博碩士論文 963204007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.190.217.134
姓名 張世佳(Shih-Chia Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
(Sublimation Point Depression of Small-Molecule Semiconductors by Sonocrystallization & Photoluminescence Intensity Enhancement of AlQ3 Nanotubes by Eggshell Membrane )
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣
★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究
★ 生命的起源與天門冬氨酸在水中的結晶★ 微調具光學活性聯二萘酚和其二甲亞碸包合物的光激發光性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中已成功的將五環素(pentacene)與8-羥基喹啉鋁(Alq3)的昇華點個別降低約40°C和120°C,所使用的方法是把五環素(pentacene)與8-羥基喹啉鋁(Alq3)分散在差的溶劑,例如:水,並裝在10mL的透明玻璃瓶,利用頻率20kHz、電壓1500V的超音波振盪器,在-13oC環境下震盪10分鐘。超音波結晶法在低溫的環境溫度下,造成五環素(pentacene)粉末轉變為具有高晶格能的粉體,另外,也造成8-羥基喹啉鋁(Alq3)粉末成為穩定α-form與界穩定ε-form的混和物,因此可降低昇華點。然而我們也發現到表面能與不純物並不是影響昇華點下降的主因。因為加熱表面的輻射熱傳播速率從Stefan-Boltzmann law可知是與溫度乘四次方正比,因此若可降低昇華點溫度,則在製作有機發光二極體(OLEDs)、有機薄膜電晶體(OTFTs)和太陽能電池(PV cells)製作元件時可大大降低熱損耗成本。
另一方面,另用蒸鍍法將8-羥基喹啉鋁(Alq3)在沸水煮3分鐘的蛋殼外膜、沸水煮15分鐘的蛋殼外膜與溶解的蛋殼外膜蛋白質薄膜上,長出約800 nm長、150 nm寬的8-羥基喹啉鋁(Alq3)奈米管。經由ESCA分析得知,沸水煮過的蛋殼外膜與溶解的蛋殼外膜蛋白質薄膜都具有環酐鍵結,O=C-O-C=O,與C=N鍵結。這些鍵結提供更多的成核位置給8-羥基喹啉鋁(Alq3)的喹啉配位基。然而表面擴散模型說明了AlQ3分子會隨著奈米管的表面做長距離的移動,藉著接觸到最外層的管壁逐漸延伸管長,同時增加管壁厚,亦稱為”lip-lip”相互作用。因此8-羥基喹啉鋁(Alq3)可以在單位體積中的單位表面積上長出密度更高的8-羥基喹啉鋁(Alq3)奈米管,也令其光激發螢光量測強度明顯增加。
摘要(英) The sublimation temperature of pentacene and AlQ3 were successfully reduced for around 40°C and 120°C by the dispersed pentacene and AlQ3 in a poor solvent, like water, by insonating in a 10 mL scintillation vial with output frequency of 20 kHz, a voltage of 1500 V, and insonation time for 10 min at -13oC. Sonocrystallization made the pentacene powders with high lattice energy, and AlQ3 powders of the mixture of stable α-form and metastable ε-form under a low bulk temperature, therefore, the sublimation point was decreased. However, surface energy and impurities had nothing to do with the sublimation point depression. Because of the total radiant-heat-transfer rate between heated surfaces is proportional to the fourth power of the absolute temperature according to the Stefan-Boltzmann law, the reduction of the heating and cooling duty of the vapor-phase deposition method for the manufacturing of organic light emitting diodes (OLEDs), organic thin film transistors (OTFTs), and photovoltaic (PV) cells could be made possible.
On the other hand, about 800 nm long, and 150 nm wide AlQ3 nanotubes were thermally deposited and grown on the 3-min boiled outer shell membrane (OSM), 15-min boiled OSM, and soluble eggshell membrane protein (SEP) film. The ESCA analysis showed that the boiled eggshell membrane and SEP possessed the cyclic anhydrides, O=C-O-C=O, and C=N bonds that provided more nucleation sites for the quinoline ligands of AlQ3 molecule. Surface diffusion model showed the AlQ3 molecules migrated over large distance along the nanotubes surface, reaching the open layer edges and extending the nanotubes, then this layers may propagated one after another with edges coupled by “lip-lip” interaction. This mechanism caused a higher population density of AlQ3 nanotubes and increased the surface area per unit volume to increase the PL emission intensity.
關鍵字(中) ★ 光致激發螢光
★ 五環素
★ 昇華點降低
★ 蛋膜
★ 8-羥基喹啉鋁
關鍵字(英) ★ eggshell membrane
★ AlQ3
★ PL
★ pentacene
★ sublimation point depression
論文目次 Table of Contents
摘要 i
Abstract ii
Acknowledgement iv
Notation v
Table of Contents vi
List of Tables xi
List of Figures xii
Chapter 1 Executive Summary 1
1.1 Introduction 1
1.1.1 Organic Light-Emitting Diodes (OLEDs) 4
1.1.2 Organic Thin-Film Transistors (OTFTs) 7
1.1.3 Organic Photovoltaic cells 8
1.1.4 Functionalized Thin Film Fiber 10
1.2 Conceptual Framework 11
1.3 Reference 13
Chapter 2 Analytical Instruments 18
2.1 Introduction 18
2.2 Microscopic Methods 21
2.2.1 Hot Stage & Optical Microscopy (HSOM) 21
2.2.2 Low Vacuum Scanning Electron Microscopy (LVSEM) 23
2.2.3 Transmission Electron Microscopy (TEM) 25
2.3 Thermal Analysis Methods 28
2.3.1 Differential Scanning Calorimetry (DSC) 28
2.3.2 Thermogravimetric Analysis (TGA) 30
2.4 Spectroscopy Analysis Methods 31
2.4.1 Fourier Transform Infrared (FTIR) and Attenuated Total Reflection (ATR) Spectroscopy 31
2.4.2 Electron Spectroscopy For Chemical Analysis (ESCA) 34
2.4.3 Photoluminescence Spectroscopy (PL) 37
2.5 Crystallographic Analysis Methods 39
2.5.1 Powder X-ray Diffractometry (PXRD) 39
2.6 Single Crystal X-ray Dffraction (SXD) 42
2.7 References 45
Chapter 3 Sublimation Point Depression of Small Molecular Organic Semiconductors by High-Temperature Solvent Screening and Sonocrystallization 49
3.1 Introduction 49
3.1.1 High-Temperature Initial Solvent Screening 51
3.1.2 Crystallization 52
3.1.3 Grinding 52
3.1.4 Sonocrystallization 53
3.1.5 Sonicator 57
3.2 Materials 59
3.2.1 Chemical Reagents 59
3.2.2 Organic Solvents 69
3.3 Experiment Methods 70
3.3.1 High Temperature Solubility Test and Re-crystallization of Pentacene 70
3.3.2 Sonication for Pentacene 72
3.3.3 Surface Energy Determination 73
3.3.4 Quantifying the Amount of ε-Phase AlQ3 74
3.4 Instrumentation 75
3.4.1 Hot Stage Optical Microscopy (HSOM) 75
3.4.2 Fourier Transform Infrared (FT-IR) Spectroscopy 75
3.4.3 Powder X-ray Diffractometry (PXRD) 76
3.4.4 Low Vacuum Scanning Electron Microscopy (LVSEM) 76
3.4.5 Surface Energy (Surface Tension) Measurement 77
3.5 Results and Discussion 78
3.5.1 Solubility 78
3.5.2 Thermodynamic Consideration 79
3.5.3 Instrumental Analysis 83
3.6 Conclusions 106
3.7 References 107
Chapter 4 Dense Clusters of AlQ3 Nanotubes on Eggshell Membrane and Photoluminescence of AlQ3 117
4.1 Introduction 117
4.1.1 Eggshell Membrane 119
4.2 Materials 120
4.2.1 Chemical Reagents 120
4.2.2 Organic Solvents 120
4.3 Experimental Methods 122
4.3.1 Eggshell Membrane Template Preparation 122
4.3.2 OSM Modified With Boiled Water 122
4.3.3 Soluble Eggshell Membrane Protein (SEP) Film Preparation 122
4.3.4 Thermal Evaporation of AlQ3 122
4.4 Instrumental Analysis 124
4.4.1 Attenuated Total Reflection (ATR) Fourier Transform Infrared Spectroscopy (FTIR) 124
4.4.2 Electron Spectroscopy for Chemical Analysis (ESCA) 124
4.4.3 Powder X-ray Diffractometry (PXRD) 125
4.4.4 Low Vacuum Scanning Electron Microscopy (LVSEM) 125
4.4.5 Transmission Electron Microscopy (TEM) 126
4.4.6 Photoluminescence Spectroscopy (PL) 126
4.5 Results and Discussion 127
4.5.1 The Observation and Characterization of Templates and AlQ3 NT Growth on Template 127
4.6 Conclusions 147
4.7 Reference 148
Chapter 5 Conclusions and Future Works 154
參考文獻 Chapter 1
Michael H. C. Jin, “The Thin-Film Deposition of Conjugated Molecules for Organic Electronics,” J. Miner. Met. Mater. Soc., 60(6), 81-86 (2008).
Neopoly Inc. market forecast, http://www.neopoly.net/market.htm.
Organic Photovoltaic Applications and Development of OPV Materials for Portable Electronics by NanoMarkets, http://www.azom.com/details.asp?ArticleID=4528#2.
M. Colle, R. E. Dinnebier, and W. Brutting, “The Structure of the Blue Luminescent δ-phase of Tris(8-hydroxyquinoline)aluminum (III) (AlQ3),” Chem. Commun., 2002(23), 2908-2909 (2002).
L. S. Hing, and C. H. Chen, “Recent Progress of Molecular Electroluminescent Materials and Devices,” Mater. Sci. Eng. R, 39(5-6), 143-222 (2002).
C. W. Tang and S. A. VanSlyke,“Organic Electroluminescent Diodes,” Appl. Phya. Lett. 51 (12), 913-915 (1987)
M. Cölle, J. Gmeiner, W. Milius, H. Hillebrecht, W. Brütting, ”Preparation and Characterization of Blue-Luminescent Tris(8-hydroxyquinoline)-aluminum (Alq3),” Adv. Funct. Mater., 13(2), 108-112 (2003)
D. J. Gundlach, J. E. Royer, S. K. Park, S. Subramanian, O. D. Jurchescu, B. H. Hamadani, A. J. Kline, L. C. Teague, O. Kirillov, C. A. Richter, J. G. Kushmerick, L. J. Richter, S. R. Parkin, T. N. Jackson, and J. E. Aanthony, “Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits,” Nat. Mater., 7(3), 216-221 (2008).
C. D. Dimitrakopoulos, and D. J. Mascaro, “Organic thin-film transistors: A review of recent advances,” J. Res. Dev., 45(1), 11-27 (2001).
S. Yoo, B. Domercq, and B. Kippelen, “Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions,” Appl. Phys. Lett., 85(22), 5427-5429 (2004).
P. Peumans, S. Uchida, and S. R. Forrest, “Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films,” Nature, 425(6954), 158-162 (2003).
Z. Chen, K. Ogino, S. Miyata, Y. Lu and T. Watanabe, “The pure white light emission from three-layer electroluminescent device”, J. Phys. D: Appl. Phys. 35(8) ,742-746 (2002).
C. Jonda, A. B. R. Mayer, U. Stolz, A. Elschner, and A. Karbach, “Surface roughness effects and their influence on the degradation of organic light emitting devices,” J. Mater. Sci., 35(22), 5645-5651 (2000).
T. S. Kim, D. H. Kim, H. J. Im, K. Shimada, R. Kawajiri, T. Okubo, H. Murata, T. Mitani, “Improved lifetime of an OLED using aluminum(III) tris(8-hydroxyquinolate),” Sci. Tech. Adv. Mater., 5(3), 331-337 (2004).
J. Lewis, S. Grego, E. Vick, B. Chalamala, and D. Temple, “Mechanical Performance of Thin Films in flexible Displays in Flexible Electronics 2004-Materials and Device Technology,” (Res. Soc. Symp. Proc. 814(8), Wasreudale, PA, 2004) insert paper number I8.5.1-I5.5.10.
D. Berner, H. Houili, W. Leo, and L. Zuppiroli, “Insights into OLED functioning through coordinated experimental measurements and numerical model simulations,” Phys. Status Solidi A, 202(1), 9-36 (2005).
F. Papadimitrakopoulos, X. M. Zhang, and K. A. Higginson, “Chemical and Morphology Stability of Aluminum Tris(8-Hydroxyquinoline)(Alq3): Effects in Light-Emitting Devices,” J. Sel. Top. Quantum Electron., 4(1), 49-57 (1998).
C. W. Tang, and S. A. VanSlyke, “Organic Electroluminescent Diodes”, Appl. Phys. Lett. 51 (12), 913-915 (1987).
C. D. Dimitrakopoulos, and D. J. Mascaro, “Organic thin-film transistors: A review of recent advances,” J. Res. & Dev., 45(1), 11-27 (2001).
C. D. Dimitrakopoulos, and D. J. Mascaro, “Organic Thin-Film Transistors: A Review of Recent Advances,” J. Rev. & Dev., 45(1), 11-27 (2001).
G. Horowitz, “Organic Field-Effect Transistors,” Adv. Mater., 10(5), 365-377 (1998).
T. N. Jackson, “Organic Semiconductors: Beyond Moore’s Law,” Nature Mater., 4(8), 581-582 (2005).
D. J. Gundlach, “Organic Electronic: Low-Power, Big Impact,” Nature Mater., 6(3), 173-174 (2007).
M. Berggren, D. Nilsson, and N. D. Robinson, “Organic Materials for Printed Electronics,” Nature Mater., 6(1), 3-5 (2007).
J. H. Schon, C. Kloc, E. Bucher, and B. Batlogg, “Single crystalline pentacene solar cells,” Synth. Met., 115(1-3), 177-180 (2000).
J. Puigdollers, C. Voz, A. Orpella, I. Martin, M. Vetter, and R. Alcubilla, “Pentacene thin-films obtained by thermal evaporation in high vacuum,” Thin Solid Films, 427(1-2), 367-370 (2003).
S. Yoo, B. Domercq, and B. Kippelen, “Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions,” Appl. Phys. Lett., 85(22), 5427-5429 (2004).
W. J. Potscavage, S. Yoo, B. Domercq, and B. Kippelen, “Encapsulation of pentacene/C60 organic solar cells with Al2O3 deposited by atomic layer deposition,” Appl. Phys. Lett., 90(25), 253511(1-3) (2007).
P. Peumans, S. Uchlda, and S. R. Forrest, “Efficient Bulk Heterojunction Photovoltaic Cell Using Small-Molecular-Weight Organic Thin Films,” Nature, 425(6954), 158-162 (2003).
D. Cheyns, H. Gommans, M. Odijk, J. Poortmans, and P. Heremans, “Stacked organic solar cells based on pentacene and C60,” Sol. Energy Mater. Sol. Cells, 91(5), 399-404 (2007).
W. B. Chen, H. F. Xiang, Z. X. Xu, and B. P. Yan, “Improving efficiency of organic photovoltaic cells with pentacene-doped CuPc layer,” Appl. Phys. Lett., 91(19), 191109(1-3) (2007).
F. Yi, Z. X. Guo, L. X. L. X. Zhang, J. Yu, and Q. Li, “Soluble Eggshell Membrane Protein: Preparation, Characterization and Biocompatibility,” Biomaterials, 25(19), 4591-4599 (2004).
W. T. Tsai, J. M. Yang, C. W. Lai, Y. H. Cheng, C. C. Lin, and C. W. Yeh, “Characterization and Adsorption Properties of Eggshells and Eggshell Membrane,” Bioresource Technology, 97(3), 488-493 (2006).
F. L. Mi, S. S. Shyu, Y. B. Wu, S. T. Lee, J. Y. Shyong, and R. N. Huang, “Fabrication and Characterization of a Sponge-Like Asymmetric Chitosan Membrane as A Wound Dressing,” Biomaterials, 22(2), 165-173 (2001).
P. Y. Tsenga, S. M. Releb, X. L. Sunb, and E. L. Chaikofa, “Fabrication and Characterization of Heparin Functionalized Membrane-Mimetic Assemblies,” Biomaterials, 27(12), 2627-2636 (2006).
-------------------------------------------------------
Chapter 2
A. K. Tiwary, “Modification of Crystal Habit and Its Role in Dosage Form Performance,” Drug Dev. Ind. Pharm., 27(7) 699-709 (2001).
D. L. Pavia, G. M. Lampman and G. S. Kriz, “Infrared Spectroscopy,” Chapter 2 of “Introduction to Spectroscopy,” Third Edition, (Brooks/COLE Thomson Learning, Mississippi, USA, 2001), pp. 13-24.
M. Cölle, J. Gmeiner, W. Milius, H. Hillebrecht and W. Brütting, ”Preparation and Characterization of Blue-Luminescent Tris(8-hydroxyquinoline)-aluminum (AlQ3),” Adv. Funct. Mater., 13(2), 108-112 (2003).
T. C. Kriss, V. M. Kriss, and M.Vesna, “History of the Operating Microscope: From Magnifying Glass to Microneurosurgery,” Neurosurgery, 42(4), 899-907 (1998).
http://www.cella.cn/jxck/02.ppt, “Methods and Techniques for Cell Biology”
D. A. Skoog, F. J. Holler, and T. A. Nieman, “Surface Characterization by Spectroscopy and Microscopy,” Chapter 21 of “Principles of Instrumental Analysis,” Fifth edition, (Thomson Learning, Mississippi, USA, 2001), pp. 549-553.
R. E. Reed-hill, “Analytical Methods,” Chapter 2 of “Physical Metallurgy Principles,” Third Edition, (PWS Publishing Company, Boston, USA, 1994), pp. 53-60.
J. E. Macur, J. Marti and S. C. Lui, “Microscopy,” Chapter 8 of “Matericals Characterization and Chemical Analysis,” Second edition, (J. P. Sibilia, Wiley-Vch, New York, USA, 1996), pp. 167-177.
E. V. Boldyerva, V. A. Drebushchak, I. E. Paukov, Y. A. Kovalevskaya, and T. N. Drebushchak, “DSC and Adiabatic Calorimetry Study of The Polymorphs of Paracetamol,” J. Them. Anal. Calor., 77(2), 607-623 (2004).
D. Giron, “Thermal Analysis, and Calorimetric Methods in The Characterisation of Polymorphs and Solvates,” Thermochim. Acta, 245(2), 1-59 (1995).
S. D. Clas, C. R. Dalton, and B. C. Hancock, “Differential Scanning Calorimetry: Applications in Drug Development,” Pharm. Sci. Technolo. Today, 2(8), 311-320 (1999).
B. R. Spong, C. P. Price, A. Jayasankar, A. J. Matzger, and N. R. Horndo, “General Principles of Pharmaceutical Solid Polymorphism a Supramolecular Perspective,” Adv. Drug Del. Rev., 56(3), 241-274 (2004).
D. A. Skoog, F. J. Holler, and T. A. Nieman, “Thermal Methods,” Chapter 31 of “Principles of Instrumental Analysis,” Fifth edition, (Thomson Learning, Mississippi, USA, 2001), pp. 798-801.
F. Rouessac, and A. Rouessac, “Infrared Apectroscopy,” Chapter 10 of “Chemical Analysis-Modern Instrumentation Methods and Techniques,” First edition, (John Willy & Sons, Chichester, England, 2001), pp. 170-173.
D. A. Skoog, F. J. Holler, and T. A. Nieman, “Principles of Instrumental Analysis,” Chapter 7 of “Components of Optical Instrument,” Fifth edition, (Thomson Learning, Mississippi, USA, 2001), pp. 182-183.
A. Bauer-Brandl, “Polymorphic Transitions of Cimetidine During Manufacture of Solid Dosage Forms,” Int. J. Pharm., 140(2), 195-206 (1996).
D. Zheng, H. Li, Y. Wang, and F. Zhamg, “Surface and Interface Analysis of Tris-(8-hydroxyquinoline) Aluminum and Induim-Tin-Oxide Using Atomoic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS),” Appl. Surf. Sci., 183(3), 165-172 (2001)
WWW.tut.fi/surfsci/xps_principle_5.jpg, “Electron Spectroscopy (XPS, AES, UPS).”
C. P. Cho, C. Y. Yu, and T. P. Perng, “Growth of AlQ3 Nanowires Directly From Amorphous Thin Film and Nanoparticles,” Nanotechnology, 17(21), 5506-5510 (2006)
. http://biosurface.memphis.edu/images/ConfigCoordDiag2.png, “Luminescence.”
N. S. Murthy and F. Reidinger, “X-ray Analysis,” Chapter 7 of “Matericals Characterization and Chemical Analysis,” (J. P. Sibilia, Wiley-Vch , New York, USA, 1996) pp. 143-149.
T. C. Huang, “Automatic X-ray Single Crystal Structure Analysis System for Small Molecule,” The Rigaku J., 21(2), 43-46 (2004).
Y. Zhang and D. J. W. Grant, “Similarity in Structures of Racemic and Enantiomeric Ibuprofen Sodium Dehydrates,” Acta Crystallogr. C, 61(9), m435-m438 (2005).
L. Kr. Hansen, G. L. Perlovich, and A. Bauer-Brandl, “Redetermination and H-atom Refinement of (S)-(+)-Ibuprofen,” Acta Crystallogr. Sect. E, 59(9), o1357-o1358 (2003).
L. Kr. Hansen, G. L. Perlovich, and A. Bauer-Brandl, “Redetermination and H-atom Refinement of (S)-(+)-Ibuprofen. corrigendum,” Acta Crystallogr. E, 62(7), e17-e18 (2006).
C. Ciacovazzo, H. L. Monaco, G. Artioli, D. viterbo, G. Ferraris, G. Gilli, G. Zanotti, and M. Catti, “Experimental Method in X-ray Andneutron Crystallography,” Chapter 5 of “Fundamentals of Crystallography,” second edition, (Oxford university press, New York, USA, 2002) p336 .
R. Potter, “An X-ray Single-Crystal Linear Diffractometer,” J. Sci. Instrum., 39(7), 379-380 (1962).
--------------------------------------------------
Chpater 3
H. Klauk, and T. N. Jackson, “Pentacene Organic Thin-Film Tran Sistors and ICs,” Solid State Technology, 43(3), 63-70 (2000).
C. D. Dimitrakopoulos, and D. J. Mascaro, “Organic Thin-Film Transistors: A Review of Recent Advances,” IBM J. RES. & DEV., 45(1), 11-27 (2001).
J. S. Jung, K. S. Cho, and J. Jang, “A Large Grain Pentacene by Vapor Phase Deposition,” J. Korean Phys. Soc., 42, 428-430 (2003).
C. L. Tao, X. H. Zhang, F. J. Zhang, Y. Y. Liu, and H. L. Zhang, “Solution Processed Pentacene Thin Films and Their Structural Properties,” Mater. Sci. Eng. B, 140(1-2), 1-4 (2007).
T. Kakudate, and N. Yoshimoto, “Polymorphism in Pentacene Thin Film on SiO2 Substrate,” Appl. Phys. Lett., 90(8), 081903 (2007).
J. H. Schon, S. Berg, Ch. Kloc, and B. Batlogg, “Ambipolar Pentacene Field-Effect Transistors and Inverters,” Science, 287(5455), 1022-1023 (2000).
C. W. Tang, and S. A. Vanslyke, “Organic Electroluminescent Diodes,” Appl. Phys. Lett., 51(12), 913-915 (1987).
R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D.D.C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in Conjugated Polymers,” Nature, 397(6715), 121-128 (1999).
P. Peumans, S. Uchlda, and S. R. Forrest, “Efficient Bulk Heterojunction Photovoltaic Cell Using Small-Molecular-Weight Organic Thin Films,” Nature, 425(6954), 158-162 (2003).
S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and C. Hummelen, “2.5% Efficient Organic Plastic Solar Cells,” Appl. Phys. Lett., 78(6), 841-843 (2001).
T. W. Kelley, P. F. Baude, C. Gerlach, D. E. Ender, D. Muyres, M. A. Haase, D. E. Vogel and S. D. Theiss, “Recent Progress in Organic Electronics: Materials, Devices and Processes,” Chem. Mater., 16(26), 4413-4422 (2004).
Y. D. Cho, G. T. K. Fey, H. M. Kao, “The Effect of Carbon Coating Thickness on the Capacity of LiFePO4/C Composite Cathodes,” J. Power Sources, 189(1), 256-262 (2009).
S. L. Cheng, S. W. Lu, S. L. Wong, C. C. Chang, and H. Chen, “Fabrication of 2D Ordered Arrays of Cobalt Silicide Nanodots on (0 0 1)Si Substrates,” J. Cryst. Growth, 300(2), 473-477 (2007).
A. Afzali, C. D. Dimitrakopoulos and T. L. Breen, “High-Performance, Solution-Processed Organic Thin Film Transistors from a Novel Pentacene Precursor,” J. Am. Chem. Soc., 124(30), 8812-8813 (2002).
Q. Miao, T.Q. Nguyen, T. Someya, G. B. Blanchet and C. Nuckolls, “Synthesis, Assembly, and Thin Film Transistors of Dihydrodiazapentazene: An Isostructural Motif for Pentacene,” J. Am. Chem. Soc., 125(34), 10284-10287 (2003).
D. Mathieu and P. Bougrat, “Model Equations for Estimating Sublimation Enthalpies of Organic Compounds,” Chem. Phys. Lett., 303(5-6) (1999).
A. V. Trask, W. D. S. Motherwell and W. Jones, “Solvent-Drop Grinding: Green Polymorph Control of Cocrystallisation,” Chem. Commun., 2004(7), 890-891 (2004).
L. K. Marjatta, K. Milja, R. Jukka, H. Mikko, and K. Juha, “Crystallization of Glycine with Ultrasound,” Int. J. Pharm., 320(1-2), 23-29 (2006).
T. Lee, C. S. Kuo, and Y. H. Chen, “Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening,” Pharm. Technol., 30(10), 72-92 (2006).
D. J. W. Grant, “Approaches to polymorphism screening,” chapter 11 in Polymorphism in Pharmaceutical Solids, edited by H. G. Brittain, ( Marcel Dekker, INC., New York, 1999) p. 289.
W. Beckman, W. Otto, and W. Budde, “Crystallisation of The Stable Polymorph of Hydroxytriendione: Seeding Process and Effects of Purity,” Org. Proc. Res. Dev., 5(4), 387-392 (2001).
R. Hilfiker, J. Berghausen, F. Blatter, A. Burkhard, S. M. D. Paul, B. Freiermuth, A. Geoffroy, U. Hofmeier, C. Marcolli, B. Siebenhaar, M. Szelagiewicz, A. Vit, and M. V. Raumer, “Polymorphism-Integrated Approach From High-Throughput Screening to Crystallization Optimization,” J. Therm. Anal. Calorim., 73(2), 429-440 (2003).
K. J. Crowley, G. Zografi, “Cryogenic Grinding of Indomethacin Polymorphs and Solvates: Assessment of Amorphous Phase Formation and Amorphous Phase Physical Stability,” J. Pharm. Sci., 91(2), 492-507 (2001).
G. Ruecroft, D. Hipkiss, T. Ly, N. Maxted, and P. W. Cains, “Sonocrystallization: The Use of Ultrasound for Improved Industrial Crystallization,” Org. Process Res. Dev., 9(6), 923-932 (2005).
W. T. Richards, and A. L. Loomis, “The Chemical Effects of High Frequency Sound Waves . I. A preliminary survey,” Am. Chem. Soc., 49(12), 3086-3100 (1927).
K. S. Suslick, D. A. Hammerton, and R. E. Cline, “The Sonochemical Hot Spot,” Am. Chem. Soc., 108(18), 5641-5642 (1986).
B. S. Hoyle, and S. P. Luke, “Ultrasound in The Process Industries,” Eng. Sci. Edu. J., 3(3), 119-122, (1994).
P. W. Cains, P. D. Martin, and C. J. Price, “The Use of Ultrasound in Industrial Chemical Synthesis and Crystallization. 1. Applications to Synthetic Chemistry,” Org. Process Res. Dev., 2(1), 34-48 (1998).
R. Chow, R. Blindt, R. Chivers, and M. Povey, “The Sonocrystallization of Ice in Sucrose Solutions: Primary and Secondary Nucleation,” Ultrasonics, 41(8), 595-604 (2003).
A. Paradkar, M. Maheshwari, R. Kamble, I, Grimsey, and P. York, “Design and Evaluation of Celecoxib Porous Particles Using Melt Sonocrystallization,” Pharmacol. Res., 23(6), 1395-1400 (2006).
P. R. Gogate, R. K. Tayal, and A. B. Pandit, “Cavitation: a Technology on the Horizon,” Curr. Sci., 91(1), 35-46 (2006).
L. K. Marjatta, M. Kargalainen, J. Rantanen, M. Huhtanen, and J. Kallas, “Crystallization of Glycine with Ultrasound,” Int. J. Pharm., 320(1-2), 23-29 (2006).
R. Sivabalan, G. M. Gore, U. R. Nair, A. Saikia, S. Venugopalan, and B. R. Gandhe, “Study on Ultrasound Assisted Precipitation of CL-20 and Its Effect on Morphology and Sensitivity,” J. Hazard. Mater., A139(2), 199-203 (2007).
M. N. Patil, G. M. Gore, A. B. Pandit, “Ultrasonically Controlled Particle Size Distribution of Explosives: a Safe Method,” Ultrason. Sonochem., 15(3), 177-187 (2008).
Y. Song, W. Chen, and X. Chen, “Ultrasonic Field Induced Chiral Symmetry Breaking of NaClO3 Crystallization,” Cryst. Growth Des., 8(5), 1448-1450 (2008).
A. Patist, and D. Bates, “Ultrasonic Innovations in The Food Industry: From The Laboratory to Commercial Production,” Innovative Food Science and Emerging Technologies, 9(2), 147-154 (2008).
A. Llinas and J. M. Goodman, “Polymorph Control: Past, Present and Future,” Drug Discovery Today, 13(5-6), 198-210 (2008).
L. J. McCausland, P. W. Cains, and P. D. Martin, “Use The Power of Sonocrystallization for Improved Properties,” Chem. Eng. Prog., 97(7), 56-61 (2001).
G. Ruecroft, D. Hipkiss, T. Ly, N. Maxted, and P. W. Cains, “Sonocrystallization: the Use of Ultrasound for Improved Industrial Crystallization,” Org. Process Res. Dev., 9(6), 923-932 (2005).
T. Lee, and M. S. Lin, “Sublimation Point Depression of Tris(8-hydroxyquinoline)aluminum(III) (AlQ3) by Crystal Engineering,” Cryst. Growth Des., 7(9), 1803-1810 (2007).
http://www.sonochemistry.info/Fig%203-5.JPG, “The Sonochemistry Center at Coventry University.”
R. B. Campbell, J. Moneta Robertson, and J. Trotter, “The Crystal and Molecular Structure of Pentacene,” Acta Crys., 14(7), 705-711 (1961).
W. J. Hehre, “Ab Initio Molecular Orbital Theory,” Acc. Chem. Res., 9(11), 399-406 (1976).
J. Szczepanski, C. Wehlburg, and M. Vala, “Vibrational and Electronic Spectra of Matrix-Isolated Pentacene Cations and Anions,” Chem. Phys. Lett., 232(2), 221-228 (1995).
C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, “Molecular Beam Deposited Thin Films of Pentacene for Organic Field Effect Transistor Applications,” J. Appl. Phys., 80(4), 2501-2508 (1996).
D. Holmes, S. Kumaraswamy, A. J. Matzger, and K. Peter C. Vollhardt, “On The Nature of Nonplanarity in the [N]Phenylenes,” Chem. Eur. J., 5(11), 3399-3412 (1999).
C. C. Mattheus, A. B. Dros, J. Baas, G. T. Oostergetel, A. Meetsma, J. L. de Bore, and Thomas T. M. Palstra, “Identification of Polymorphs of Pentacene,” Synth. Met., 138(3), 475-481 (2003).
I. P .M. Bouchoms, W. A. Schoonveld, J. Vrijmoeth, T. M. Klapwijk, “Morphology Identification of The Thin Film Phases of Vacuum Evaporated Pentacene on SiO2 Substrates,” Synth. Met., 104(3), 175-178 (1999).
D. J. Gundlach, T. N. Jackson, D. G. Schlom, and S. F. Nelson, “Solvent-Induced Phase Transition in Thermally Evaporated Pentacene Films,” J. Appl. Phys., 74(22), 3302-3304 (1999).
L. Farina, A. Brillante, R. G. D. Valle, E. Venuti, M. Amboage, and K. Syassen, “Pressure-Induced Phase Transition in Pentacene,” Chem. Phys. Lett., 375(5-6), 490-494 (2003).
L. Farina, K. Syassen, A. Brillante, R. G. D. Valle, E. Venuti, and N. Karl, “Pentacene at High Pressure,” High Pressure Research, 23(3), 349-354 (2003).
R. G. D. Valle, A. Brillante, E. Venuti, L. Farina, A. Girlando, and M. Masino, “Exploring The Polymorphism of Crystalline Pentacene,” Org. Electron., 5(1-3), 1-6 (2004).
T. Siegrist, C. Besnard, S. Haas, M. Schiltz, P. Pattison, D. Chernyshov, B. Batlogg, and C. Kloc, “A polymorph Lost and Found: The High Temperature Crystal Structure of Pentacene,” Adv. Mater., 19(16), 2079-2083 (2007).
C. C. Mattheus, G. A. de Wijs, R. A. de Groot, and T. T. M. Palstra, “Modeling The Polymorphism of Pentacene,” J. Am. Chem. Soc., 125(20), 6323-6330 (2003).
M. D. Halls and H. B. Schlegel, “Molecular Orbital Study of The First Excited State of The OLED Material Tris(8-hydroxyquinoline)aluminum(III),” Chem. Mater., 13(8), 2632-2640 (2001).
N. B. Colthup, L. H. Daly, and S. E. Wiberley, ”Introduction to Infrared and Raman Spectroscopy,” Third Edition (Academic press Inc, New York, USA, 1990), pp. 282, 347, and 349.
D. L. Pavia, G. M. Lampman, and G. S. Kriz, “Introduction to Spectroscopy,” Third Edition (Brooks/COLE Thomson Learning, New York, USA, 2001), p.41.
H. Li, F. Zhang, Y. Wang, and D. Zheng, “Synthesis and Characterization of Tris(8-hydroxyquinoline)aluminum,” Mater. Sci. Eng., B 100(1), 40-46 (2003)
Chun-Lan Tao, Xu-Hui Zhang, Fu-Jia Zhang, Yi-Yang Liu, and Hao-Li Zhang, “Solution Processed Pentacene Thin Films and Their Structural Properties,” Mater. Sci. Eng. B, 140(1-2), 1-4 (2007).
A. Maliakal, K. Raghavachari, H. Katz, E. Chandross and T. Siegrist, “Photochemical Stability of Pentacene and a Substituted Pentacene in Solution and in Thin Films,” Chem. Mater., 16(26), 4980-4986 (2004).
M. N. Patil, G. M. Gore, and A. B. Pandit, “Ultrasonically Controlled Particle Size Distribution of Explosive: A Safe Method,” Ultrason. Sonochem., 15(3), 177-187 (2008).
K. Srinivasan, S. Anbukumar, and P. Ramasamy, “Mutual Solubility and Metastable Zone Width of NH4H2PO4-KH2PO4 Mixed Solutions and Growth of Mixed Crystals,” J. Cryst. Growth, 151(1), 226-229 (1995).
T. L. Threlfall, “Analysis of Organic Polymorphs,” Analyst., 120(10), 2435-2460 (1995).
T. L. Threlfall, “Crystallisation of Polymorphs: Thermodynamic Insight Into The Role of Solvent,” Org. Process Res. Dev., 4(5), 384-390 (2000).
C. C. Mattheus, A. B. Dros, J. Baas, A. Meetsma, J. L. de Boer, and T. M. Palstra, “Polymorphism in Pentacene,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun., C57(7), 939-941 (2001).
Z. J. Li, W. H. Ojala, D. J. W. Grant, “Molecular Modeling Study of Chiral Drug Crystals: Lattice Energy Calculations,” J. Pharm. Sci., 90(10), 1523-1539 (2001).
http://en.wikipedia.org/wiki/surface energy, “Wikipedia.”
M. Dogan, M. S. Eroglu and H. Y. Erbil, “Surface Free-Energy Analysis of Energetic Poly(glycidyl azide) Networks Prepared by Different Reactive Systems,” J. Appl. Polym. Sci., 74(12), 2848-2855 (1999).
---------------------------------------------------------
Chapter 4
C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% Internal Phosphorescence Efficiency in An Organic Light-Emitting Device,” J. Appl. Phys., 90(10), 5048-5051 (2001).
K. A. Osipov, V. N. Pavlovskii, E. V. Lutsenko, A. L. Gurskii, G. P. Yablonskii, S. Hartmann, A. Janssen, H. H. Johannes, R. Caspary, W. Kowalsky, N. Meyer, M. Gersdorff, M. Heuken, P. V. Gemmern, C. Zimmermann, F. Jessen, H. Kalisch, and R. H. Jansen, “Influence of Thermal Annealing on Photoluminescence and Structural Properties of N,N′-diphenyl-N,N′-bis(1-naphthylphenyl)-1,1′-biphenyl-4,4′-diamine (α-NPD) Organic Thin Films,” Thin Solid Films, 515(11), 4834-4837 (2007).
T. Murata, Y. Ohno, S. Kishimoto, and T. Mizutani, “Photoluminescence Intensity Enhancement by Electron Beam Irradiation Into GaAs Quantum Wells,” Solid-State Electron., 43(1), 147-152 (1999).
Y. F. Xu, H. J. Zhang, Q. Chen, H. Y. Li, S. N. Bao, and P. M. He, “Thickness Dependent Behavior of Photoluminescence of Tris(8-hydroxyquinoline) Aluminum Film,” Chin. J. Chem. Phys., 19(2), 152-154 (2006).
D. S. Qin, D. C. Li, Y. Wang, J. D. Zhang, Z. Y. Xie, G. Wang, L. X. Wang, and D. H. Yan, “Effects of The Morphologies and Structures of Light-Emitting Layers on The Performance of Organic Electroluminescent Devices,” Appl. Phys. Lett., 78(9), 1225-1227 (2001).
M. Mlinari, H. Rinnert, and M. Vergnat, “Visible Photoluminescence in Amorphous SiOx Thin Films Prepared by Silicon Evaporation Under a Molecular Oxygen Atmosphere,” Appl. Phys. Lett., 82(22), 3877-3879 (2003).
Y. Li, G. W. Meng, and L. D. Zhang, “Ordered Semiconductor ZnO Nanowire Arrays and Their Photoluminescence Properties,” Appl. Phys. Lett., 76(15), 2011-2013 (2000).
Y. Guo, Z. B. Wang, Y. P. Cui, J. Y. Zhang, and Y. H. Ye, “Tris (8-Hydroxyquinoline) Aluminum Nanostructure Film and Its Fluorescence Properties,” Appl. Phys. Lett., 25(12), 4428-4430 (2008).
C. P. Cho, C. Y. Yu, and T. P. Perng, “Growth of AlQ3 Nanowires Directly from Amorphous Thin Film and Nanoparticles,” Nanotechnol., 17(21), 5506-5510 (2006).
H. Rinnert, M. Vergnat, and G. Marchal, “Intense Visible Photoluminescence in Amorphous SiOx and SiOx: H Films Prepared by Evaporation,” Appl. Phys. Lett., 72(24), 3157-3159 (1998).
J. Wan, Z. Wang, X. Chen, L. Mu, and Y. Qian, “Shape-Tailored Photoluminescent Intensity of Red Phosphor Y2O3: Eu3+,” J. Cryst. Growth, 284(3-4), 538-543 (2005).
L. S. Liao, X. M. Bao, Z. F. Yang, and N. B. Min, “Intense Blue Emission from Porous β-SiC Formed on C+-Implanted Silicon,” Appl. Phys. Lett., 66(18), 2382-2384 (1995).
S. S. Chang, S. O. Yoon, H. J. Park, and A. Sakai, “Luminescence Properties of Zn Nanowires Prepared by Electrochemical Etching,” Mater. Lett., 53(6), 432-436 (2002).
G. Gigli, F. D. Sala, M. Lomascolo, M. Anni, G. Barbarella, A. D. Carlo, P. Lugli, and R. Cingolani, “Photoluminescence Efficiency of Substituted Quanterthiophene Crystals,” Phys. Rev. Lett., 86(1), 167-170 (2001).
R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in Conjugated Polymers,” Nature, 397(6715), 121-128 (1999).
C. A. Orme, A. Noy, A. Wierzbicki, M. T. McBride, M. Grantham, H. H. Teng, P. M. Dove, and J. J. DeYoreo, “Formation of Chiral Morphologies Through Selective Binding of Amino Acids to Calcite Surface Steps,” Nature, 411(6839), 775-779 (2001).
P. K. Ajikumar, R. Lakshminarayanan, B. T. Ong, S. Valiyaveettil, and R. M. Kini, “Eggshell Matrix Protein Mimics: Designer Peptides to Induce the Nucleation of Calcite Crystal Aggregates in Solution,” Biomacromol., 4(5), 1321-1326 (2003).
D. Yang, L. Qi, and J. Ma, “Eggshell Membrane Templating of Hierarchically Ordered Macroporous Networks Composed of TiO2 Tubes,” Adv. Mater., 14(21), 1543-1546 (2002).
W Zhang, D. Zhang, T. Fan, J. Gu, J. Ding, and H. Wang, “Novel Photoanode Structure Templated from Butterfly Wing Scales,” Chem. Mater., 21(1), 33-40 (2009).
F. Yi, J. Yu, Z. X. Guo, L. X. Zhang, and Q. Li, “Natural Bioactive Material: A Preparation of Soluble Eggshell Membrane Protein,” Macromol. Biosci., 3(5), 234-237 (2003).
T. Nakano, N. I. Ikawa, and L. Ozimek, “Chemical Composition of Chicken Eggshell and Shell Membranes,” Poultry Sci., 82(3), 510-514 (2003).
W. T. Tsai, J. M. Yang, C. W. Lai, Y. H. Cheng, C. C. Lin, and C. W. Yeh, “Characterization and Adsorption Properties of Eggshells and Eggshell Membrane,” Bioresour. Technol., 97(3), 488-493 (2006).
J. Brake, T. J. Walsh, C. E. Benton, J. N. Petitte, R. Meijerhof, and G. Penalva, “Egg Handling and Storage,” Poultry Sci., 76(1), 144-151 (1997).
D. A. Skoog, F. J. Holler, and T. A. Nieman, “Surface Characterization by Spectroscopy and Microscopy,” Chapter 21 of “Principles of Instrumental Analysis,” Fifth edition, (Thomson Learning, Mississippi, USA, 2001), pp. 549-553.
R. E. Reed-hill, “Analytical Methods,” Chapter 2 of “Physical Metallurgy Principles,” Third Edition, (J. Plant, PWS Publishing Company, Boston, USA, 1994), pp.44-50.
N. B. Colthup, L. H. Daly, and S. E. Wiberley, “Carbonyl Compunds,” Chapter 9 of “Introduction to Infrared and Raman Spectroscopy,” 3rd Ed., (Academic Press, USA, 1991), pp. 289-325.
S. S. Zumdahl, “Chemical Principles,” Chapter 22 of “Hydrocarbon Derivatives,” 4th Ed., (Houghton Mifflin Company, Boston, New York, USA, 2002), pp. 991-1047.
J. Z. Lu, I. I. Negulescu, and Q. Wu, “Maleated Wood-Fiber/ High-Density-Polyethylene Composites: Coupling Mechanisms and Interfacial Characterization,” Compos. Interfaces, 12(1-2), 125-140 (2005).
C. Perruchot, J. F. Watts, C. Lowe, R. G. White, and P. J. Cumpson, “Angle-Resolved XPS Characterization of Urea Formaldehyde-Epoxy Systems,” Surf. Interface Anal., 33(10-11), 869-878 (2002).
H. E. Szwarckopf, B. Rousseau, C. Herold, and P. Lagrange, “Sodium-Oxygen Graphite Intercalation Compound: XPS, UPS and STM Study,” Mol. Cryst. Liq. Cryst., 310(1), 231-236 (1998).
C. Malitesta, I. Losito, L. Sabbatini, and P. G. Zambonin, “New Findings on Polypyrrole Chemical Structure by XPS Coupled to Chemical Derivatization Labelling,” J. Electron. Spectrosc. Relat. Phenom., 76(29), 629-634 (1995).
O. A. Louchev, “Formation Mechanism of Pentagonal Defects and Bamboo-Like Structures in Carbon Nanotube Growth Mediated by Surface Diffusion,” Phys. Stat. Sol., 193(3), 585-596 (2002).
Y. K. Kwon, Y. H. Lee, S. G. Kim, P. Jund, D. Tománek, and R. E. Smalley, “Morphology and Stability of Growing Multiwall Carbon Nanotubes,” Phys. Rev. Lett., 79(11), 2065-2068 (1997).
T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert, and R. E. Smalley, “Self-Assembly of Tubular Fullerenes,” J. Phys. Chem., 99(27), 10694-10697 (1995).
L. S. Hung, and C. H. Chen, “Recent Progress of Molecular Organic Electroluminescent Materials and Devices,” Mater. Sci. Eng., R, 39(5-6), 143-222 (2002).
J. Shinar, “Organic Light-Emitting Devices,” Chapter 3 of “Chemical Degradation and Physical Aging of Aluminum(III) 8-Hydroxyquinoline: Implications for Organic Light-Emitting Dioded and Materials,” (Springer, New York, USA, 2003), pp. 87-88.
-------------------------------------------------------
指導教授 李度(Tu Lee) 審核日期 2009-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明