博碩士論文 963204004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:1 、訪客IP:3.145.166.7
姓名 郭鎮豪(Zhen-hao Guo)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 陽極氧化鋁奈米模板及鈷-鎳合金奈米線之製備與電性研究
(Fabrication and Properties of Anodic Aluminum Oxide Templates and Co-Ni Alloy Nanowires)
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究中已成功的掌握製程參數並製備出大面積奈米孔洞結構的陽極氧化鋁模板與大範圍的純鎳、鈷金屬及其不同組成比例之合金奈米線陣列。所製備出的陽極氧化鋁模板孔徑大小平均約為25 nm。此外,以直流電電鍍結合市售陽極氧化鋁模板成功製備出純鎳、鈷金屬及其不同組成比例合金(Co:Ni=1:9、Co:Ni=1:1、Co:Ni=9:1)之奈米線。在穿透式電子顯微鏡(TEM)以及選區電子繞射(SAED)的分析,可發現所製備的純鎳及純鈷奈米線分別為多晶FCC及HCP的晶體結構,而三種不同組成成份的鈷-鎳合金奈米線則皆為HCP之單晶結構。純鎳、鈷金屬與其合金奈米線的平均直徑約為250 nm。從能量散佈分析儀(EDS)的線掃描分析顯示,合金奈米線中的鎳鈷組成成份分佈相當均勻。鈷鎳合金奈米線的成長方向經鑑定後分別為:樣品A(Co:Ni=1:9)為[-6241]、樣品B(Co:Ni=1:1)為[-3211]、樣品C(Co:Ni=9:1)為[02-21]。
在電性性質量測分析結果發現,鈷、鎳金屬的添加比例對於鈷鎳合金奈米線的電阻率有很顯著的影響。一開始鈷鎳合金奈米線的電阻率會隨著鈷金屬的添加而增加,當鈷鎳合金奈米線中鈷金屬含量超過鎳金屬時,鈷鎳合金奈米線的電阻率便開始下降,對於此電性結果可用Nordheim定律闡釋。另一方面,實驗中也發現鈷-鎳合金奈米線受外加磁場的影響十分顯著。本研究中利用外加磁場的控制,可成功操控鈷-鎳合金奈米線在矽基材上排列出具有二維方向的陣列圖形。
摘要(英) In this study, the AAO template with large-area nanopores structure and the large-scale well-aligned pure Ni, Co, and Co-Ni alloy nanowires arrays with different composition ratio of Co and Ni were successfully fabricated under controlled processing conditions. The average pore size of the AAO template produced was about 25 nm. On the other hand, pure Ni, Co, and Co-Ni alloy nanowires with different concentration ratios of Co to Ni (Co:Ni=1:9, Co:Ni=1:1, Co:Ni=9:1) were successfully synthesized by DC electrodeposition into nanopores of commercial AAO template. Based on the TEM and SAED analyses, it is found that the Ni and Co nanowires were polycrystalline with FCC and HCP structures, respectively. In addition, the three sets of Co-Ni alloy nanowires were all single crystalline, and these single crystalline Co-Ni nanowire possess a HCP structure. The average diameter of the metal and alloy nanowires was about 250 nm. From the EDS line-scan profiles analysis, it is revealed that alloy nanowires were entirely composed of Co and Ni, and uniform distributions of Co and Ni throughout these nanowires. The growth direction of the Co-Ni alloy nanowires of samples A (Co:Ni=1:9), B (Co:Ni=1:1), and C (Co:Ni=9:1) were identified to be along the[-6241], [-3211], and [02-21] directions, respectively.
From electrical property measurement, the addition of Co to Ni could strongly affect the resistivity of Co-Ni alloy nanowires. The resistivity of Co-Ni nanowire was found to increase with the addition of Co to Ni first then decrease. The results are discussed in the context of the Nordheim’s rule. On the other hand, the Co-Ni nanowires were found to be very sensitive to the externally applied magnetic field. In this study, experimental result demonstrated that by applying external magnetic fields, these Co-Ni nanowires can be controlled to align along the directions of applied magnetic filed and assemble into a 2D ordered pattern on Si substrate.
關鍵字(中) ★ 氧化鋁模板
★ 合金奈米線
★ 電化學沉積法
關鍵字(英) ★ AAO
★ alloy nanowire
★ electrodeposition
論文目次 目錄 I
第一章 簡介 1
1-1 前言 1
1-2 多孔性陽極氧化鋁模板 2
1-3 金屬奈米線之製備 6
1-4 合金金屬奈米線 8
1-5 金屬奈米線之導電性質 9
1-6 研究動機 10
第二章 實驗步驟 12
2-1 多孔性陽極氧化鋁模板之製備 12
2-1-1 市售陽極氧化鋁模板 12
2-1-2 自製陽極氧化鋁模板 12
2-2 電化學沉積金屬奈米線 14
2-2-1 電鍍溶液的配製 14
2-2-2 電鍍製程 14
2-2-3 純鎳、鈷及其合金金屬奈米線 15
2-3 純鎳、鈷金屬及鎳-鈷合金奈米線電性量測分析 15
2-4 分析儀器與鑑定 16
2-4-1 掃描式電子顯微鏡 16
2-4-2 穿透式電子顯微鏡 17
2-4-3 高分辨穿透式電子顯微鏡與X 光能量散佈光譜儀 17
2-4-4 電性量測分析儀 17
第三章 結果與討論 18
3-1 多孔性陽極氧化鋁模板 18
3-1-1 市售陽極氧化鋁模板 18
3-1-2 自製陽極氧化鋁模板 19
3-2 純鎳、鈷金屬及其合金金屬奈米線 21
3-2-1 純鎳、鈷金屬奈米線陣列 21
3-2-2 鎳-鈷合金奈米線陣列 23
3-3 純鎳、鈷金屬及鎳-鈷合金金屬奈米線電性量測分析 25
3-4 鎳鈷合金奈米線之磁性排列 30
第四章 結論與未來展望 31
4-1 結論 31
4-2 未來展望 32
4-2-1 小尺寸孔徑之奈米線陣列及其性質研究 32
4-2-2 不同形狀結構之奈米線及其他奈米結構研究 32
參考文獻 33
表目錄 43
圖目錄 45
參考文獻 [1]P. W. Chiu, and C. H. Chen, “High-Performance Carbon Nanotube Network Transistors for Logic Applications,” Appl. Phys. Lett. 92 (2008) 063511 1-3.
[2]C. J. Lin, Y. T. Lu, C. H. Hsieh, and S. H. Chien, “Surface Modification of Highly Ordered TiO2 Nanotube Arrays for Efficient Photoelectrocatalytic Water Splitting,” Appl. Phys. Lett. 94 (2009) 113102 1-3.
[3]P. Liu, G. G. She, Z. L. Liao, Y. Wang, Z. Z. Wang, W. S. Shi, X. H. Zhang, S. T. Lee, and D. M. Chen, “Observation of Persistent Photoconductance in Single ZnO Nanotube,” Appl. Phys. Lett. 94 (2009) 063120 1-3.
[4]S. P. Cho, Y. Nakamura, M. Ichikawa, and N. Tanaka, “High Resolution Transmission Electron Microscopy Study of Iron-Silicide Nanodot Structures Grown on Faintly Oxidized Si (111) Surfaces,” Thin Solid Films 517 (2009) 2865-2870.
[5]S. F. Fu, S. M. Wang, L. Lee, C. Y. Chen, W. C. Tsai, W. C. Chou, M. C. Lee, W. H. Chang, and W. K. Chen, “The Structural and Optical Properties of InN Nanodots Grown with Various V/III Ratios by Metal-Organic Chemical Vapor Deposition,” Nanotechnology 20 (2009) 295702 1-4.
[6]K. S. Lin, Z. P. Wang, S. Chowdhury, and A. K. Adhikari, “Preparation and Characterization of Aligned Iron Nanorod Using Aqueous Chemical Method,” Thin Solid Films 517 (2009) 5192-5196.
[7]X. G. Hu, T. Wang, and S. J. Dong, “Thermal Annealing of Au Nanorod Self-Assembled Nanostructured Materials : Morphology and Optical Properties,” J. Colloid Interface Sci. 316 (2007) 947-953.
[8]M. H. Yang, F. L. Qu, Y. J. Li, Y. He, G. L. Shen, and R. Q. Yu, “Direct Electrochemistry of Hemoglobin in Gold Nanowire Array,” Biosens. Bioelectron. 23 (2007) 414-420.
[9]J. Wan, S. R. Deng, R. Yang, Z. Shu, B. R. Lu, S. Q. Xie, Y. F. Chen, E. Huq, R. Liu, and X. P. Qu, “Silicon Nanowire Sensor for Gas Detection Fabricated by Nanoimprint on SU8/SiO2/PMMA Trilayer,” Microelectron. Eng. 86 (2009) 1238-1242.
[10]M. H. Chou, S. B. Liu, C. Y. Huang, S. Y. Wu, and C. L. Cheng, “Confocal Raman Spectroscopic Mapping Studies on a Single CuO Nanowire,” Appl. Surf. Sci. 254 (2008) 7539-7543.
[11]J. J. Yuan, Q. Zhao, Y. S. Xu, Z. G. Liu, X. B. Dub, and G. H. Wen, “Synthesis and Magnetic Properties of Spinel CoFe2O4 Nanowire Arrays,” J. Magn. Magn. Mater. 321 (2009) 2795-2798.
[12]S. H. Lee, N. Saito, and O. Takai, “Highly Reproducible Technique for Three-Dimensional Nanostructure Fabrication Via Anodization Scanning Probe Lithography,” Appl. Surf. Sci. 255 (2009) 7302-7306.
[13]B. Päivänranta, M. Pudas, O. Pitkänen, K. Leinonen, M. Kuittinen, P. Y. Baroni, T. Scharf, and H. P. Herzig, “Liquid Phase Deposition of Polymers on Arbitrary Shaped Surfaces and Their Suitability for E-Beam Patterning,” Nanotechnology 20 (2009) 225305 1-6.
[14]S. Regonda, M. Aryal, and W. Hu, “Stability of HSQ Nanolines Defined by E-Beam Lithography for Si Nanowire Field Effect Transistors,” J. Vac. Sci. Technol., B 26 (2008) 2247-2251.
[15]S. Thongmee, H. L. Pang, J. Ding, and J. Y. Lin, “Fabrication and Magnetic Properties of Metallic Nanowires Via AAO Templates,” J. Magn. Magn. Mater. 321 (2009) 2712-2716.
[16]X. H. Tan, “Fabrication and Properties of Sr2MgSi2O7 : Eu2+,Dy3+ Nanostructures by an AAO Template Assisted Co-Deposition Method,” J. Alloys Compd. 477 (2009) 648-651.
[17]F. Wang, H. B. Huang, and S. G. Yang, “Synthesis of Ceramic Nanotubes Using AAO Templates,” J. Eur. Ceram. Soc. 29 (2009) 1387-1391.
[18]B. K. Lee, K. J. Cha, and T. H. Kwon, “Fabrication of Polymer Micro/Nano-Hybrid Lens Array by Microstructured Anodic Aluminum Oxide (AAO) Mold,” Microelectron. Eng. 86 (2009) 857-860.
[19]W. M. Zhou, J. Zhang, X. L. Li, Y. B. Liu, G. Q. Min, Z. T. Song, and J. P. Zhang, “Replication of Mold for UV-Nanoimprint Lithography Using AAO Membrane,” Appl. Surf. Sci. 255 (2009) 8019-8022.
[20]S. J. Parka, M. S. Chob, J. D. Nama, I. H. Kima, H. R. Choic, J.C. Kooc, and Y. Lee, “The Linear Stretching Actuation Behavior of Polypyrrole Nanorod in AAO Template,” Sens. Actuators, B 135 (2009) 592-596.
[21]K. L. Yu, T. G. Luo, Y. G. Zhang, C. M. Yang, L. J. Shang, C. Li, and Q. F. Li, “Carbon Nanotube Synthesis Over Glow Discharge-Treated Ni/AAO Membrane,” Mater. Lett. 63 (2009) 566-568.
[22]J. Duan, J. Liu, T. W. Cornelius, H. Yao, D. Mo, Y. Chen, L. Zhang, Y. Sun, M. Hou, C. Trautmann, and R. Neumann, “Magnetic and Optical Properties of Cobalt Nanowires Fabricated in Polycarbonate Ion-Track Templates,” Nucl. Instr. and Meth. B (2009).
[23]N. Sertova, E. Balanzat, M. Toulemonde, and C. Trautmann, “Investigation of Initial Stage of Chemical Etching of Ion Tracks in Polycarbonate,” Nucl. Instr. and Meth. B 267 (2009) 1039-1044.
[24]A. Birner, U. Grüning, S. Ottow, A. Schneider, F. Müller, V. Lehmann, H. Föll, and U. Gösele, “Macroporous Silicon : A Two-Dimensional Photonic Bandgap Material Suitable for the Near-Infrared Spectral Range,” Phys. Stat. Sol. A 165 (1998) 111-117.
[25]J. L. Zhang and G. Y. Hong, “Synthesis and Photoluminescence of the Y2O3 : Eu3+ Phosphor Nanowires in AAO Template,” J. Solid State Chem. 177 (2004) 1292-1296.
[26]Z. B. Fang, Y. Y. Wang, X. P. Peng, X. Q. Liu, and C. M. Zhen, “Structural and Optical Properties of ZnO Films Grown on the AAO Templates,” Mater. Lett. 57 (2003) 4187-4190.
[27]L. Liu, Y. M. Zhao, N. Q. Jia, Q. Zhou, C. J. Zhao, M. M. Yan, and Z. Y. Jiang, “Electrochemical Fabrication and Electronic Behavior of Polypyrrole Nano-Fiber Array Devices,” Thin Solid Films 503 (2006) 241-245.
[28]D. C. Yang, G. W. Meng, F. M. Han, and L. D. Zhang, “Two-Segment CdS/Bi Nanowire Heterojunctions Arrays and Their Electronic Transport Properties,” Mater. Lett. 62 (2008) 3213-3216.
[29]C. L. Xu, H. Li, G. Y. Zhao, and H. L. Li, “Electrodeposition of Ferromagnetic Nanowire Arrays on AAO/Ti/Si Substrate for Ultrahigh-Density Magnetic Storage Devices,” Mater. Lett. 60 (2006) 2335-2338.
[30]R. L. Wang, S. L. Tang, B. Nie, X. L. Fei, Y. G. Shi, and Y. W. Du, “Fabrication and Magnetic Properties of Ordered Fe60Pb40 Nanowire Arrays Electrodeposited in AAO Templates,” Solid State Commun. 142 (2007) 639-642.
[31]O. Jessensky, F. Müller, and U. Gösele, “Self-Organized Formation of Hexagonal Pore Arrays in Anodic Alumina,” Appl. Phys. Lett. 72 (1998) 1173-1175.
[32]G. E. Thompson, “Porous Anodic Alumina : Fabrication, Characterization and Applications,” Thin Solid Films 297 (1997) 192-201.
[33]H. Masuda and K. Fukuda, “Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina,” Science 268 (1995) 1466-1468.
[34]Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm Period Silicon Antireflection Structures Fabricated Using a Porous Alumina Membrane Mask,” Appl. Phys. Lett. 78 (2001) 142-143.
[35]F. Li, L. Zhang, and R. M. Metzger, “On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide,” Chem. Mater. 10 (1998) 2470-2480.
[36]H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, “Highly Ordered Nanochannel-Array Architecture in Anodic Alumina,” Appl. Phys. Lett. 71 (1997) 2770-2772.
[37]W. Lee, R. Ji, C. A. Ross, U. Gösele, and K. Nielsch, “Wafer-Scale Ni Imprint Stamps for Porous Alumina Membranes Based on Interference Lithography,” Small 2 (2006) 978-982.
[38]H. Masuda, M. Yotsuya, M. Asano, K. Nishio, M. Nakao, A. Yokoo, and T. Tamamura, “Self-Repair of Ordered Pattern of Nanometer Dimensions Based on Self-Compensation Properties of Anodic Porous Alumina,” Appl. Phys. Lett. 78 (2001) 826-828.
[39]H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and Triangular Nanohole Array Architectures in Anodic Alumina,” Adv. Mater. 13 (2001) 189-192.
[40]C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered Anodic Alumina Nanochannels on Focused-Ion-Beam-Prepatterned Aluminum Surfaces,” Appl. Phys. Lett. 78 (2001) 120-122.
[41]N. W. Liu, A. Datta, C. Y. Liu, and Y. L. Wang, “High-Speed Focused-Ion-Beam Patterning for Guiding the Growth of Anodic Alumina Nanochannel Arrays,” Appl. Phys. Lett. 82 (2003) 1281-1283.
[42]R. Krishnan, H. Q Nguyen, C. V Thompson, W. K Choi, and Y. L Foo, “Wafer-Level Ordered Arrays of Aligned Carbon Nanotubes with Controlled Size and Spacing on Silicon,” Nanotechnology 16 (2005) 841-845.
[43]A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal Pore Arrays with a 50-420 nm Interpore Distance Formed by Self-Organization in Anodic Alumina,” J. Appl. Phys. 84 (1998) 6023-6026.
[44]S. K. Hwang, J. Lee, S. H. Jeong, P. S. Lee, and K. H. Lee, “Fabrication of Carbon Nanotube Emitters in an Anodic Aluminium Oxide Nanotemplate on a Si Wafer by Multi-Step Anodization,” Nanotechnology 16 (2005) 850-858.
[45]S. Mathur, S. Barth, U. Werner, F. H. Ramirez, and A. R. Rodriguez, “Chemical Vapor Growth of One-Dimensional Magnetite Nanostructures,” Adv. Mater. 20 (2008) 1550-1554.
[46]S. N. Cha, B. G. Song, J. E. Jang, J. E. Jung, I. T. Han, J. H. Ha, J. P. Hong, D. J. Kang, and J. M. Kim, “Controlled Growth of Vertically Aligned ZnO Nanowires with Different Crystal Orientation of the ZnO Seed Layer,” Nanotechnology 19 (2008) 235601 1-4.
[47]L. H. Wang, X. Z Zhang, S. Q. Zhao, G. Y. Zhou, Y. L. Zhou, and J. J. Qi, “Synthesis of Well-Aligned ZnO Nanowires by Simple Physical Vapor Deposition on C-Oriented ZnO Thin Films Without Catalysts or Additives,” Appl. Phys. Lett. 86 (2005) 024108.
[48]Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-Emitting ZnO Nanowires Synthesized by a Physical Vapor Deposition Approach,” Appl. Phys. Lett. 78 (2001) 407-409.
[49]M. Yu, J. H. Liu, and S. M. Li, “Preparation and Characterization of Highly Ordered NiO Nanowire Arrays by Sol-Gel Template Method,” J. Univ. Sci. Technol. Beijing 13 (2006) 169-173.
[50]C. H. Bae, S. M. Park, S. E. Ahn, D. J. Oh, G. T. Kim, and J. S. Ha, “Sol–Gel Synthesis of Sub-50 nm ZnO Nanowires on Pulse Laser Deposited ZnO Thin Films,” Appl. Surf. Sci. 253 (2006) 1758-1761.
[51]X. Y. Ma, H. Zhang, J. Xu, J. J. Niu, Q. Yang, J. Sha, and D. Yang, “Synthesis of La1-xCaxMnO3 Nanowires by a Sol–Gel Process,” Chem. Phys. Lett. 363 (2002) 579-582.
[52]L. H. Zhang, Y. Fang, and P. X. Zhang, “Laser-MBE of Nickel Nanowires Using AAO Template : A New Active Substrate of Surface Enhanced Raman Scattering, ” Spectrochim. Acta, Part A 69 (2008) 91-95.
[53]Q. T. Wang, “Electrochemical Template Synthesis of Large-Scale Uniform Copper Selenides Nanowire Arrays,” Mater. Lett. 63 (2009) 1493-1495.
[54]G. B. Yue, G. W. Meng, Q. L. Xu, B. S. Chen, and M. Fang, “Manipulation of Crystalline Orientation and Optical Absorption of Cu Nanowire Arrays Embedded in Anodic Aluminum Oxide Templates,” Mater. Lett. 63 (2009) 998-1000.
[55]W. C. Tsai, S. J. Wang, J. K. Lin, C. L. Chang, and R. M. Ko, “Preparation of Vertically-Aligned Nickel Nanowires with Anodic Aluminum Oxide Templates and Their Application as Field Emitters,” Electrochem. Commun. 11 (2009) 660-663.
[56]X. Y. Sun, F. Q. Xu, Z. M. Li, and W. H. Zhang, “Cyclic Voltammetry for the Fabrication of High Dense Silver Nanowire Arrays with the Assistance of AAO Template,” Mater. Chem. Phys. 90 (2005) 69-72.
[57]H. Araki, A. Fukuoka, Y. Sakamoto, S. Inagaki, N. Sugimoto, Y. Fukushima, and M. Ichikawa, “Template Synthesis and Characterization of Gold Nano-Wires and -Particles in Mesoporous Channels of FSM-16,” J. Mol. Catal. A: Chem. 199 (2003) 95-102.
[58]X. Y. Yuana, T. Xiea, G. S. Wua, Y. Lina, G. W. Menga, and L. D. Zhang, “Fabrication of Ni-W-P Nanowire Arrays by Electroless Deposition and Magnetic Studies,” Physica E 23 (2004) 75-80.
[59]C. L. Xua, S. J. Baoa, L. B. Kongb, H. Lia, and H. L. Li, “Highly Ordered MnO2 Nanowire Array Thin Films on Ti/Si Substrate as an Electrode for Electrochemical Capacitor,” J. Solid State Chem. 179 (2006) 1351-1355.
[60]Y. Ding, P. Zhang, Z. Long, Y. Jiang, J. Yin, F. Xu, and Y. Zuo, “The Elastic Module of Ag Nanowires Prepared from Electrochemical Deposition,” J. Alloys Compd. 474 (2009) 223-225.
[61]W. B. Yang, Z. Wu, Z. Y. Lu, X. P. Yang, and L. X. Song, “Template-Electrodeposition Preparation and Structural Properties of CdS Nanowire Arrays,” Microelectron. Eng. 83 (2006) 1971-1974.
[62]S. Thongmee, H. L. Pang, J. B. Yi, J. Ding, J. Y. Lin, and L. H. Van, “Unique Nanostructures in NiCo Alloy Nanowires,” Acta Mater. 57 (2009) 2482-2487.
[63]M. Motoyama, Y. Fukunaka, T. Sakka, and Y. H. Ogata, “Initial Stages of Electrodeposition of Metal Nanowires in Nanoporous Templates,” Electrochim. Acta 53 (2007) 205-212.
[64]Y. Zhong, C. L. Xu, L. B. Kong, and H. L. Li, “Synthesis and High Catalytic Properties of Mesoporous Pt Nanowire Array by Novel Conjunct Template Method,” Appl. Surf. Sci. 255 (2008) 3388-3393.
[65]X. Z. Gong, J. N. Tang, J. Q. Li, and Y. K. Liang, “Preparation and Characterization of La-Co Alloy Nanowire Arrays by Electrodeposition in AAO Template under Nonaqueous System,” Trans. Nonferrous Met. Soc. China 18 (2008) 642-647.
[66]J. H. Jeong, S. H. Kim, J. H. Min, Y. K. Kim, and S. S. Kim, “High-Frequency Noise Absorbing Properties of Nickel Nanowire Arrays Prepared by DC Electrodeposition,” Phys. Stat. Sol. A 204 (2007) 4025-4028.
[67]J. H. Min, J. H. Wu, J. U. Cho, J. H. Lee, Y. D. Ko, H. L. Liu, J. S. Chung, and Y. K. Kim, “Electrochemical Preparation of Co3Pt Nanowires,” Phys. Stat. Sol. A 204 (2007) 4158-4161.
[68]J. X. Xu and Y. Xu, “Fabrication and Magnetic Property of Binary Co-Ni Nanowire Array by Alternating Current Electrodeposition,” Appl. Surf. Sci. 253 (2007) 7203-7206.
[69]A. Ramazani, M. A. Kashi, M. Alikhani, and S. Erfanifam, “Fabrication of High Aspect Ratio Co Nanowires with Controlled Magnetization Direction Using AC and Pulse Electrodeposition,” Mater. Chem. Phys. 112 (2008) 285-289.
[70]J. X. Xu and Y. Xu, “Fabrication of Amorphous Co and Co-P Nanometer Array with Different Shapes in Alumina Template by AC Electrodeposition,” Mater. Lett. 60 (2006) 2069-2072.
[71]K. Nielsch, F. Müller, A. P. Li, and U. Gösele, “Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition,” Adv. Mater. 12 (2000) 582-586.
[72]K. G. Kim, M. J. Kim, and S. M. Cho, “Pulsed Electrodeposition of Palladium Nanowire Arrays Using AAO Template,” Mater. Chem. Phys. 96 (2006) 278-282.
[73]J. X. Xu and K. Y. Wang, “Pulsed Electrodeposition of Monocrystalline Ni Nanowire Array and its Magnetic Properties,” Appl. Surf. Sci. 254 (2008) 6623-6627.
[74]G. E. Possin, “A Method for Forming Very Small Diameter Wires,” Rev. Sci. Instrum. 41 (1970) 772-774.
[75]E. Yue, G. Yu, Y. J. Ouyang, B. C. Weng, W. W. Si, and L. Y. Ye, “Electrochemical Fabrication of Pd-Ag Alloy Nanowire Arrays in Anodic Alumina Oxide Template,” J. Mater. Sci. Technol. 24 (2008) 850-856.
[76]A. Saedi and M. Ghorbani, “Electrodeposition of Ni-Fe-Co Alloy Nanowire in Modified AAO Template,” Mater. Chem. Phys. 91 (2005) 417-423.
[77]S. L. Cheng and C. N. Huang, “Template Synthesis of Large-Scale Single-Crystalline Co-Ni Alloy Nanowire Arrays by Electrochemicl Deposition,” Synth. React. Inorg. Met.-Org. Chem. 38 (2008) 475-480.
[78]J. Zhu, “Composition-Dependent Plasmon Shift in Au-Ag Alloy Nanotubes :Effect of Local Field Distribution,” J. Phys. Chem. C 113 (2009) 3164-3167.
[79]G. B. Ji, J. M. Cao, F. Zhang, G. Y. Xu, S. L. Tang, B. X. Gu, and Y. W. Du, “Fabrication and Magnetic Properties of Ternary Alloy Co-Ni-Pb Nanowire Arrays,” Chem. Lett. 34 (2005) 808-809.
[80]J. L Mozos, C. C. Wan, G. Taraschi, J. Wang, and H. Guo, “Quantized conductance of Si atomic wires,” Phys. Rev. B: Condens. Matter 56 (1997) R4351-R4354.
[81]H. Okino, I. Matsuda, R. Hobara, Y. Hosomura, S. Hasegawa, and P. A. Bennett, “In situ Resistance Measurements of Epitaxial Cobalt Silicide Nanowires on Si (110) ,” Appl. Phys. Lett. 86 (2005) 233108 1-3.
[82]H. Q. Cao, L. D. Wang, Y. Qiu, and L. Zhang, “Synthesis and I-V Properties of Aligned Copper Nanowires,” Nanotechnology 17 (2006) 1736-1739.
[83]K. Biswas, Y. Qin, M. DaSilva, R. Reifenberger, and T. Sands, “Electrical Properties of Individual Gold Nanowires Arrayed in a Porous Anodic Alumina Template,” Phys. Stat. Sol. A 204 (2007) 3152-3158.
[84]M. Tanase, D. M. Silevitch, A. Hultgren, L. A. Bauer, P. C. Searson, G. J. Meyer, and D. H. Reich, “Magnetic trapping and Self-Assembly of Multicomponent Nanowires,” J. Appl. Phys. 91 (2002) 8549-8551.
[85]C. Thelander, T. Mårtensson, M. T. Björk, B. J. Ohlsson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, “Single-Electron Transistors in Heterostructure Nanowires,” Appl. Phys. Lett. 83 (2003) 2052-2054.
[86]C. M. Hangarter, and N. V. Myung, “Magnetic Alignment of Nanowires,” Chem. Mater. 17 (2005) 1320-1324.
[87]G. S. Cheng, A. Kolmakov, Y. X. Zhang, M. Moskovits, R. Munden, M. A. Reed, G. M Wang, D. Moses, and J. P. Zhang, “Current Rectification in a Single GaN Nanowire with a Well-Defined p-n Junction,” Appl. Phys. Lett. 83 (2003) 1578-1580.
[88]M. E. T. Molares, E. M. Höhberger, Ch. Schaeflein, R. H. Blick, R. Neumann, and C. Trautmann, “Electrical Characterization of Electrochemically Grown Single Copper Nanowires,” Appl. Phys. Lett. 82 (2002) 2139-2141.
[89]B. Yoo, Y. Rheem, W. P Beyermann, and N. V Myung, “Magnetically Assembled 30 nm Diameter Nickel Nanowire with Ferromagnetic Electrodes,” Nanotechnology 17 (2006) 2512-2517.
[90]J. Jorritsma, and J. A. Mydosh, “Temperature-Dependent Magnetic Anisotropy in Ni Nanowires,” J. Appl. Phys. 84 (1998) 901-906.
指導教授 鄭紹良(Shao-liang Cheng) 審核日期 2009-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明