博碩士論文 963203064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.148.106.212
姓名 戴廷翰(Ting-Han Tai)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 氫能利用、觸媒反應與熱電產生器實作與模擬
(Experimental and Numerical Studies on Hydrogen Usage, Catalytic Reaction and Thermoelectric Power Generator)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文以氫為燃料,結合熱再循環、觸媒反應、及熱電轉換技術,實作一潔淨可攜式熱電產生器。本系統包含三個核心組件:(1)瑞士捲熱源產生器(Swiss-roll Catalytic Heat Source, SRCHS),(2)熱電模組(Thermoelectric Module, TEM),(3)熱沉裝置(Heat Sink, HSI),依序以三明治堆疊方式組成。SRCHS由類陶瓷板材(B85)所製成,厚度僅10 mm,而面積為50 mm × 50 mm,並以CNC銑床加工流道截面積為4 mm × 4 mm的1.5圈瑞士捲式流道,於流道不同處置放不同長度(5 mm ~ 10 mm)的蜂巢式白金觸媒。利用預混氫氣/空氣與白金觸媒表面化學反應所產生的熱釋放,加上B85板材極低之熱傳導係數及瑞士捲流道的熱再循環特性,以及高熱傳導係數的銅製上板,可產生均勻熱源供TEM熱端使用,並以水冷式HSI置於TEM冷端,提供一可控制之溫差範圍(50℃ ~ 250℃),並找出優化之壓力負載條件,使TEM產電。有關實驗量測方面,針對觸媒長度與分段擺放位置與不同氫體積濃度([H2] = 8 ~ 12%)及以流道寬度定義之雷諾數(Re = Vf D/? = 500 ~ 2000;Vf為燃料流速,D為流道寬度而?為燃料運動黏滯係數)來探討流道內溫度分佈,利用10支K型熱電偶量測流道內部溫度,及3支K型貼片式熱電偶量測銅製上板表面溫度(即TEM熱端溫度),找出適當的溫度控制範圍,優化本系統之輸出功率。在數值模擬方面,以CFD-RC軟體建立三維模式的計算模擬,結合13步驟白金觸媒與氫氣/空氣的化學表面反應機制,並考慮邊界熱損失來預測模擬SRCHS的化學反應流特性,模擬結果與實驗結果一致。本研究也模擬TEM的熱場與電場的轉換效應,考慮TEM的有效接觸面積與適當的Seebeck係數,來分析TEM之開迴路電壓(OCV)。由模擬與實驗比對的結果,我們找出此系統的較佳操作條件,在[H2] = 12%、Re = 1500、及兩段各長5 mm之分段觸媒位置,控制TEM在溫差為200℃及200 psi的壓力負載之下,本系統可輸出功率密度為520 mW/cm2。此一創新可攜式電源供應器,為一潔淨氫能利用技術,可供許多小型電子產品使用,例如照明燈具、筆記型電腦、或充電系統所使用。
摘要(英) This thesis applies hydrogen as a fuel and combines three clean energy-saving technologies, including heat-recirculating, catalytic reaction and thermoelectric conversion, to devise a clean portable thermoelectric generator (TEG). This TEG system consists of three key parts: (1) A Swiss-roll catalytic heat source (SRCHS), (2) a thermoelectric module (TEM) and (3) a heat sink (HSI), in which the TEM is sandwiched between the SRCHS and the HSI. The SRCHS made of B85 material with properties similar to that of the ceramic material is manufactured by a CNC machine to have a 1.5-turn Swiss-roll channel with a cross-sectional area of 4 mm × 4 mm. The cross-sectional area of SRCHS is 50 mm × 50 mm with a height of 10 mm, in which various lengths (5 ~ 10 mm) of honeycomb platinum catalysts located inside the SRCHS`s channel are need to generate heat from the surface reaction between premixed H2/air mixtures and Pt catalyst. Because of very low heat conductivity of B85 material together with the Swiss-roll heat recirculation, the SRCHS features as a uniform heat source for the TEM provided that a copper plate with very high heat conductivity is used. In addition, we apply a water cooling HSI, so that the wanted temperature range (50 ~ 250℃) across the TEM can be stably controlled. For temperature measurements, ten K-type thermocouples positioned at different locations along the SRCHS flow channel as well as three K-type thermocouple films positioned on the upper copper plate surface are applied to measure temperature distributions of the SRCHS. Various hydrogen concentrations in volume percentage ([H2] = 8 ~ 12%) are used with a wide range of the flow Reynolds number (Re = VfD/?) varying from 500 to 2000, where Vf is the mean velocity of reactants, D = 4 mm is the width of the flow channel, and ? is the kinematic viscosity of H2/air mixtures. This study also measures emissions of [H2], [O2], and [NOx] using the gas analyzer. For numerical simulations, a 3D reacting model is established using CFD-RC packages combined with a 13-steps platinum surface reaction mechanism with the consideration of heat losses to predict chemical reacting flows in the SRCHS. Moreover, efforts are made to simulate heat and electric fields of the Seebeck effect for the TEM by using the effective contact area and the proper Seebeck coefficient of the TEM. Thus, the relation between the open circuit voltage and the temperature gradient can be simulated and obtained. Numerical results are found to be in reasonably good agreement with experimental data. Finally, when using two segments of catalysts each having 5 mm long placed inside the channel of the SRCHS with the water cooling HSI, the TEG system has the highest power density up to 520 mW/cm2, where [H2] = 12%, Re = 1500, and ΔT ~ 200℃ between the cold and hot sides of TEM with a mechanical load of 200 psi. This novel portable TEG system is a pollution-free power generator which is useful for many small electric devices.
關鍵字(中) ★ 熱電產生
★ 電能量測
★ 數值模擬
★ 觸媒反應
★ 熱再循環
★ 氫能利用
關鍵字(英) ★ hydrogen usage
★ heat-recirculating
★ catalytic reaction and thermoelectric generator
★ numerical simulation
論文目次 摘要 I
英文摘要 III
致謝 V
目錄 VI
圖表目錄 IX
符號說明 XII
第一章 前言 1
1.1 研究動機 1
1.2 問題所在 2
1.3 解決方法 3
1.4 論文概要 4
第二章 文獻回顧 5
2.1 熱再循環原理與應用 5
2.2 觸媒反應及先進燃燒技術之原理與應用 8
2.3 熱電轉換技術的原理與應用 13
第三章 實驗設備及實驗方法 22
3.1 燃氣供應系統 22
3.1.1 燃氣供應系統與混合裝置 22
3.1.2 燃氣操作條件 23
3.2 量測儀系統 24
3.2.1 溫度量測系統 24
3.2.3 尾氣量測儀系統 25
3.3 小型瑞士捲電源產生器主體 25
3.3.1 SRCHS主體 25
3.3.2 觸媒材料 26
3.3.3 熱電模組 26
3.4 實驗方法及流程 27
第四章 數值分析 34
4.1 統御方程式 34
4.2觸媒化學反應 35
4.3熱電seebeck電場反應 37
4.4計算區域 39
4.4.1 三維SRCHS模型 39
4.4.2 三維TEM模型 40
4.5邊界條件及初始條件 41
4.5.1三維SRCHS之邊界條件及初始條件設定 41
4.5.2三維TEM之邊界條件及初始條件 42
第五章 結果與討論 47
5.1 SRCHS的流道及上板溫度分佈 47
5.1.1 三種不同觸媒條件對於SRCHS的溫度分佈之影響 47
5.1.2 分段觸媒的[H2]效應 49
5.1.3 分段觸媒的Re效應 52
5.1.4 單段10 mm觸媒的[H2]效應 52
5.1.5 單段10 mm觸媒的Re效應 53
5.2 三種不同觸媒條件對於氫氣使用率的影響 54
5.3 TEG系統的功率輸出 55
5.4 TEG系統功率輸出的參數綜合比較 58
第六章 結論與未來工作 77
6.1 結論 77
6.2 未來工作 78
參考文獻 79
參考文獻 [1] Turner, J. A., “Toward a Hydrogen Economy”, Science, 305, 957, 2004.
[2] Maruta, K. and Takeda, K., “Catalytic Combustion in Microchannel for MEMS Power Generation”, The Third Asia-Pacific Conference on Combustion, Seoul, Korea, June 24-27, 2001.
[3] Lloyd, S. A. and Weinberg, F. J., “A burner for mixtures of very low heat content”, Nature, 251, 47-49, 1974.
[4] Kuo, C. H., Ronney, P. D., “Numerical modeling of non-adiabatic heat-recirculating combustors”, Proceedings of the Combustion Institute, 31, 3277-3284, 2007.
[5] Schaevitz, S. B., Franz, A. J., Jensen, K. F. and Schmidt, M. A., “A combustion-based mems thermoelectric power generator”, The 11th International Conference on Solid-State Sensors and Actuators, Munich, Germany, June, 2001.
[6] 楊俊傑,「氫能利用:過焓觸媒熱電產生器之實作研究」,國立中央大學,碩士論文,民國94年。
[7] 鄭偉隆,「低氮氧化物燃燒器實驗和數值研究及其應用」,國立中央大學,碩士論文,民國95年。
[8] 陳致銘,「氫能利用:新型可攜式潔淨電源產生器實作與數值分析」,國立中央大學,碩士論文,民國96 年。
[9] 張瑞文,「新潔淨氫能觸媒熱電產生器:製造、量測與模擬」,國立中央大學,碩士論文,民國97 年。
[10] Lloyd, S. A. and Weinberg, F.J., “Limits to energy release and utilization from chemical fuels”, Nature, 257, 367-370, 1975.
[11] Vican, J., Gajdeczko, B. F., Dryer, F. L., Milius, D. L., Aksay, I. A. and Yetter, R. A., “Development of a microreactor as a thermal source for microelectromechanical systems power generation”, Proceedings of the Combustion Institute, 29, 909-916, 2002.
[12] Ronney, P. D., “Analysis of non-adiabatic heat-recirculating combustors”, Combustion and Flame, 135, 421-439, 2003.
[13] Ahn, J., Eastwood, C., Sitzki, L., Ronney, P. D., “Gas-phase and catalytic combustion in heat-recirculating burners”, Proceedings of the Combustion Institute, 30, 2463-2472, 2005.
[14] Kuo, C. H., Ronney, P. D., “Numerical modeling of non-adiabatic heat-recirculating combustors”, Proceedings of the Combustion Institute, 31, 3277-3284, 2007.
[15] Kim, N. I., Kato, S., Kataoka, T., Yokomori, T., Maruyama, S., Fujimori, T. and Maruta, K., “Flame stabilization and emission of small Swiss-roll combustors as heaters”, Combustion and Flame, 141, 229-240, 2005.
[16] Kim,N. I., Aizumi, S., Yokomori, T., Kato, S., Fujimori, T., Maruta, K., “Development and scale effects of small Swiss-roll combustors”, Proceedings of the Combustion Institute, 31, 3243-3250, 2007.
[17] Federici, J. A., Wetzel, E. D., Geil, B. R., Vlachos, D. G., “Single channel and heat recirculation catalytic microburners: An experimental and computational fluid dynamics study”, Proceedings of the Combustion Institute, 32, 3011-3018, 2009.
[18] Wang, L., Tran, T. P., Vo, D. V., Sakurai, M., Kameyama, H., “Design of novel Pt-structured catalyst on anodic aluminum support for VOC’s catalytic combustion”, Applied Catalysis A: General, 350, 150-156, 2008.
[19] Maruta, K., Takeda, K., Ahn, J.,Borer, K., Sitzki, L., Ronney, P. D. and Deutschmann, O., “Extinction limits of catalytic combustion in microchannels”, Proceedings of the Combustion Institute, 29, 957-963, 2002.
[20] Chao, Y. I., Chen, G. B., Hsu, H. W., Hsu, J. R., “Catalytic combustion of gasified biomass in a platinum monolith honeycomb reactor”, Applied Catalysis A: General, 261, 99-107, 2004.
[21] Chen, G. B., Chen, C. P., Wu, C.Y., Chao, Y. C., “Effects of catalytic walls on hydrogen/air combustion inside a micro-tube”, Applied Catalysis A: General, 332, 89-97, 2007.
[22] Chen, G. B., Chao, Y. C., Chen, C. P., “Enhancement of hydrogen reaction in a micro-channel by catalyst segmentation”, International Journal of Hydrogen Energy, 33, 2586-2595, 2008.
[23] Deutschmann, O., Schmidt, R., Behrendt, F. and Warnatz, J., “Numerical modeling of catalytic ignition”, Twenty-Sixth Symposium (International) on Combustion/The Combustion Institute, pp. 1747-1754, 1996.
[24] Deutschmann, O., Maier, L. I., Riedel, U., Stroemman, A. H., Dibble, R. W., “Hydrogen assisted catalytic combustion of methane on platinum”, Catalysis Today, 59, 141-150, 2000.
[25] Norton, D. G., Vlachos, D. G., “Combustion characteristics and fame stability at the microscale: a CFD study of premixed methane/air mixtures”, Chemical Engineering Science, 58, 4871-4882, 2003.
[26] Hua, J., Wu, M., Kumar, K., “Numerical simulation of the combustion of hydrogen–air mixture in micro-scaled chambers. Part I: Fundamental study”, Chemical Engineering Science, 60, 3497-3506, 2005.
[27] Hua, J., Wu, M., Kumar, K., “Numerical simulation of the combustion of hydrogen–air mixture in micro-scaled chambers Part II: CFD analysis for a micro-combustor”, Chemical Engineering Science, 60, 3507-3515, 2005.
[28] Chen, C. P., Chao, Y. C., Wu, C. Y., Lee, J. C., “Development of a catalytic hydrogen micro-propulsion system”, Combust. Sci. and Tech., 178, 2039-2060, 2006.
[29] Boyarko, G. A., Sung, C. J., Schneider, S. J., “Catalyzed combustion of hydrogen–oxygen in platinum tubes for micro-propulsion applications”, Proceedings of the Combustion Institute, 30, 2481-2488, 2005.
[30] Veser, G., “Experimental and theoretical investigation of H2 oxidation in a high-temperature catalytic microreactor”, Chemical Engineering Science, 56, 1265-1273, 2001.
[31] Norton, D. G., Wetzel, E. D., Vlachos, D. G., “Fabrication of Single-Channel Catalytic Microburners: Effect of Confinement on the Oxidation of Hydrogen/Air Mixtures”, Ind. Eng. Chem. Res., 43, 4833-4840, 2004.
[32] Norton, D. G.and Vlachos, D. G., “Hydrogen assisted self-ignition of propane/air mixtures in catalytic microburners”, Proceedings of the Combustion Institute, 30, 2473-2480, 2005.
[33] Wierzba, I., Depiak, A., “Catalyticoxidation of lean homogeneous mixtures of hydrogen/hydrogen–methane in air”, International Journal of Hydrogen Energy, 29, 1303-1307, 2004.
[34] Choi, W., Kwon, S. and Shin, H. D., “Combustion characteristics of hydrogen–air premixed gas in a sub-millimeter scale catalytic combustor”, International Journal of Hydrogen Energy, 33, 2400-2408, 2008.
[35] Rowe, D. M., CRC handbook of thermoelectrics, CRC Press LLC, Boca Raton, FL, 1995.
[36] Weinberg, F. J., Rowe, D.M., Min, G. and Ronney, P. D., “On thermoelectric power conversion from heat recirculating combustion systems”, Proceedings of the Combustion Institute, 29, 941-947, 2002.
[37] Weinberg, F., “Optimising heat recirculating combustion systems for thermoelectric converters”, Combustion and Flame, 138, 401-403, 2004.
[38] Min, G. and Rowe, D. M., ““Symbioc” application of thermoelectric conversion for fluid preheating/power generation”, Energy Conversion and Managent, 43, 221-228, 2002.
[39] Rowe, D. M. and Min, G., “Design theory of thermoelectric modules for electrical power generation”, IEE Proc.-Sci. Meas. Technol., 143, 351-356, 1996.
[40] Rowe, D. M. and Min, G., “Evaluation of thermoelectric modules for power generation”, Journal of Power Sources, 73, 193-198, 1998.
[41] Esarte, J., Min, G. and Rowe, D. M., “Modelling heat exchangers for thermoelectric generators”, Journal of Power Sources, 93, 72-76, 2001.
[42] Min, G. and Rowe, D. M., “Conversion Efficiency of Thermoelectric Combustion Systems”, IEEE Transaction on Energy Conversion, 22, 528-534, 2007.
[43] Federici, J. A., Norton, D. G., Bruggemann, T., Voit, K. W., Wetzel,E. D.,Vlachos, D.G., “Catalytic microcombustors with integrated thermoelectric elements for portable power production”, Journal of Power Sources, 161, 1469-1478, 2006.
[44] Karim, A. M., Federici, J. A., Vlachos, D. G.,“Portable power production from methanol in an integrated thermoeletric/microreactor system” Journal of Power Sources, 179, 113-120, 2008.
[45] Yang, W. M., Chou, S. K., Shu, C., Li, Z. W., “A prototype microthermophotovoltaic power generator”, Applied Physics Letters, 84, 3864-3866, 2004.
[46] Yoshida, K., Tanaka, S., Tomonari, S., Satoh, D. and Esashi, M., “High-Energy Density Miniature Thermoelectric Generator Using Catalytic Combustion”, Journal of Microelectromechanical Systems, 15, 195-203, 2006.
[47] Norton, D. G., Wetzel, E. D., Vlachos, D. G., “Thermal Management in Catalytic Microreactors”, Ind. Eng. Chem. Res., 45, 76-84, 2006.
[48] Wijngaards, D. D. L., Cretu E., Kong, S. H. and Wolffenbuttel, R. F., “Modelling of integrated Peltier elements”, International Conferemce on Modelling and Simulation of Microsystem, 2000.
[49] Jacquot, A., Chen, G., Scherrer, H., Dauscher, A., Lenoir, B., “Modeling of on-membrane thermoelectric power supplies”, Sensors and Actuators A, 116, 501-508, 2004.
[50] Kandasamy, S., Pachoud, D., Powell, D. A., Rosengarten, G., Holland,A., Wlodarski, W., “Optimization of film thickness for thermoelectric micro-Peltier cooler”, Proceedings of SPIE, 5649, 640-647, 2005.
[51] Lineykin, S., Shmuel B. Y., “Modeling and Analysis of Thermoelectric Modules”, IEEE Transactions on Industry Applications, 43, 505-512, 2007.
[52] Incropera, F. P. and Dewitt, D. P., Fundamentals of Heat and Mass Transfer, USA, 2002.
[53] 台灣工德股份有限公司,http://www.kumtek.com.tw.
[54] Hi-Z Technology Inc., http:/www.hi-z.com.
[55] Hayes, R. E. and Kolaczkowski, S. T., Introduction to catalytic combustion, Gordon and Breach Science Publishers, 1997.
[56] Fuller, E. N., Schettler, P. D. and Gidding, J. C., “A new Method for prediction of binary gas-phase diffusion coefficient”, Ind. Eng. Chem, 58,19-27, 1996.
[57] Miller, J. A., Bowman, C. T., “Mechanism and modeling of nitrogen chemistry in combustion”, Prog. Energy Combust. Sci., 12, 287-338, 1989.
指導教授 施聖洋(Shenq-yang Shy) 審核日期 2009-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明