
[28] A. J. Bard, L. R. Faulkner, “Electrochemical Methods Fundamentals and Applications,” John Wiley & Sons, Inc., pp.351-352, (2001)
指導教授 曾重仁(Chung-jen Tseng) 審核日期 2009-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明