博碩士論文 963204009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.233.220.21
姓名 邱政一(Cheng-yi Chiu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 界面聚合之奈米過濾膜的抗氯性研究
(The chlorine-resistant properties of nanofiltration membranes by interfacial polymerization)
相關論文
★ 老鼠免疫球蛋白IgG2a之位向性固定法—Fc區域的親和性配體設計★ 量子點表面改質與動物細胞標定
★ 以螢光光譜觀測蛋白質吸附於疏水表面後之構型變化與吸附位向★ 利用雙功能吸附基材進行蛋白復性-蛋白吸附狀態對復性的影響
★ 以螢光光譜探討Indolicidin及其類似物與微脂粒之交互作用★ 負電性奈米過濾膜之排鹽特性
★ 金奈米粒子親水化及與DNA一對一鍵結之探討★ 以雙重電性表面改質方式製作抗生物吸附之超過濾與奈米過濾膜
★ 以表面修飾之材料控制間葉幹細胞貼附及對其往軟骨分化之影響★ 金奈米粒子與DNA一對一鍵結及其在檢測單一核苷酸變異的應用
★ 以三聚氰氯為單體的抗氯型奈米過濾膜★ 鹼性胜肽抗生素indolicidin及其類似物之溶血作用機制探討
★ 蛋白質特定方向固定化-以α-amylase為例★ Indolicidin及其類似物與微脂粒交互作用之熱力學研究
★ 位向性固定化葡萄糖氧化酶之新方法★ Indolicidin 及其類似物與微脂粒交互作用之焓測 量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 目前市售的商業化奈米過濾膜大多為醯氯與對苯胺使用界面聚合方式製成之聚醯胺薄膜,其結構對水溶液中的活性氯非常敏感,為了探討與聚合單體對薄膜抗氯性之影響,本研究利用界面聚合的方式製作奈米過濾膜,在水相單體的部分,選用二乙基三胺(DETA)取代對苯胺,以測試苯環結構的存在與否對薄膜氯的容忍性之影響。油相單體則選用三聚氰氯(CC)與1,3,5 均三氯甲苯(TMC)做比較,以測試具不同結構與反應官能基的單體對薄膜氯的容忍性之影響。最後藉由CC與DETA此二結構不帶有苯環的單體,聚合出不具醯胺結構分離層,試圖製作出對氯具有抵抗能力的奈米過濾膜。
研究結果發現,CC type 薄膜與TMC type 薄膜的水通透量分別為1.42 ± 0.27 (kg/m2 h atm)、2.06 ± 0.24 (kg/m2 h atm),對MgSO4阻擋率分別為79.21 ± 3.93 (%)、87.01 ± 4.68 (%)。TMC type、CC type薄膜對四種鹽類阻擋順序皆為R(Na2SO4) > R(MgSO4) > R(MgCl2) > R(NaCl),屬於負電性膜。經四級胺化後膜材的正電性提升,但其阻擋順序顯示薄膜仍為負電性薄膜。
由曝氯時間達96小時,氯濃度為500 ppm的實驗結果可發現,CC type薄膜對氯的容忍度遠大於TMC type薄膜,可見當分離層結構不具有醯胺鍵結與苯環結構,其對氯的容忍性可大幅度提高。經四級胺化薄膜,薄膜對氯的容忍性下降,並不如預期的能提升抗氯性效果。與商業膜比較,由鹽類阻擋率的變化可以發現,CC type薄膜對氯的容忍度優於Filmtec所製作的NF-90,通流量變化較小也證明CC type薄膜結構較為穩定。
另外以PVDF做為基材膜的實驗中,當丙烯酸接枝於薄膜表面時,其丙烯酸溶劑的選擇將對聚合結果造成重大的影響。使用水與異丙醇作為溶劑,由FTIR鑑定結果可以發現,以水作為溶劑所改質的PVDF膜,其丙烯酸特徵峰最為明顯,代表其接枝程度大於以異丙醇作為溶劑。但是經過使用CC與DETA行界面聚合10分鐘後,薄膜對MgSO4阻擋表現卻是以異丙醇當溶劑為最佳,阻擋率可達到85.07 ± 4.12 (%)。但隨著過濾次數增加,膜過濾表現會隨之下降,再現性差,因此並未做抗氯性測試。
摘要(英) Most commercial available nanofiltration membranes were composed by dichloride and phenyl diamine by using interfacial polymerization. However, Polyamides membranes show bad chlorine-tolerance. In order to evaluate the effect of the polymerization monomer for the chlorine tolerance of the membrane, the interfacial polymerization method was used to manufacture the thin-film-composite membrane. The phenyl diamine was replaced with diethylenetriamine to avoid the aromatic structure for increase the chlorine-tolerance property. Cyanuric chloride (CC) and Trimesoyl chloride (TMC) were used to
The experiment results show that the water permeability of CC type and TMC type membrane was 1.42 ± 0.27 (kg/m2 h atm) and 2.06 ± 0.24 (kg/m2 h atm), respectively. The results also show that the rejective rate of these two types of membranes to MgSO4 were 79.21 ± 3.93 (%) and 87.01 ± 4.68 (%).We found that the order of rejective rate in these two membranes was the same, and the order was R (Na2SO4)> R (MgSO4)> R (MgCl2)> R (NaCl). This order of salt rejection shows that both the membrane were negatively charged . After improving the positive charge of the membranes by quaternization, we could find that both the membranes were still negatively charged by observing the order of salt rejection .
According to the chlorine-tolerance study, the CC type membrane shows excellent chlorine-tolerance property than TMC type membrane after the membrane was exposure in aqueous sodium hypochlorite (500 ppm active Cl) for 96 hours. The results indicated that both the existence of polyamide structure and quartnizing the membranes would reduce the chlorine-tolerance property. In addition, comparing the two types of membranes with the commercial membranes, CC type membrane has better chlorine-tolerance than NF-90.
In addition to PVDF membrane experiment, it is very important for the choice of solvent in polymerization condition. The FTIR spectrum was employed to characterize the nanofiltration layer, when use water and isopropanol (IPA) as the solvent. The result shows that, the acrylic acid grafting degree of the membrane by water was higher then the IPA one. But, the membrane which acrylic acid grafted by IPA has better sal rejection then water one. The salt rejection of MgSO4 was 85.07 ± 4.12 (%). The PVDF NF membranes were not tested for chlorine-tolerance propertys because the poor reproducibility of the membrane.
關鍵字(中) ★ 奈米過濾膜
★ 三聚氰氯
★ 界面聚合法
★ 抗氯性
關鍵字(英) ★ cyanuric chloride
★ interfacial polymerization
★ chlorine-resistant
★ nanofiltration membrane
論文目次 中文摘要 i
Abstract ii
總目錄 iii
一、 緒論 1
1-1 研究背景 1
1-2 研究動機及目的 2
二、 文獻回顧 4
2-1 奈米過濾膜簡介 4
2-1-1 膜分離與奈米過濾膜發展史 4
2-1-2 奈米過濾機制原理 5
2-1-3 奈米過濾膜製備方法 7
2-1-4 奈米過濾膜的應用 12
2-2 抗氯型奈米過濾膜 15
2-2-1 氯的消毒原理 15
2-2-2 氯對於芳香族聚醯胺膜之影響 16
2-2-3 抗氯型RO膜與奈米過濾膜的發展 20
2-3 三聚氰氯(Cyanuric chloride)的特性 24
三、 實驗藥品、儀器設備與流程 28
3-1 實驗藥品 28
3-2 實驗儀器設備 30
3-3 實驗方法流程 31
3-3-1 基材膜製備 31
3-3-2 基材膜表面改質 32
3-3-3 Polyamide NF薄膜製備 32
3-3-4 Cyanuric chloride NF薄膜製備 33
3-3-5 四級胺化處理 34
3-3-6 實驗架構 35
3-4 薄膜性質測試 36
3-4-1 紅外線光譜儀鑑定膜表面性質 36
3-4-2 掃描式電子顯微鏡鑑定薄膜型態 36
3-4-3 膜表面親疏水性量測 37
3-4-4 薄膜流線電位量測原理與系統 37
3-4-5 秤重法接枝度量測 38
3-5 薄膜過濾實驗 39
3-5-1 中性分子過濾實驗 39
3-5-2 單鹽過濾實驗 40
3-6 薄膜抗氯性測試 40
四、 結果與討論 41
4-1 製備PAN奈米過濾膜 42
4-1-1 PAN膜的水解對過濾表現影響 42
4-1-2 水相單體溶液pH值對奈米過濾膜過濾表現影響 43
4-2 不同有機相單體對奈米過濾膜結構之影響 45
4-2-1 紅外線光譜( FTIR-ATR )表面鑑定 45
4-2-2 表面與截面型態結構變化 46
4-3 奈米過濾膜孔洞量測 49
4-4 不同有機相單體對奈米過濾膜單鹽阻擋表現之影響 50
4-5 四級胺化對奈米過濾膜之影響 52
4-6 抗氯性質鑑定 53
4-6-1 不同有機相單體對奈米過濾膜抗氯性影響 54
4-6-2 四級胺化對於膜的抗氯性質影響 57
4-6-3 與商業化奈米過濾膜抗氯性比較 59
4-7 製備PVDF奈米過濾膜 62
4-7-1 丙烯酸溶劑的選擇對其接枝量之影響 62
4-7-2 以水與異丙醇作為丙烯酸溶劑對奈米過濾膜過濾表現影響 63
五、 結論 66
六、 未來工作與展望 67
七、 參考文獻 68
八、 附錄 74
參考文獻 [1] Wang, Z. G., Wan, L. S., and Xu, Z. K., “Surface engineerings of polyacrylonitrile-based asymmetric membranes towards biomedical applications: An overview,” Journal of Membrane Science, vol. 304, no. 1-2, pp. 8-23, Nov 1, 2007.
[2] Bryjak, M., Hodge, H., and Dach, B., “Modification of porous polyacrylonitrile membrane,” Angewandte Makromolekulare Chemie, vol. 260, pp. 25-29, Nov, 1998.
[3] Abia, L., Armesto, X. L., Canle, M. et al., “Oxidation of aliphatic amines by aqueous chlorine,” Tetrahedron, vol. 54, no. 3-4, pp. 521-530, Jan 15, 1998.
[4] 張浩勤, 萬亞珍, 劉金盾 et al., “荷電納濾膜,” 化學通報, vol. 68, pp. 1-6, 2005.
[5] 童國倫, and 阮若屈, “最小心眼的薄膜-逆滲透膜與奈米濾膜,” 科學發展, vol. 429, pp. 20-24, 2008.
[6] Glater, J., “The early history of reverse osmosis membrane development,” Desalination, vol. 117, no. 1-3, pp. 297-309, Sep 20, 1998.
[7] Baker, R. W., Membrane Technology and Applications, 2nd Edition ed.: John Wiley & Sons, Ltd, 2004.
[8] 童國倫, 呂坤宗, 李雨霖 et al., “奈米過濾的發展及其應用,” 化工, vol. 51, no. 3, pp. 26-36, 2004.
[9] Fu, S., Yu, Y. X., Gao, G. H. et al., “Theoretical Investigation on the Separation Characteristics of Electrolyte Solutions with the Nanofiltration Membranes (Ⅰ):Single Electrolyte Solutions,” ACTA CHIMICA SINICA, vol. 64, no. 22, pp. 2241-2246, 2006.
[10] Fu, S., Yu, Y. X., and Wang, X. L., “Theoretical Investigation on the Separation Characteristics of Electrolyte Solutions with the Nanofiltration Membranes (Ⅱ): Mixed Electrolyte Solutions,” ACTA CHIMICA SINICA, vol. 65, no. 10, pp. 923-929, 2007.
[11] Bowen, W. R., and Welfoot, J. S., “Modelling the performance of membrane nanofiltration--critical assessment and model development,” Chemical Engineering Science, vol. 57, no. 7, pp. 1121-1137, 2002.
[12] Ahmad, A. L., Ooi, B. S., Mohammad, A. W. et al., “Composite nanofiltration polyamide membrane: A study on the diamine ratio and its performance evaluation,” Industrial & Engineering Chemistry Research, vol. 43, no. 25, pp. 8074-8082, Dec 8, 2004.
[13] Tang, B., Xu, T., and Wu, P., “Preparation of thin film composite membrane by interfacial polymerization method,” Progress In Chemistry, vol. 19, no. 9, pp. 1428-1435, 2007.
[14] Vandezande, P., Gevers, L. E. M., and Vankelecom, I. F. J., “Solvent resistant nanofiltration: separating on a molecular level,” Chemical Society Reviews, vol. 37, no. 2, pp. 365-405, 2008.
[15] Du, R. H., and Zhao, J. S., “Properties of poly (N,N-dimethylaminoethyl methacrylate)/polysulfone positively charged composite nanofiltration membrane,” Journal of Membrane Science, vol. 239, no. 2, pp. 183-188, Aug 15, 2004.
[16] Du, R. H., and Zhao, J. S., “Positively charged composite nanofiltration membrane prepared by poly(N,N-dimethylaminoethyl methacrylate)/polysulfone,” Journal of Applied Polymer Science, vol. 91, no. 4, pp. 2721-2728, Feb 15, 2004.
[17] Miao, J., Chen, G. H., and Gao, C. J., “A novel kind of amphoteric composite nanofiltration membrane prepared from sulfated chitosan (SCS),” Desalination, vol. 181, no. 1-3, pp. 173-183, Sep 5, 2005.
[18] Luo, M., Yu, S. C., and Gao, C. J., “Research progress of the application of the nanofiltration to water treatment,” Industrial Water Treatment, vol. 28, no. 1, pp. 13-17, 2008.
[19] Cyna, B., Chagneau, G., Bablon, G. et al., “Two years of nanofiltration at the Mery-sur-Oise plant, France,” Desalination, vol. 147, no. 1-3, pp. 69-75, Sep 10, 2002.
[20] Mir, J., Morato, J., and Ribas, F., “Resistance to chlorine of freshwater bacterial strains,” Journal of Applied Microbiology, vol. 82, no. 1, pp. 7-18, Jan, 1997.
[21] Virto, R., Manas, P., Alvarez, I. et al., “Membrane damage and microbial inactivation by chlorine in the absence and presence of a chlorine-demanding substrate,” Applied and Environmental Microbiology, vol. 71, no. 9, pp. 5022-5028, Sep, 2005.
[22] Sawaya, K., Kaneko, N., Fukushi, K. et al., “Behaviors of physiologically active bacteria in water environment and chlorine disinfection,” Water Science and Technology, vol. 58, no. 7, pp. 1343-1348, 2008.
[23] Young, S. B., and Setlow, P., “Mechanisms of killing of Bacillus subtilis spores by hypochlorite and chlorine dioxide,” Journal of Applied Microbiology, vol. 95, no. 1, pp. 54-67, 2003.
[24] Lowell, J. R., Friesen, D. T., McCray, S. B. et al., “Model compounds as predictors of chlorine sensitivity of interfacial polymer reverse osmosis membranes,” Proceedings of the 1987 International Congress on Membranes and Membrane Processes, 1987.
[25] Glater, J., Hong, S. K., and Elimelech, M., “The Search for a Chlorine-Resistant Reverse-Osmosis Membrane,” Desalination, vol. 95, no. 3, pp. 325-345, Jul, 1994.
[26] Takeyuki Kawaguchi, and Hiroki Tamura, “Chlorine-resistant membrane for reverse osmosis. I. Correlation between chemical structures and chlorine resistance of polyamides,” Journal of Applied Polymer Science, vol. 29, no. 11, pp. 3359-3367, 1984.
[27] Armesto, X. L., Canle, M., Garcia, M. V. et al., “Aqueous chemistry of N-halo-compounds,” Chemical Society Reviews, vol. 27, no. 6, pp. 453-460, Nov, 1998.
[28] Dam, N., and Ogilby, P. R., “On the mechanism of polyamide degradation in chlorinated water,” Helvetica Chimica Acta, vol. 84, no. 9, pp. 2540-2549, 2001.
[29] Soice, N. P., Maladono, A. C., Takigawa, D. Y. et al., “Oxidative degradation of polyamide reverse osmosis membranes: Studies of molecular model compounds and selected membranes,” Journal of Applied Polymer Science, vol. 90, no. 5, pp. 1173-1184, Oct 31, 2003.
[30] Soice, N. P., Greenberg, A. R., Krantz, W. B. et al., “Studies of oxidative degradation in polyamide RO membrane barrier layers using pendant drop mechanical analysis,” Journal of Membrane Science, vol. 243, no. 1-2, pp. 345-355, Nov 1, 2004.
[31] Wu, S. Y., Zheng, C., and Zheng, G. D., “Truly chlorine-resistant polyamide reverse osmosis composite membrane,” Journal of Applied Polymer Science, vol. 61, no. 7, pp. 1147-1148, Aug 15, 1996.
[32] Il Kim, H., and Kim, S. S., “Plasma treatment of polypropylene and polysulfone supports for thin film composite reverse osmosis membrane,” Journal of Membrane Science, vol. 286, no. 1-2, pp. 193-201, Dec 15, 2006.
[33] Gabelich, C. J., Frankin, J. C., Gerringer, F. W. et al., “Enhanced oxidation of polyamide membranes using monochloramine and ferrous iron,” Journal of Membrane Science, vol. 258, no. 1-2, pp. 64-70, Aug 1, 2005.
[34] Tessaro, I. C., da Silva, J. B. A., and Wada, K., “Investigation of some aspects related to the degradation of polyamide membranes: aqueous chlorine oxidation catalyzed by aluminum and sodium laurel sulfate oxidation during cleaning,” Desalination, vol. 181, no. 1-3, pp. 275-282, Sep 5, 2005.
[35] da Silva, M. K., Tessaro, I. C., and Wada, K., “Investigation of oxidative degradation of polyamide reverse osmosis membranes by monochloramine solutions,” Journal of Membrane Science, vol. 282, no. 1-2, pp. 375-382, Oct 5, 2006.
[36] Kwon, Y. N., and Leckie, J. O., “Hypochlorite degradation of crosslinked polyamide membranes I. Changes in chemical/morphological properties,” Journal of Membrane Science, vol. 283, no. 1-2, pp. 21-26, Oct 20, 2006.
[37] Kwon, Y. N., and Leckie, J. O., “Hypochlorite degradation of crosslinked polyamide membranes - II. Changes in hydrogen bonding behavior and performance,” Journal of Membrane Science, vol. 282, no. 1-2, pp. 456-464, Oct 5, 2006.
[38] Kwon, Y. N., Tang, C. Y., and Leckie, J. O., “Change of membrane performance due to chlorination of crosslinked polyamide membranes,” Journal of Applied Polymer Science, vol. 102, no. 6, pp. 5895-5902, Dec 15, 2006.
[39] Liu, M. H., Wu, D. H., Yu, S. C. et al., “Influence of the polyacyl chloride structure on the reverse osmosis performance, surface properties and chlorine stability of the thin-film composite polyamide membranes,” Journal of Membrane Science, vol. 326, no. 1, pp. 205-214, Jan 5, 2009.
[40] Light, W. G., Chu, H. C., and Tran, C. N., “Reverse osmosis TFC magnum elements for chlorinated/dechlorinated feedwater processing,” Desalination, vol. 64, pp. 411-421 1987.
[41] Abdel-Jawad, M., Ebrahim, S., Al-Tabtabaei, M. et al., “Advanced technologies for municipal wastewater purification: technical and economic assessment,” Desalination, vol. 124, no. 1-3, pp. 251-261, Nov 1, 1999.
[42] Konagaya, S., Kuzumoto, H., and Watanabe, O., “New reverse osmosis membrane materials with higher resistance to chlorine,” Journal of Applied Polymer Science, vol. 75, no. 11, pp. 1357-1364, Mar 14, 2000.
[43] Konagaya, S., and Tokai, M., “Synthesis of ternary copolyamides from aromatic diamine (m-phenylenediamine, diaminodiphenylsulfone), aromatic diamine with carboxyl or sulfonic group (3,5-diaminobenzoic acid, 2,4-diaminobenzenesulfonic acid), and iso- or terephthaloyl chloride,” Journal of Applied Polymer Science, vol. 76, no. 6, pp. 913-920, May 9, 2000.
[44] Konagaya, S., and Watanabe, O., “Influence of chemical structure of isophthaloyl dichloride and aliphatic, cycloaliphatic, and aromatic diamine compound polyamides on their chlorine resistance,” Journal of Applied Polymer Science, vol. 76, no. 2, pp. 201-207, Apr 11, 2000.
[45] Konagaya, S., Nita, K., Matsui, Y. et al., “New chlorine-resistant polyamide reverse osmosis membrane with hollow fiber configuration,” Journal of Applied Polymer Science, vol. 79, no. 3, pp. 517-527, Jan 18, 2001.
[46] Shintani, T., Matsuyama, H., and Kurata, N., “Development of a chlorine-resistant polyamide reverse osmosis membrane,” Desalination, vol. 207, no. 1-3, pp. 340-348, Mar 10, 2007.
[47] Shintani, T., Matsuyama, H., Kurata, N. et al., “Development of a chlorine-resistant polyamide nanofiltration membrane and its field-test results,” Journal of Applied Polymer Science, vol. 106, no. 6, pp. 4174-4179, Dec 15, 2007.
[48] McGrath, J. E., Park, H. B., and Freeman, B. D., Chlorine resistant desalination membranes based on directly sulfonated poly(arylene ether sulfone) copolymers, United States Patent US 20070163951A1, 2007.
[49] Park, H. B., Freeman, B. D., Zhang, Z. B. et al., “Highly chlorine-tolerant polymers for desalination,” Angewandte Chemie-International Edition, vol. 47, no. 32, pp. 6019-6024, 2008.
[50] Paul, M., Park, H. B., Freeman, B. D. et al., “Synthesis and crosslinking of partially disulfonated poly(arylene ether sulfone) random copolymers as candidates for chlorine resistant reverse osmosis membranes,” Polymer, vol. 49, no. 9, pp. 2243-2252, Apr 29, 2008.
[51] Blotny, G., “Recent applications of 2,4,6-trichloro-1,3,5-triazine and its derivatives in organic synthesis,” Tetrahedron, vol. 62, no. 41, pp. 9507-9522, Oct 9, 2006.
[52] Yan, Z., Xue, W. L., Zeng, Z. X. et al., “Kinetics of cyanuric chloride hydrolysis in aqueous solution,” Industrial & Engineering Chemistry Research, vol. 47, no. 15, pp. 5318-5322, Aug 6, 2008.
[53] 馬會民, 蘇美紅, and 梁樹權, “ 三嗪類光學探針與標記分析 ” Chinese Journal of Analytical Chemistry, vol. 31, no. 10, pp. 1256-1260, 2003.
[54] Desai, N. P., and Hubbell, J. A., “Biological responses to polyethylene oxide modified polyethylene terephthalate surfaces,” Journal of Biomedical Materials Research, vol. 25, no. 7, pp. 829 - 843, 1991.
[55] Attafuah, E., and Hall, G. M., “Preparation and evaluation of a low fouling ultrafiltration membrane made from a biopolymer,” Journal of Membrane Science, vol. 108, no. 3, pp. 207-217, Dec 29, 1995.
[56] Bendas, G., Krause, A., Bakowsky, U. et al., “Targetability of novel immunoliposomes prepared by a new antibody conjugation technique,” International Journal of Pharmaceutics, vol. 181, no. 1, pp. 79-93, Apr 20, 1999.
[57] Borah, J., Mahapatra, S. S., Saikia, D. et al., “Physical, thermal, dielectric and chemical properties of a hyperbranched polyether and its linear analog,” Polymer Degradation and Stability, vol. 91, no. 12, pp. 2911-2916, Dec, 2006.
[58] Li, C., Yang, X. G., Yang, B. J. et al., “Synthesis and characterization of nitrogen-rich graphitic carbon nitride,” Materials Chemistry and Physics, vol. 103, no. 2-3, pp. 427-432, Jun 15, 2007.
[59] Ohe, T., Yoshimura, Y., and Abe, I., “Reaction of nylon 6 fiber with chitosan using cyanuric chloride,” Sen-I Gakkaishi, vol. 63, no. 7, pp. 165-171, Jul, 2007.
[60] Ohe, T., Yoshimura, Y., Abe, I. et al., “Chemical introduction of sugars onto PET fabrics using diamine and cyanuric chloride,” Textile Research Journal, vol. 77, no. 3, pp. 131-137, Mar, 2007.
[61] Kim, I. C., Yun, H. G., and Lee, K. H., “Preparation of asymmetric polyacrylonitrile membrane with small pore size by phase inversion and post-treatment process,” Journal of Membrane Science, vol. 199, no. 1-2, pp. 75-84, Apr 30, 2002.
[62] Lohokare, H. R., Kumbharkar, S. C., Bhole, Y. S. et al., “Surface modification of polyacrylonitrile based ultrafiltration membrane,” Journal of Applied Polymer Science, vol. 101, no. 6, pp. 4378-4385, Sep 15, 2006.
[63] 許倚哲, “負電性奈米過濾膜之排鹽特性,” 化學工程與材料工程學系, 國立中央大學, 2007.
[64] Afonso, M. D., Hagmeyer, G., and Gimbel, R., “Streaming potential measurements to assess the variation of nanofiltration membranes surface charge with the concentration of salt solutions,” Separation and Purification Technology, vol. 22-3, no. 1-3, pp. 529-541, Mar 1, 2001.
[65] Tanninen, J., Manttari, M., and Nystrom, M., “Effect of electrolyte strength on acid separation with NF membranes,” Journal of Membrane Science, vol. 294, no. 1-2, pp. 207-212, May 15, 2007.
[66] Credali, L., Baruzzi, G., and Guidotti, M., Reverse osmosis anisotropic membranes based on polypiperazine amides, United States Patent US4129559, 1987.
[67] Kim, T. U., Drewes, J. E., Summers, R. S. et al., “Solute transport model for trace organic neutral and charged compounds through nanofiltration and reverse osmosis membranes,” Water Research, vol. 41, no. 17, pp. 3977-3988, Sep, 2007.
[68] Park, N., Lee, S., Yoon, S. R. et al., “Foulants analyses for NF membranes with different feed waters: coagulation/sedimentation and sand filtration treated waters,” Desalination, vol. 202, no. 1-3, pp. 231-238, Jan 5, 2007.
[69] Jayarani, M. M., and Kulkarni, S. S., “Thin-film composite poly(esteramide)-based membranes,” Desalination, vol. 130, no. 1, pp. 17-30, Sep 1, 2000.
[70] 楊智堯, “以三聚氰氯為單體的抗氯型奈米過濾膜,” 化學工程與材料工程學系, 國立中央大學, 2008.
[71] Chang, Y., Shih, Y. J., Ruaan, R. C. et al., “Preparation of poly(vinylidene fluoride) microfiltration membrane with uniform surface-copolymerized poly(ethylene glycol) methacrylate and improvement of blood compatibility,” Journal of Membrane Science, vol. 309, no. 1-2, pp. 165-174, Feb 15, 2008.
[72] Tu, C. Y., Liu, Y. L., Lee, K. R. et al., “Surface grafting polymerization and modification on poly (tetrafluoroethylene) films by means of ozone treatment,” Polymer, vol. 46, no. 18, pp. 6976-6985, Aug 23, 2005.
指導教授 阮若屈(Ruoh-chyu Ruaan) 審核日期 2009-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明