博碩士論文 963203072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.146.35.191
姓名 陳勁誠(Jin-Cheng Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 膝關節軟骨MRI影像之邊界辨識與三維模型重建探討
(Image Segmentation and Three-Dimensional Surface Reconstruction of Knee Cartilage for MRI Images)
相關論文
★ 光纖通訊主動元件之光收發模組由上而下CAD模型設計流程探討★ 汽車鈑金焊接之夾治具精度分析與改善
★ 輪胎模具反型加工路徑規劃之整合研究★ 自動化活塞扣環壓入設備之開發
★ 光學鏡片模具設計製造與射出成形最佳化研究★ CAD模型基礎擠出物之實體網格自動化建構技術發展
★ 塑膠射出薄殼件之CAD模型凸起面特徵辨識與分模應用技術發展★ 塑膠射出成型之薄殼件中肋與管設計可製造化分析與設計變更技術研究
★ 以二維影像重建三維彩色模型之色彩紋理貼圖技術與三維模型重建系統發展★ 結合田口法與反應曲面法之光學鏡片射出成型製程參數最佳化分析
★ 薄殼零件薄殼本體之結構化實體網格自動建構技術發展★ Boss特徵之結構化實體網格自動化建構技術發展
★ 應用於模流分析之薄殼元件CAD模型特徵辨識與分解技術發展★ 實體網格建構對於塑膠光學元件模流分析 之影響探討
★ 螺槳葉片逆向工程CAD模型重建與檢測★ 電腦輔助紋理影像辨識與點資料視覺化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 影像物件分割技術可以將器官或組織的輪廓描述出來,可以針對這些區域做特徵的分析,提供醫師或研究人員做為他們診斷或研究時的依據,本研究的主要目標是使用退化性膝關節炎患者的核磁共振影像作為研究對象,然而,在實際運用於醫學影像上的分析,則會產生重大的缺陷與情形(如雜訊敏感度、過度分割、邊界模糊或非均質區域的影響),我們使用影像濾波器進行前置處理,並依據Chan-Vese模式的等階集合法做影像分割,透過區域限制與分層區域限制進行最佳化,將影像序列中關節軟骨予以分割並提供相關的量化資訊(厚薄度和體積資訊)提供給臨床醫師作為術前評估,另一方面透過三維重建的技術也提供病患觀看實際患部受損情形,增加醫師與病患之間雙向的溝通。
摘要(英) The image segmentation technology can describe the contours of the organ or the structures. It can make the analysis of the characteristic to these areas, and offer to a doctor or the researchers in order to diagnose or study basis. The main target of this research is the use of degenerative knee Magnetic resonance imaging of patients as research subjects. However, when applied to medical image analysis, it has important drawbacks (ex:sensitivity to noise, over-segmentation, fuzzy boundary or the impact of non-homogeneous regions). We use the image pre-processing filter, and Chan-Vese model based Level set method of image segmentation, through the regional limitations and restrictions on the best stratification of the region. Image sequence will be divided in the articular cartilage and provide relevant quantitative information (thickness and volume of information) available to clinicians as a preoperative evaluation. On the other hand, through the three-dimensional reconstruction of the technology also provides patients with damage to watch the actual affected area where increase between physicians and patients with two-way communication.
關鍵字(中) ★ 影像分割
★ 等階集合法
★ 主動輪廓模型
★ 膝關節軟骨
關鍵字(英) ★ Active contour model
★ Level set Method
★ Image segmentation
★ Knee cartilage
論文目次 摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究目的與方法 5
1.3.1 研究目的 5
1.3.2 研究方法 6
1.4 論文架構 11
第二章 磁振造影與膝關節炎之簡介 13
2.1前言 13
2.2磁振造影術簡介 13
2.2.1磁振造影原理 13
2.2.2磁振造影之醫學應用 14
2.2.3磁振成像的優點 16
2.3 膝關節介紹 17
2.4 退化性膝關節炎 18
2.4.1 退化性膝關節炎病理變化 18
2.4.2 退化性膝關節炎的成因 20
2.4.3 退化性膝關節炎的症狀 21
第三章 影像前處理 25
3.1 前言 25
3.2 雜訊模型 26
3.3 常見的影像濾波器 27
3.3.1 線性濾波器 29
3.3.2 非線性濾波器 33
3.4影像品質指標 34
3.4.1 絕對性客觀的影像品質指標 35
3.4.2 相對性客觀的影像品質指標 36
3.5 實驗分析與討論 38
3.5.1 實驗結果 39
3.5.2 適應性的參數 49
第四章 等階集合法 56
4.1前言 56
4.2隱函數 57
4.2.1 一維空間中分界點 57
4.2.2二維空間中分界曲線 57
4.2.3 幾何工具 59
4.3 符號距離函數 63
4.3.1 距離函數 63
4.3.2 符號距離函數 64
4.3.3 距離轉換 64
4.4 等階集合法之運動形式 64
4.4.1依外力速度場作用而運動 66
4.4.2 依平均曲率作用而運動 67
4.5 重新初始化 68
第五章 MRI影像之區域辨識 70
5.1 前言 70
5.2 定義重建區域 70
5.3 邊界辨識之方法 72
5.3.1 Chan-Vese模型 75
5.3.2 Mumford-Shah函數 76
5.3.3 Level set公式化 78
5.4 區域限制擴充 83
5.4.1 區域限制 84
5.4.2 分層區域限制 85
第六章 MRI膝關節軟骨重建與量化分析 91
6.1 前言 91
6.2 三維軟骨重建 91
6.3軟骨區域選取之量化分析 93
6.3.1 測試條件設定 96
6.3.2 二維輪廓擷取探討 96
6.3.3 三維輪廓點擷取分析 103
6.3.4 量化資訊 111
第七章 結論與未來展望 113
7.1 結論 113
7.2 未來展望 115
參考文獻 117
參考文獻 [1] Y. Chi, P. Cashman, R. Kitney “Automatic Segmentation of Cartilage in MR Images using CDCG: Chessboard Directional Compensated GVF Snakes”, International Conference on Medical Information Visualisation (MediVis 06), London, 2006, In: Clapworthy,G., Moore,G., editor, Los Alamitos, CA, IEEE Computer Society, 2006, Pages: 45 – 50.
[2] J. A. Lynch, S. Zaim, J. Zhao, A. Stork, C. G. Peterfy, and H. K. Genant,“Cartilage segmentation of 3D MRI scans of the osteoarthritic knee combining user knowledge and active contours,” in Proc. SPIE, 2000.
[3] A. Losch, F. Eckstein, M. Haubner, and K. H. Englmeier , “A non-invasive technique for 3-dimensional assessment of articular cartilage thickness based on MRI. Part 1: Development of a computational method,” Magn. Reson. Imaging, vol.15, no. 7, pp. 795-804, 1997.
[4] J. Carballido,Gamio, “MRI quantification of cartilage of the knee,”PhD thesis, University of California, San Francisco,2005.
[5] J. A. Lynch, S. Zaim, J. Zhao, C.G. Peterfy, and H.K. Genant,
“Automating measurement of subtle changes in articular cartilage from MRI of the knee by combining 3D image registration and
segmentation,” In Proc. SPIE’01, pp. 431-439, 2001.
[6] S. Solloway, C. Hutchinson, J. Waterton, and C. Taylor, “The use of
active shape models for making thickness measurements of articular
cartilage from MR images,” Magnetic Resonance in Medicine, vol. 37,no. 6, pp. 943–952, 1997.
[7] S. Solloway, C. J. Taylor, C. E. Hutchinson, and J. C. Waterton,
“Quantification of articular cartilage from MR images using active shape models,” in Proceedings 4th European Conference on Computer Vision-Volume II ’96, pp. 400-411. Springer-Verlag, 1996.
[8] T. Stammberger, F. Eckstein, M. Michaelis, K. H. Englmeier, and M. Reiser, “Interobserver reproducibility of quantitative cartilage
measurements: comparison of B-spline snakes and manual segmentation,” Magn. Reson. Imag., vol. 17, no. 7, pp. 1033–1042, 1999.
[9] Z. A. Cohen, D. M. McCarthy, S. D. Kwak, P. Legrand, F. Fogarsi, E. J. Ciaccio, and G. A. Ateshian, “Knee cartilage topography, thickness, and contact areas from MRI: In-vitro calibration and in-vivo measurements,” Osteoarthritis and Cartilage, vol. 7, pp. 95–109, 1999.
[10] J. P. Raynauld, C. Kauffmann, G. Beaudoin, M. J. Berthiaume, J. A. deGuise, D. A. Bloch, F. Camacho, B. Godbout, R. D. Altman, M.
Hochberg, J. M. Meyer, G. Cline, J. P. Pelletier, and J.Martel-Pelletier,“Reliability of a quantification imaging system using magnetic resonance images to measure cartilage thickness and volume in human normal and osteoarthritic knees,” Osteoarthritis and Cartilage, vol.11, no. 5, pp. 351–360, May 2003.
[11] T. Kapur, P. Beardsley, S. Gibson, W. Grimson, and W. Wells, “Model-based segmentation of clinical knee MRI,” in IEEE International Workshop on Model-Based 3D Image Analysis ’98, pp. 97-106, 1998.
[12] T. Kapur, “Model Based Three Dimensional Medical Image Segmentation, ” PhD thesis, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, May 1999.
[13] C. D. Pirnog, “Articular Cartilage Segmentation and Tracking in
Sequential MR Images of the Knee, ” PhD dissertation, Swiss Federal Institute of Technology Zurich, 2005.
[14] W. E. Lorensen and H. E. Cline, “Marching cubes: a high resolution 3D surface construction algorithm”,Computer Graphics,Vol. 21, No. 4, pp. 163-169, 1987.
[15] David, M. & Eisenberg, M.D. “Courses Involving Complementary and Alternative Medicine at US Medical Schools”. The Journal of American Medical Association, 280, 784-787,1998.
[16] Zhang, Y., Xu.﹐Nevitt, L., M. C., Aliabadi., P., Yu.﹐& Qin., W. M. “Comparison of the Prevalence of Knee Osteoarthritis Between the Elderly Chinese Population in Beijing and whites in the United States: the Osteoarthritis Study. ” Annals of Rheumatic Disease, 44(9), 206-207,2001.
[17] Felson, D. T., Lawrence, R. C., Hochberg, M. C., McAlindon, T., & Dieppe, P. A. et al. “Osteoarthritis: New Insights: Part 2: Treatment Approaches. ” Annals of Internal Medicine,133(9), 726-737,2000.
[18] Messier, S. P., Loeser, R. F., Mitchell, M. N., Valle, G., Morgan T. P., Rejeski, W. J. “Exercise and weight loss in Obese Old Adults with Knee Osteoarthrit is: a Preliminary study. ” The Journal of American Geriatric, 48, 1062-1072, 2000.
[19] Hulet C, Sabatier JP, Souquet D, Locker B, Marcelli C and Cielpeau C. “Distribution of bone mineral density at the proximal tibia in knee osteoarthritis. ” Calcif Tissue Int, 71(4):315-22,2000.
[20] Williams, A. “Therapeutic landscapes in holistic medicine.” Social Science and Medicine, 46(9), 1193-1203,1998.
[21] Osher, S. and J. A. Sethian, “Fronts Propagating with Curvature Dependent Speed: Algorithms based on the Hamilton-Jacobi formulation. ”Journal of Computational Physics(S0021-9991), 1998,79(1): 12-49.
[22] D. Adalsteinssion, J. A. Sethian. “The Fast Construction of Extension Velocities in Level Set Methods”. Journal of Computational Physics(S0021-9991), 1999, 148(1): 2-22.
[23] Sussman, M., Smereka, P., and Osher, s., “A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flows”. Journal of Computational Physics. 114,146-159(1994).
[24] D.Mumford and J. Shah, “Optimal approximation by piecewise smooth functions and associated variational problems,” Commun. Pure Appl. Math, vol. 42, pp. 577–685, 1989.
[25] Chan, T. and L. A. Vese, “Active contours without edges,” IEEE Trans. Image Processing,vol.10, pp.266-277, Feb. 2001.
[26] Osher, S. and J. A. Sethian, “Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi
formulation,” Journal of Computational Physics, vol.79, pp.12-49, 1988.
[27] H.-K. Zhao, T. Chan, B. Merriman, and S. Osher, “A variational level set approach to multiphase motion,” Journal of Computational Physics., vol. 127, pp.179–195, 1996.
[28] S. K. Mitra, H. Li, I. S. Lin, and T.-H. Yu, “A new class of nonlinear filters for image enhancement,” in Proc. IEEE Int. Conf: Acoust, Speech Signal Processing, Toronto, Ont., Canada, 1991, pp. 2525-2528.
[29] Fisher , R., S. Perkins, A. Walker and E. Wolfart, “Hypermedia Image Processing Reference, ”Artificial Intelligence, the University of Edinburgh. 2000.
[30] 陳金徽, “數位影像輻射品質之客觀指標評估, ”國立成功大學地球科學研究所碩士論文, 2006.
[31] Jenny Folkesson, Erik B. Dam, Ole F. “Segmenting Articular Cartilage Automatically Using a Voxel Classification Approach,” IEEE Transactions on Medical Image, vol. 26, no. 1, 2007.
[32] S. K. Warfield, M. Kaus, F. A. Jolesz, and R. Kikinis, “Adaptive,template moderated, spatially varying statistical classification,” Med.Image Anal., no. 4, pp. 43–55, 2000.
[33] S. K. Warfield, C. Winalski, F. A. Jolesz, and R. Kikinis, “Automatic segmentation of mri of the knee,” presented at the ISMRM 6th Sci.Meeting Exhibition, Sydney, Australia, Jul. 1998.
[34] K. Li, S. Millington, X. Wu, D. Z. Chen, and M. Sonka, “Simulta-
neous segmentation of multiple closed surfaces using optimal graph
searching,” in Information Processing in Medical Imaging: 19th International Conference. New York: Springer, 2005, vol. 3565.
[35] S.Millington, K. Li, X.Wu, S. Hurwitz, andM. Sonka, “Automated simultaneous 3-D segmentation of multiple cartilage surfaces using optimal graph searching on mri images,” Osteoarthritis Cartilage, vol.13, 2005.
[36] V. Grau, A.Mewes,M. Alcaiz, R. Kikinis, and S.Warfield, “Improvedwatershed transform for medical image segmentation using prior in-formation,” IEEE Trans. Med. Imag., vol. 23, no. 4, pp. 447–458, Apr.2004.
[37] S. K. Pakin, J. G. Tamez-Pena, S. Totterman, and K. J. Parker, “Segmentation, surface extraction and thickness computation of articular cartilage,” Proc. SPIE Med. Imag. Process, vol. 4684,pp. 155–166, 2002.
[38] J. G. Tamez-Pena, M. Barbu-McInnis, and S. Totterman, “Knee cartilage extraction and bone-cartilage interface analysis from 3-D mri data sets,” Proc. SPIE Med. Image Process, vol. 5370,pp. 1774–1784, 2004.
[39] 羅亞惟, “溫泉浴療介入退化性膝關節炎患者有關之研究, ”國立臺北護理學院旅遊健康研究所碩士班碩士論文,2006.
[40] 丁筠倪, “以3D電腦斷層掃描及磁振造影術進行新骨再生能力之評估,”義守大學生物醫學工程系碩士班碩士論文,2006.
[41] Wikipedia ,http://en.wikipedia.org/wiki/Magnetic_Resonance_
Imaging.
[42] 羅賴鈞,“醫學影像之三維顯示與骨組織三角網格重建技術探討,”國立中央大學機械工程學系碩士班碩士論文,2009.
指導教授 賴景義(Jiing-Yih Lai) 審核日期 2009-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明