博碩士論文 963203065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.236.228.250
姓名 陳恆超(Heng-chao Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
(Effect of internal radiation on thermal stress fields and interface shape in Czochralski crystal growth of sapphire)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 交流電發光二極體之接面溫度量測
★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析
★ KY法生長大尺寸氧化鋁單晶之數值模擬分析★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析
★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究★ CZ法生長大尺寸藍寶石單晶之熱流場與溶質數值模擬研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 柴式長晶法生長氧化鋁單晶過程中,為了提升氧化鋁單晶的生長品質,必須了解柴式長晶爐內部的熱傳與熔湯流動情形。由於單晶生長過程無法直接觀察熔湯內的熱流場分佈,所以本研究使用有限體積法之CGSim軟體模擬二維軸對稱氧化鋁單晶生長過程之電磁場、熱場與流場。求解的方式先從RF線圈產生電磁場,感應坩堝計算出熱通量分佈之後,在以此為邊界條件來修正並同時解出整個爐體的熱場與流場,以此溫度場再對晶體、熔湯、坩堝、以及長晶區域上爐室內之氣體來做更進一步的深入計算,最後將晶體的溫度分佈數據匯入至COMSOL做三維非等向熱應力分析。
本研究主要模擬柴式法生長氧化鋁單晶的生長過程,探討生長過程中晶體內部熱輻射對於熱流場、固液界面形狀與熱應力分佈之影響。為了做出更理想的長晶模擬,本研究加入了氬氣的流動、熔湯表面張力、考慮熔湯為紊流模式以及晶體內部熱輻射的影響,並針對表面張力、晶體內部輻射與等效熱傳導係數對於熱流場分佈之影響作分析。最後計算出熱應力的分佈用來分析生長c軸與a軸之氧化鋁單晶的缺陷分佈情形。
摘要(英) The thermal and flow transport in a Czochralski crystal growth furnace plays an important role to effect the single crystal growth quality of sapphire. However, the thermal and flow fields in the melt of the single crystal growth process are difficult to observe in experimental study. This thesis has numerically investigated the thermal and flow transport phenomenons using the finite volume method via CGSim software. The electromagnetic, thermal, and fluid fields during the sapphire single crystal growth process have been investigated. The temperature and flow fields inside the furnace are coupled with the heat generation in the Iridium crucible which is generated by the electromagnetic field using the RF coil.
For different stages of Czochralski crystal growth of sapphire, the configuration usually used in a real Czochralski crystal growth process consists of a crucible, induction coil, insulation, crystal, melt and gas. At first the volumetric distribution of heat generation inside the metal crucible is calculated. Using this heat distribution as a source the fluid flow and temperature fields in the whole system are computed. After that, thermal analysis is computed only in the crystallization zone, including the crystal, melt, crucible, and a gas region around the crystal. The computation in the crystallization zone involves the turbulent flow of the sapphire melt, the laminar gas flow, and radiative heat exchange in the semitransparent crystal.
Then using the temperature distribution in a single crystal to calculate thermal stress via COMSOL software. The anisotropy of elastic constants and thermal expansion coefficients are considered in the problem. The analyses are performed both for the pulling directions of a-axis and c-axis.
關鍵字(中) ★ 熱應力
★ 晶體內部輻射
★ 氧化鋁單晶
★ 柴式法
關鍵字(英) ★ sapphire
★ thermal stress
★ internal radiation
★ Czochralski method
論文目次 摘要…………………………………………………………………………...………..Ι
Abstract……………………………………………………………………….………II
誌謝…………………………………………………………………..…………........III
目錄…………………………………………………………………..…………........ IV
圖目錄…………………………………………………………………..................….VI
表目錄…………………………………………………………...…………………VIII
符號說明……………………………………………..…...…………...………...........IX
第一章 緒論…………………………………………………………………...…..…1
1.1氧化鋁單晶(Sapphire)簡介…………………………………………………….…..1
1.2柴式長晶法(CZ)介紹…………………………………………………………...….2
1.3文獻回顧…………………………………………………………...……………….3
1.4研究目的…………………………………………………………...……………….8
第二章 系統描述與數學模式………………………………………………….…12
2.1物理系統與假設…………………………………………………………….....….12
2.2數學模式…………………………………………………………...……………...12
2.2.1電磁感應加熱計算方式…………………………………………………….13
2.2.2統御方程式…………………………………………………….………...….13
2.2.3邊界條件…………………………………………………………….…...….15
2.2.4紊流計算方式……………………………………………………….…...….16
2.2.5晶體內部熱輻射計算方式………………………………………………….17
2.2.6晶體生長速度與潛熱計算………………………………………………….17
2.2.7熱應力計算方式……………………………………………………….……17
第三章 求解方法與分析步驟………………………………………………….…21
3.1求解方法……………..……………………………………………...………….…21
3.1.1固化計算方式……………………………………………………...……….21
3.1.2判別流場型態…………………………………………………….……...…22
3.2長晶模擬求解流程……………………………………………………..……...…23
3.2.1 CGSim分析步驟…………………………………………………...………24
3.2.2 Flow Module分析步驟 ……………………………………………………24
3.2.3 COMSOL分析步驟……………………………………………………...…25
3.2.4網格測試…………………………………………………………...……….25
第四章 結果與討論………………………………………………………….…….32
4.1實際長晶參數生長過程模擬分析………………………………………..………32
4.1.1實際長晶製程參數…………………………………………...……………..32
4.1.2實際長晶過程模擬分析………………………………………….…………32
4.2不同條件下長晶過程之熱流場分析………………………………………..……34
4.2.1考慮表面張力對於熱流場之影響……………………………………….…34
4.2.2晶體熱傳遞機制對於熱流場之影響…………………………….…………35
4.3不同條件之氧化鋁單晶熱應力分佈情形……..…………………………………36
4.3.1晶體內部輻射對於熱應力分佈之影響………………………….…………36
4.3.2生長不同軸向氧化鋁單晶之三維熱應力分析…………………….………37
4.3.3改變晶體轉速與拉速對於熱應力分佈之影響…………………….………37
第五章 結論………………………………………………………...………………59
參考文獻……………………………………………………………………..………61
參考文獻 [1] 劉哲銘,以熱交換器法生長氧化鋁單晶與晶體檢測,國立中央大學,碩士論文,民國88年。
[2] 呂中偉,以熱交換器法生長氧化鋁單晶之模擬分析,國立中央大學,博士論文,民國91年。
[3] 朱信旗,電磁式感應加熱柴式法生長氧化鋁單晶過程之數值模擬分析,國立中央大學,碩士論文,民國97年。
[4] 陳建宏,柴式法生長氧化鋁單晶過程最佳化熱流場之分析,國立中央大學,碩士論文,民國97年。
[5] J. A. Savage, Preparation and properties of hard crystalline materials for optical applications-a review, Journal of Crystal Growth, vol.113, Pages 698-715 (1991).
[6] 陳智勇,柴式法生長鈮酸鋰塊晶之研究分析,國立中央大學,碩士論文,民國93年。
[7] J. Czochralski, Ein neues Verfahren zur Messung der Kristallisation geschwindigheit der Metalle, Zeitschrift für Physikalische Chemie, vol.92, pages 219-221 (1918).
[8] G. K. Teal and J. B. Little, Growth of germanium single crystals, Physical Review, vol.78, page 647 (1950).
[9] H. E. Buckley, Crystal Growth, John Wiley and Sons Inc., New York (1951).
[10] J. J. Derby and R. A. Brown, Thermal-capillary analysis of Czochralski and liquid encapsulated crystal growthⅠ.Simulation, Journal of Crystal Growth, vol.74, pages 605-624 (1986).
[11] J. J. Derby and R. A. Brown, Thermal-capillary analysis of Czochralski and liquid encapsulated crystal growth Ⅱ.Processing strategies, Journal of Crystal Growth, vol.75, pages 227-240 (1986).
[12] F. Dupret, Y. Ryckmans, P. Wouters and M. J. Crochet, Numerical calculation of the global heat transfer in a Czochralski furnace, Journal of Crystal Growth, vol.79, pages 84-91 (1986).
[13] T. Tsukada, N. Imaishi and M. Hozawa, Theoretical Study of the Flow and Temperature Fields in CZ Single Crystal Growth, Journal of Chemical Engineering, vol.21, pages 184-191 (1988) .
[14] F. Dupret, P. Nicodeme, Y. Ryckmans, P. Wouters and M. J. Crochet, Global modeling of heat transfer in crystal growth furnaces, International Journal of Heat and Mass Transfer, vol.33, pages 1849-1871 (1990).
[15] T. Tsukada, M. Hozawa and N. Imaishi, Global analysis of transfer in CZ crystal growth of oxide, Journal of Chemical Engineering, vol.27, pages 25-31 (1994) .
[16] N. Miyazaki, H. Uchida, T. Tsukada and T. Fukuda, Quantitative assessment for cracking in oxide bulk single crystals during Czochralski growth: development of a computer program for thermal stress analysis, Journal of Crystal Growth, vol.162, pages 83-88 (1996).
[17] T. Tsukada, K. Kakinoki, M. Hozawa, N. Imaishi, K. Shimamura and T. Fukuda, Numerical and experimental studies on crack formation in LiNbO3 single crystal, Journal of Crystal Growth, vol.180, pages 543-550 (1997).
[18] Z. Galazka and H. Wilke, Influence of Marangoni convection on the flow pattern in the melt during growth of Y3Al5O12 single crystals by the Czochralski method, Journal of Crystal Growth, vol.216, pages 389-398 (2000).
[19] Z. Galazka and H. Wilke, Heat transfer and fluid flow during growth of Y3Al5O12 single crystals using the Czochralski method, Crystal Research and Technology, vol.35, pages 1263–1278 (2000).
[20] M. Kobayashi, T. Hagino, T. Tsukada and M. Hozawa, Effect of internal radiative heat transfer on interface inversion in Czochralski crystal growth of oxides, Journal of Crystal Growth, vol.235, pages 258-270 (2002).
[21] M. Kobayashi, T. Tsukada and M. Hozawa, Effect of internal radiation on thermal stress fields in CZ oxide crystals, Journal of Crystal Growth, vol.241, pages 241-248 (2002).
[22] A. Hayashi, M. Kobayashi, C. Jing, T. Tsukada and M. Hozawa, Numerical simulation of the Czochralski growth process of oxide crystals with a relatively thin optical thickness, International Journal of Heat and Mass Transfer, vol.47, pages 5501-5509 (2004).
[23] M. H. Tavakoli and H. Wilke, Numerical study of induction heating and heat transfer in a real Czochralski system, Journal of Crystal Growth, vol.275, pages e85-e89 (2005).
[24] M. H. Tavakoli and H. Wilke, Numerical study of heat transport and fluid flow of melt and gas during the Seeding Process of Sapphire Czochralski crystal growth, Crystal Growth & Design, vol.7, pages 644-651 (2007).
[25] J. Banerjee and K. Muralidhar, Simulation of transport processes during Czochralski growth of YAG crystals, Journal of Crystal Growth, vol.286, pages 350–364 (2006).
[26] M. H. Tavakoli and H. Wilke, Numerical investigation of heat transport and fluid flow during the seeding process of oxide Czochralski crystal growth Part 1: non-rotating seed, Crystal Research and Technology, vol.42, pages 544–557 (2007).
[27] M. H. Tavakoli and H. Wilke, Numerical investigation of heat transport and fluid flow during the seeding process of oxide Czochralski crystal growth Part 2: rotating seed, Crystal Research and Technology, vol.42, pages 688–698 (2007).
[28] M. H. Tavakoli, H. Wilke, and N. Crnogorac, Influence of the crucible bottom shape on the heat transport and fluid flow during the seeding process of oxide Czochralski crystal growth, Crystal Research and Technology, vol.42, pages 1252–1258 (2007).
[29] M. H. Tavakoli, Numerical study of heat transport and fluid flow during different stages of sapphire Czochralski crystal growth, Journal of Crystal Growth, vol.310, pages 3107-3112 (2008).
[30] S. E. Demina, E. N. Bystrova, V. S. Postolov, E. V. Eskov, M. V. Nikolenko, D. A. Marshanin, V. S. Yuferev and V. V. Kalaev, Use of numerical simulation for growing high-quality sapphire crystals by the Kyropoulos method, Journal of Crystal Growth, vol.310, pages 1443–1447 (2008).
[31] M. H. Tavakoli, A. Ojaghi, E. Mohammadi-Manesh and M. Mansour, Influence of coil geometry on the induction heating process in crystal growth systems, Journal of Crystal Growth, vol.311, pages 1594–1599 (2009).
[32] M. Asadian, S. H. Seyedein, M. R. Aboutalebi and A. Maroosi, Optimization of the parameters affecting the shape and position of crystal–melt interface in YAG single crystal growth, Journal of Crystal Growth, vol.311, pages 342–348 (2009).
[33] K. Mazaev, V. Kalaev, E. Galenin, S. Tkachenko and O. Sidletskiy, Heat transfer and convection in Czochralski growth of large BGO Crystals, Journal of Crystal Growth, vol.311, pages 3933-3937 (2009).
[34] J. F. Nye, Physical Properties of Crystals, Clarendon, Oxford(1957).
[35] S.E. Demina, E. N. Bystrova, M.A. Lukanina, V. M. Mamedov, V. S. Yuferev, E. V. Eskov, M. V. Nikolenko, V. S. Postolov and V. V. Kalaev, Numerical analysis of sapphire crystal growth by the Kyropoulos technique, Optical Materials, vol.30, pages 62–65 (2007).
[36] E. R. Dobrovinskaya, L. A. Lytvynov and V. Pishchik, Sapphire, Springer, New York(2009).
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2009-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明