博碩士論文 963204016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:54.226.102.115
姓名 賴星魁(Shin-Quei Lai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 CuO/CeO2/MnOx/Al2O3觸媒於富氫環境下對CO選擇性氧化反應研究
(Selective oxidation of CO in excess hydrogen over CuO/CeO2/MnOx/Al2O3 catalysts)
相關論文
★ Ag/Mg2AlO-hydrotalcite觸媒於α,β-不飽和醛選擇性氫化反應之研究★ 貴金屬對CuO/ZnO/Al2O3觸媒於甲醇部分氧化/蒸汽重組複合式反應的影響
★ Au觸媒於硝基苯氫化反應及硝基苯乙烯選擇性氫化反應之研究★ 苯於CuO/Ce0.9-xZr0.1MnxO2觸媒 之全氧化反應研究
★ 化學還原法製備Ag/Mg2AlO觸媒之研究-α,β-不飽和醛選擇性氫化反應★ 苯於Ag/Ce0.9-xZr0.1MnxO2觸媒之全氧化反應研究
★ 甲醇蒸汽重組產氫觸媒之設計★ CH4+CO2於ZrO2/SiO2與La2O3/Al2O3負載式鉑觸媒之重組反應研究
★ 以化學還原/共沉澱法製備Cu/ZrO2/metal oxide觸煤應用於CO2+H2合成甲醇反應之研究★ CuB超細合金觸媒之製備與催化性質探討
★ 負載式CoB非晶態合金觸媒製備與催化性質探討★ CuB系列觸媒於甲酸甲酯氫解及一段式甲醇合成法之研究
★ Ni/Mg-Al-O觸媒於CH4/CO2重組反應之研究★ 負載式CuB合金觸媒製備與催化性質探討
★ CH4/CO2於CeO2氧化物與CexZr1-xO2共氧化物負載式Pt觸媒之重組反應研究★ 奈米NiB、CoB非晶態合金觸媒於檸檬醛選擇氫化反應之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以共沉澱法製得Ce1-xMnxO2擔體,再以含浸法製備10% CuO/Ce1-xMnxO2觸媒,藉以了解Mnn+引入CeO2對PROX反應的影響。另採工業觸媒常用的共沉澱法製備CuO/CeO2/MnOx/Al2O3觸媒,探討各成分比例對PROX反應的影響與作用。PROX反應於進料氣體比CO/O/H2/He = 1/1/50/48及質流比F/W = 10,000 mlh-1gcat-1下進行,並採用BET、TPR、Raman、XPS、Auger與脈衝式CO吸附等分析方法探討觸媒之物理特性與表面性質。
10% CuO/Ce1-xMnxO2觸媒中,Mnn+引入可進入CeO2晶格中形成Ce-Mn-O固溶物,增加擔體redox特性,引入量可達到x = 0.3而不使觸媒活性降低。共沉澱法可製得高CuO負載量且分散良好的CuO/CeO2/ MnOx/Al2O3觸媒,最適的煅燒溫度為650°C 。CuO/CeO2觸媒之CuO負載量可高達30%,而不影響T100 (90~95°C)。MnOx引入CuO/CeO2中,亦可形成固溶物,MnOx的引入不僅可協助CeO2的redox特性,MnOx本身亦扮演與CuO交互作用的協同角色,引入量可高達30%,而T100略升為95~100°C。Al2O3的引入雖可增強觸媒物理性質,但引入量不宜超過10%。CuO/CeO2/MnOx/Al2O3觸媒活性取決於CuO與CeO2是否良好接觸,各成分的引入量過多會發生聚集分離,降低CuO與CeO2接觸機會,而不利於反應,最理想的組成比例為30/40/20/10。CuO/CeO2/MnOx/Al2O3 (30/40/20/10)觸媒具有媲美CuO/CeO2與CuO/Ce1-xMnxO2觸媒的活性與選擇性,且可處理高容量的反應氣體,進料中引入CO2 與H2O雖會使觸媒活性與選擇率下降,但觸媒仍具有相當良好的穩定性,是具實用性的理想PROX反應之觸媒。
摘要(英) In order to realize the effect of PROX reaction when Mnn+ was incorporated into CeO2, Ce1-xMnxO2 mixed oxides were prepared as supports of 10% CuO/Ce1-xMnxO2 catalysts which prepared by impregnation method. Then CuO/CeO2/MnOx/Al2O3 catalysts were prepared by co-precipitation method for use in the PROX reaction. The effects of CuO/CeO2, MnOx/CeO2, and MnOx/Al2O3 on the selective oxidation of CO were examined and the roles of CeO2, MnOx and Al2O3 were discussed. The feed H2/CO/O2/He (50/1/1/48) were diverted to the reactor at the flow rate of 30 ml/min (F/W = 10,000 mlh-1gcat-1). The physical and surface properties of catalysts were determined by BET, XRD, TPR, XPS and pulsing adsorption of CO.
For Ce1-xMnxO2, Mnn+ incorporated into the CeO2 lattice to form Ce-Mn-O solid solution and enhanced redox properties of supports for CuO/Ce1-xMnxO2 catalysts. The incorporated amount of Mnn+ could be achieved x = 0.3 without weakened activity. It could obtain high CuO loading and fine dispersion CuO/CeO2/MnOx/Al2O3 catalysts by co-precipitation method when the optimum calcinations temperature was 650°C.
CuO loading amount could be as high as 30%, and the temperature (T100) for complete conversion was about 90~95oC. Introducing MnOx into CuO/CeO2 could also form Ce-Mn-O solid solution. MnOx would not only increase the mobility of lattice oxygen but also played a synergistic role interacting with CuO. Therefore, The selective oxidation of CO was not weakened as part of CeO2 replaced by MnOx less than 30%, while slightly increased T100 for 95~100°C.
Incorporating Al2O3 weakened the activity. Nevertheless, an appropriate amount of Al2O3 (10%) was needed for the physical properties of the catalysts. CuO/CeO2/MnOx/Al2O3 (30/40/20/10) catalyst exhibited a good activity and a good selectivity that was comparable with CuO/CeO2 and 10% CuO/Ce1-xMnxO2, and can handle high-capacity gas. The activity and selectivity of catalysts decrease in the presence of CO2 and H2O, but it still showed good stability. It is a practical and ideal catalyst for PROX reaction.
關鍵字(中) ★ 一氧化碳選擇性氧化
★ 氧化錳
★ 銅鈰觸媒
關鍵字(英) ★ MnOx
★ CeO2.PROX
★ CuO
論文目次 中文摘要 i
英文摘要 ii
誌 謝 iv
目 錄 vi
圖目錄 ix
表目錄 xii
第一章 緒論 1
第二章 文獻回顧 3
2-1 PROX反應之觸媒 4
2-1-1 Pt觸媒 4
2-1-2 Ru、Rh、Pd、Ir觸媒 7
2-1-3 Au觸媒 9
2-1-4 CoOx觸媒與CuO觸媒 12
2-2 CeO2與CuO/CeO2觸媒特性 14
2-2-1 CeO2 14
2-2-2 CuO/CeO2觸媒於PROX反應之表現 17
2-2-3 CuO/CeO2觸媒作用機制 19
2-3 CuO/ Ce1-xMexO2觸媒 22
2-3-1 Ce1-xZrxO2共氧化物與CuO/Ce1-xZrxO2觸媒 22
2-3-2 Ce1-xSnxO2共氧化物與CuO/Ce1-xSnxO2觸媒 24
2-3-3 其它促進劑 25
2-4 MnOx、CuO-MnOx、CeO2-MnOx氧化物 27
2-4-1 MnOx 27
2-4-2 CuO-MnOx spinel結構氧化物 28
2-4-3 CeO2-MnOx共氧化物 29
第三章 實驗方法與設備 34
3-1觸媒製備 34
3-1-1 CuO/Ce1-xMnxO2 觸媒之製備 34
3-1-2 CuO/CeO2/MnOx/Al2O3觸媒之製備 35
3-2 觸媒性質鑑定 36
3-2-1 比表面積測定(BET) 36
3-2-2 X-射線繞射分析(XRD) 37
3-2-3 X-射線光電子光譜(XPS) 37
3-2-4 氫-程溫還原(H2-TPR) 38
3-2-5 脈衝式CO吸附 39
3-3富氫下CO選擇性氧化反應研究 40
3-4 CO2與H2O影響實驗 41
3-5 轉化率與選擇率之計算 41
3-6 實驗藥品與氣體 44
第四章 結果與討論 45
4-1 CuO/Ce1-xMnxO2觸媒 45
4-1-1 Ce1-xMnxO2擔體XRD結構分析 45
4-1-2 Ce1-xMnxO2擔體結構之拉曼(Raman)分析 46
4-1-3 Ce1-xMnxO2擔體氫程溫還原(TPR) 49
4-1-4 觸媒活性測試與討論 49
4-2 CuO/CeO2/MnOx/Al2O3觸媒 54
4-2-1 煅燒溫度的影響 54
4-2-2 CuO/CeO2比例的影響 58
4-2-2 CeO2/MnOx比例對CuO/CeO2/MnOx觸媒的影響 70
4-2-3 MnOx/Al2O3比例對CuO/CeO2/MnOx/Al2O3觸媒的影響 81
4-3改變F/W對CuO/CeO2/MnOx/Al2O3(30/40/20/10)觸媒的影響 92
4-4 CO2與H2O對PROX反應之影響 95
4-5 200小時反應穩定性測試 95
第五章 結論 99
總 結 101
參考文獻 102
參考文獻 [1] 鄭耀宗,「燃料電池與電動車輛」,科學發展月刊,367期,20~25頁,2003年七月
[2] H.P. Dhar, L.G. Christner, A.K. Kush, “On the effect of the Fe2+/Fe3+ redox copleo oxidation of carbon in hot H3PO4”, J. Electrochem. Soc. 134 (12) (1987) 3021.
[3] K.I. Sotowa, Y. Hasegawa, K. Kusakabe, S. Morooka, “Enhancement of CO oxidation by use of H2-selective membranes impregnated with noble-metal catalysts”, Int. J. Hydrogen Energy 27 (3) (2002) 339.
[4] A. Kulprathipanja, G.O. Alptekin, J.L. Falconer, J.D. Way, “Effects of water gas shift gases on Pd−Cu alloy membrane surface morphology and separation properties”, Ind. Eng. Chem. Res. 43 (15) (2004) 4188.
[5] N. Carlo, A.P. Hamelinck, C. Faaij, “Future prospects for production of methanol and hydrogen from biomass”, J. Power Sources 111 (1) (2002) 1.
[6] W.S. Epling, P.K. Cheekatamarla, A.M. Lane, “Reaction and surface characterization studies of titania-supported Co, Pt and Co/Pt catalysts for the selective oxidation of CO in H2-containing streams”, Chem. Eng. J. 93 (2003) 61.
[7] M. Echigo, T. Tabata, “ A study of CO removal on an activated Ru catalyst for polymer electrolyte fuel cell applications”, Appl. Catal. A: Gen. 251 (2003) 157.
[8] 陳翰全,「CuO/Ce1-xZrxO2觸媒於富氫中CO的選擇性氧化反應研究」,中央大學碩士論文(2004).
[9] 黃振瑋,「CuO/Ce1-xSnxO2觸媒於富氫中CO的選擇性氧化反應研究」,中央大學碩士論文(2005).
[10] Y. Chang, J.G. McCarty, “Novel oxygen storage components for advanced catalysts for emission control in natural gas fueled vehicles”, Catal. Today 30 (1996) 163.
[11] E.R. Stobbe, B.A. de Boer, J.W. Geus, “The reduction and oxidation behaviour of manganese oxides”, Catal. Today 47 (1999) 161.
[12] E. Ferna´ndez-Lo´pez, V. Sa´nchez-Escribano, J.M. Gallardo-Amores, C. Resini, G. Busca, “Structural and morphological characterization of Mn–Zr mixed oxides prepared by a sol–gel method”, Solid State Sci. 4 (2002) 951.
[13] 彭均婷,「CuO/Ce1-xMnxO2觸媒於富氫中CO的選擇性氧化反應研究」,中央大學碩士論文(2008).
[14] H. C. Lee, D. H. Kim, “Kinetics of CO and H2 oxidation over CuO-CeO2 catalyst in H2 mixtures with CO2 and H2O”, Catal. Today 132 (2008) 109.
[15] M. Brown, A. Green, US Patent 3,088,919.
[16] A. Manasilp, E. Gulari, “Selective CO oxidation over Pt/alumina catalysts for fuel cell applications”, Appl. Catal. B: Env. 37 (2002) 17.
[17] M.J. Kahlich, H.A. Gasteiger, R.J. Behm, “Kinetics of the Selective CO oxidation in H2-rich gas on Pt/Al2O3”, J. Catal. 171 (1997) 93.
[18] C. Pedrero, T. Waku, E. Iglesia, “Oxidation of CO in H2–CO mixtures catalyzed by platinum: alkali effects on rates and selectivity”, J. Catal. 233 (2005) 242.
[19] Y. Minemura, S. Ito, T. Miyao, S. Naito, K. Tomishige, K. Kunimori, “ Preferential CO oxidation promoted by the presence of H2 over K–Pt/Al2O3”, Chem. Commun. (2005) 1429.
[20] M. Kuriyama, H. Tanaka, S. Ito, T. Kubota, T. Miyao, S. Naito, K. Tomishige, K. Kunimori, “Promoting mechanism of potassium in preferential CO oxidation on Pt/Al2O3”, J. Catal. 252 (2007) 39.
[21] M. Shou, K. Tanaka, K. Yoshioka, Y. Morooka, S. Nagano, “ New catalyst for selective oxidation of CO in excess H2 designing of the active catalyst having different optimum temperature”, Catal. Today 90(2004)255.
[22] X. Liu, O. Korotkikh, R. Farrauto, “Selective catalytic oxidation of CO in H2: structural study of Fe oxide-promoted Pt/alumina catalyst”, Appl. Catal. A: Gen. 226 (2002) 293.
[23] I.H. Son, A.M. Lane, “Promotion of Pt/γ-Al2O3 by Ce for preferential oxidation of CO in H2”, Catal. Lett. 76 (2001) 151.
[24] I.H. Son, “Study of Ce-Pt/γ-Al2O3 for the selective oxidation of CO in H2 for application to PEFCs: Effect of gases”, J. Power Sources 159 (2006) 1266.
[25] E. Šmšek, Š. Ö zkara, A.E. Aksoylu, Z.I. Ö nsan, “Preferential CO oxidation over activated carbon supported catalysts in H2-rich gas streams containing CO2 and H2O”, Appl. Catal. A: Gen. 316 (2007) 169.
[26] J.L. Ayastuy, M.P. Gonza’ lez-Marcos, J.R. Gonza’ lez-Velasco, M.A. Gutie’ rrez-Ortiz, “MnOx/Pt/Al2O3 catalysts for CO oxidation in H2-rich streams”, Appl. Catal. B: Environ. 70 (2007) 532.
[27] D.J. Suh, C. Kwak, J.-H. Kim, S.M. Kwon, T.-J. Park, “Removal of carbon monoxide from hydrogen-rich fuels by selective low-temperature oxidation over base metal added platinum catalysts”, J. Power Sources 142 (2005) 70.
[28] M.M. Schubert, M.J. Kahlich, G. Feldmeyer, M. Huttner, S. Hackenberg, H.A. Gasteiger, R.J. Behm, Phys. Chem. Chem. Phys. 3 (2001) 1123.
[29] G. Uysal, A.N. Akın, Z.I˙. Önsan, R. Yıldırıma, “Preferential CO oxidation over Pt–SnO2/Al2O3 in hydrogen rich streams containing CO2 and H2O (CO removal from H2 with PROX)”, Catal. Lett. 111 (2006) 173.
[30] T. İnce, G. Uysal, A. Nilgun, R. Yildirim, “Selective low-temperature CO oxidation over Pt-Co-Ce/Al2O3 in hydrogen-rich streams”, Appl. Catal. A: Gen. 292 (2005) 171.
[31] S.Y. Chin, O.S. Alexeev, “Structure and reactivity of Pt–Ru/SiO2 catalysts for the preferential oxidation of CO under excess H2”, Amiridis MD 243(2006) J. Catal. 329.
[32] E.D. Park, D. Lee, H.C. Lee, “Recent progress in selective CO removal in a H2-rich stream”, Catal. Today 139 (2009) 280.
[33] I. Rosso, C. Galletti, G. Saracco, E. Garrone, V. Specchia, “Development of A zeolites-supported noble-metal catalysts for CO preferential oxidation: H2 gas purification for fuel cell”, Appl. Catal. B: Environ. 48 (2004) 195.
[34] H. Igarashi, H. Uchida, M. Suzuki, Y. Sasaki, M. Watanabe, “Removal of carbon monoxide from hydrogen-rich fuels by selective oxidation over platinum catalyst supported on zeolite”, Appl. Catal. A: Gen. 159 (1997) 159.
[35] J.L. Ayastuy, A. Gil-Rodriguez, M.P. Gonzalez-Marcos, M.A. Gutierrez-Ortiz,“Effect of process variables on Pt/CeO2 catalyst behaviour for the PROX reaction”, Int. J. Hydrogen Energy 31 (2006) 2231.
[36] J.L. Ayastuy, M.P. Gonzalez-Marcos, A. Gil-Rodrıguez, J.R. Gonzalez-Velasco, M.A.Gutierrez-Ortiz, “Selective CO oxidation over CexZr1-xO2-supported Pt catalysts”, Catal. Today 116 (2006) 391.
[37] S.H. Oh, R.M. Sinkevitch, “Carbon monoxide removal from hydrogen-rich fuel cell feedstreams by selective catalytic oxidation”, J. Catal. 142 (1993) 254.
[38] Y.H. Kim , E.D. Park, H.C. Lee, D. Lee, K.H. Lee, “Preferential CO oxidation over supported noble metal catalysts”, Catal. Today xxx(2009)xxx.
[39] Y.F. Han, M.J. Kahlich, M. Kinne, R.J. Behm, “CO removal from realistic methanol reformate via preferential oxidation— performance of a Rh/MgO catalyst and comparison to Ru/γ-Al2O3 and Pt/γ-Al2O3”, Appl. Catal B: Environ. 50 (2004) 209.
[40] S.Y. Chin, O.S. Alexeev, M.D. Amiridis, “Preferential oxidation of CO under excess H2 conditions over Ru catalysts” Appl. Catal. A: Gen. 286 (2005) 157.
[41] P. Panagiotopoulou, D.I. Kondarides, X.E. Verykios, “Selective methanation of CO over supported Ru catalysts”, Applied Catal. B: Environ. 88 (2009) 470.
[42] G. Avgouropoulos, T. Ioannides, Ch. Papadopoulou, J. Batistac, “A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO–CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen”, Catal. Today 75 (2002) 157.
[43] H. Tanaka, S.I. Ito, S. Kameoka, K. Tomishige, K. Kunimori, “Promoting effect of potassium in selective oxidation of CO in hydrogen-rich stream on Rh catalysts”, Catal. Commum. 4 (2003) 1.
[44] H. Tanaka, S.I. Ito, S. Kameoka, K. Tomishige, K. Kunimori, “Catalytic performance of K-promoted Rh/USY catalysts in preferential oxidation of CO in rich hydrogen”, Appl. Catal. A: Gen. 250 (2003) 255.
[45] H. Tanaka, S.I. Ito, S. Kameoka, Y. Minemura, K. Tomishige, K. Kunimori, “Selective CO oxidation in H2-rich gas over K2CO3-promoted Rh/SiO2 catalysts: effects of preparation method”, Appl. Catal. A: Gen. 273 (2004) 295.
[46] O. Pozdnyakova, D. Teschner, A. Wootsch, J. Krönert, B. Steinhauer, H. Sauer, L. Toth, F.C. Jentoft, A. Knop-Gericke, Z. Paal, R. Schlögl, “Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part II: Oxidation states and surface species on Pd/CeO2 under reaction conditions, suggested reaction mechanism”, J. Catal. 237(2006) 17.
[47] Y. Huang, A. Wang, L. Li, X. Wang, D. Su, T. Zhang, “Ir-in-ceria”: A highly selective catalyst for preferential CO oxidation”, J. Catal. 255 (2008) 144.
[48] M. Haruta, N. Yamada, T. Kobayashi, S. lijima, “Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide”, J. Catal. 115 (1989) 301.
[49] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, B. Delmon, “Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4”, J. Catal. 144 (1993) 175.
[50] H.S. Oh, J.H. Yang, C.K. Costello, Y. Wang, S.R. Bare, H.H. Kung, M.C. Kung, “Selective Catalytic Oxidation of CO: Effect of Chloride on Supported Au Catalysts”, J. Catal. 210(2002) 375.
[51] A. Luengnaruemitchai, S. Osuwan, E. Gulari, “Selective catalytic oxidation of CO in the presence of H2 over gold catalyst”, Int. J. Hydrogen Energ. 29 (2004) 429.
[52] N.A. Hodge, C.J. Kiely, R. Whyman, M.R.H. Siddiqui, G.J. Hutchings, Q.A. Pankhurst, F.E. Wangner, R.R. Rajaram, S.E. Golunski, “Microstructural comparison of calcined and uncalcined gold/iron-oxide catalysts for low-temperature CO oxidation”, Catal. Today 72 (2002) 133.
[53] W. Deng, J. D. Jesus, H. Saltsburg, M. Flytzani-Stephanopoulos, “Low-content gold-ceria catalysts for the water-gas shift and preferential CO oxidation reactions”, Appl. Catal. A: Gen. 291 (2005) 126.
[54] R.J.H. Grisel, B.E. Nieuwenhuys, “Selective oxidation of CO, over supported Au catalysts”, J. Catal. 199 (2001) 48.
[55] R.J.H. Grisel, C.J. Weststrate, A. Goossens, M.W.J. Craje, A.M. van der Kraan, B.E. Nieuwenhuys, “Oxidation of CO over Au/MOx/Al2O3 multi-component catalysts in a hydrogen-rich environment”, Catal. Today 72 (2002) 123.
[56] B. Schumacher, Y. Denkwitz, V. Plzak, M. Kinne, R.J. Behm, “Kinetics, mechanism, and the influence of H2 on the CO oxidation reaction on a Au/TiO2 catalyst”, J. Catal. 224 (2004) 449.
[57] 張清土,「Au/MgxAlO-hydrotalcite觸媒之製備與催化性質探討」,中央大學博士論文(2008).
[58] Z. Zhao, MM. Yung, US. Ozkan, “Effect of support on the preferential oxidation of CO over cobalt catalysts”, Catal. Commun 9 (2008)1465.
[59] Q. Guo and Y. Liu, “Preferential oxidation of CO in H2 over Co3O4-CeO2 catalysts”, React. Kinet. Catal. Lett. 92 (2007)1925.
[60] F. Mariño, C. Descorme, D. Duprez, “Supported base metal catalysts for the preferential oxidation of carbon monoxide in the presence of excess hydrogen (PROX)”, Appl Catal B: Environ. 58 (2005) 175.
[61] Y. Ono, M. Shibata, T. Inui, “Non-linear change in oxidation state of Cu during Co oxidation on supported copper catalysts measured by the forced-oscillating reaction method”, J. Mol. Catal. A: Chem. 153 (2000) 53.
[62] W.P. Dow, T.J. Huang, “Effects of oxygen vacancy of yttria-stabilized zirconia support on carbon monoxide Oxidation over copper catalyst”, J. Catal. 147 (1994) 322.
[63] 林聖欽,「以觸媒在富氫下行一氧化碳選擇性氧化」,清大碩士論文(2000).
[64] Y. Liu, T. Hayakawa, K. Suzuki, S. Hamakawa, T. Tsunoda, T. Ishii, M. Kumagai, “Highly active copper/ceria catalysts for steam reforming of methanol”, Appl. Catal. A: Gen. 223 (2002) 137.
[65] M. Pijolat, M. Prin, M. Soustelle, “Thermal stability of doped ceria:experiment and modeling”, J. Chem. Soc. Faraday Trans. 91 (1995) 3941.
[66] E. Aneggi, J. Liorca, M. Boaro, A. Trovarelli, “Surface-structure sensitivity of CO oxidation over polycrystalline ceria powders”, J. Catal. 234 (2005) 88.
[67] K. Zhou, X. Wang, X. Sun, Q. Peng, Y. Li, “Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes”, J. Catal. 229 (2005) 206.
[68] H.C. Yao, Y.F. Yu Yao, “Ceria in automotive exhaust catalysts : I. Oxygen storage”, J. Catal. 86 (1984) 254.
[69] S.J. Scgmieg, D.N. Belton, “Effect of hydrothermal aging on oxygen storage/release and activity in a commercial automotive catalyst”, Appl. Catal. B: Environ. 6 (1995) 127.
[70] K.C. Taylor, “Nitric oxide catalysis in automotive exhaust systems”, Catal. Rev. Sci. Eng. 35 (1993) 457.
[71] Cl. Morterra, V. Bolis, G. Magnacca, “Surface characterization of modified aluminas. Part 4.—Surface hydration and Lewis acidity of CeO2–Al2O3 systems”, J. Chem. Soc. Faraday Trans. 92 (1996) 1991.
[72] S. Damyanova, C.A. Perez, M. Schmal, J.M.C. Bueno, “Characterization of ceria-coated alumina carrier”, Appl. Catal. A: Gen. 234 (2002) 271.
[73] M.H. Yao, R.J. Baird, F.W. Kunz, T.E. Hoost, “An XRD and TEM investigation of the structure of alumina-supported ceria–zirconia”, J. Catal. 166 (1997) 67.
[74] G. Avgouropoulos, T. Ioannides, H.K. Matralis, J. Batista, S. Hocevar , “A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO–CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen”, Catal. Today 75 (2002) 157.
[75] W. Liu, M.F. Stephanopoulos, “Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts : I. catalyst composition and activity”, J. Catal. 153 (1995) 304.
[76] W. Liu, M.F. Stephanopoulos, “Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts : II. catalyst characterization and reaction”, J. Catal. 153 (1995) 317.
[77] M.F. Luo, Y.J. Zhong, X.X. Yuan, X.M. Zheng, “TPR and TPD studies of CuO/CeO2 catalysts for low temperature CO oxidation”, Appl. Catal. 162 (1997) 121.
[78] Z. Liu, R. Zhou, X. Zheng, “Comparative study of different methods of preparing CuO-CeO2 catalysts for preferential oxidation of CO in excess hydrogen”, J. Mol. Catal. A: Chem. 267 (2007) 137.
[79] B. Skaman, D. Grandjean, R.E. Benfield, A. Hinz, A. Andersson , L.R. Wallenberg, “Carbon monoxide oxidation on nanostructured CuOx/CeO2 composite particles characterized by HREM, XPS, XAS, and high-energy diffraction”, J. Catal. 211 (2002) 119.
[80] A. Martinez-Arias, M. Fernandez-Garcia, O. Gaivez, J.M. Coronado, J.A. Anderson, “Comparative study on redox properties and catalytic behavior for CO oxidation of CuO/CeO2 and CuO/ZrCeO4 catalysts”, J. Catal. 195 (2000) 207.
[81] M. Ozawa, C.K. Loong, “In situ X-ray and neutron powder diffraction studies of redox behavior in CeO2-containing oxide catalysts”, Catal. Today 50 (1999) 329.
[82] M. Daturi, E. Finocchio, C. Binet, J.C. Lavalley, F. Fally, V. Perrichon, J. Phys. Chem. B 103 (1999) 329.
[83] R. Di Monte, G.R. Rao, J. Kašpar, S. Meriani, A. Trovarelli, M. Graziani, “Rh-Loaded CeO2-ZrO2 Solid-solutions as highly efficient oxygen exchangers: dependence of the reduction behavior and the oxygen storage capacity on the structural-properties”, J. Catal. 151 (1995) 168.
[84] Fornasiero, E. Fonda, R.D. Monte, G. Valic, J. Kaspar, M. Graziani, “Relationships between structural/textural properties and redox behavior in Ce0.6Zr0.4O2 mixed oxides”, J. Catal., 187 (1999) 177.
[85] A. Martinez-Arias, M. Fernandez-Garcia, “Spectroscopic study of a Cu/CeO2 catalyst subjected to redox treatments in carbon monoxide and oxygen”, J. Catal. 182 (1999) 367.
[86] G. Vlaic, P. Fornasiero, S. Geremia, J. Kaspar,M. Graziani, “Relationship between the zirconia-promoted reduction in the Rh-loaded Ce0.5Zr0.5O2 mixed oxide and the Zr–O local structure”, J. Catal. 168 (1997) 386.
[87] G. Balducci, P. Fornasiero, R. Di Monte, J. Kaspar, S. Meriani, “An unusual promotion of the redox behaviour of CeO2-ZrO2 solid solutions upon sintering at high temperatures”, Catal. Lett. 33 (1995) 193.
[88] C. Descorme, Y. Madier, D. Duprez, “Infrared study of oxygen adsorption and activation on cerium–zirconium mixed oxides”, J. Catal. 196 (2000) 167.
[89] R. Lin, Y.-J. Zhong, M.-F. Luo, W.-P. Liu, Indian J. Chem. 40A (2001) 36.
[90] R. Lin, M.F. Luo, Y.J. Zhong, G.Y. Liu, W.P. Liu, “Comparative study of CuO/Ce0.7Sn0.3O2, CuO/CeO2 and CuO/SnO2 catalysts for low-temperature CO oxidation”, Appl. Catal. A: Gen. 255 (2003) 331.
[91] Y. Zhang, S. Andersson, M. Muhammed, “Nanophase catalytic oxides: I. Synthesis of doped cerium oxides as oxygen storage promoters”, Appl. Catal. B: Environ. 6 (1995) 325.
[92] A.D. Logan, M.J. Shelef, Mater. Res. 9 (1994) 468.
[93] M.F. Luo, Z.L. Yan, L.Y. Jin, “Structure and redox properties of CexPr1−xO2−δ mixed oxides and their catalytic activities for CO, CH3OH and CH4 combustion” J. Mol. Catal. A: Chem. 260 (2006) 157.
[94] Z. Song , W. Liu, H. Nishiguchi, A. Takami, K. Nagaoka, Y. Takita, “The Pr promotion effect on oxygen storage capacity of Ce–Pr oxides studied using a TAP reactor”, Applied Catal. A: Gen. 329 (2007) 86.
[95] C.R. Jung, A.Kundu, S.W. Nam, H.I. Lee, “Doping effect of precious metal on the activity of CuO-CeO2 catalyst for selective oxidation of CO”, Appl. Catal. A: Gen. 331 (2007) 112.
[96] G.G. Xia, Y.G. Yin, W.S. Willis, J.Y. Wang, S.L. Suib, “Efficient stable catalysts for low temperature carbon monoxide oxidation”, J. Catal. 185 (1999) 91.
[97] K. Ramesh, L. Chen, F. Chen, Z. Zhong, J. Chin, H. Mook, Y.F. Han, “Preparation and characterization of coral-like nanostructured α-Mn2O3 catalyst for catalytic combustion of methane ”, Catal. Commun. 8 (2007) 1421.
[98] Y.F. Han, L. Chen, K. Ramesh, E. Widjaja, S. Chilukoti, I.K. Surjami, “Kinetic and spectroscopic study of methane combustion over α-Mn2O3 nanocrystal catalysts”, J. Chem., J. Catal. 253 (2008) 261.
[99] L.C. Wang, Q. Liu, X.S. Huang, Y.M. Liu, Y. Cao , K.N. Fan, “Gold nanoparticles supported on manganese oxides for low-temperature CO oxidation”, Appl. Catal. B: Environ. 88 (2008)204.
[100] L.C. Wang, X.S. Huang, Q. Liu, Y.M. Liu, Y.Cao, H.Y. He, K.N. Fan, J.H. Zhuang, “Gold nanoparticles deposited on manganese(III) oxide as novel efficient catalyst for low temperature CO oxidation”, J. Catal. 259 (2008) 66.
[101] R. Craciun, B. Nentwick, K. Hadjiivanov, H. Knözinger, “Structure and redox properties of MnOx/Yttrium-stabilized zirconia (YSZ) catalyst and its used in CO and CH4 oxidation”, Appl. Catal. A: Gen. 243 (2003) 67.
[102] R. Craciun, “Structure/activity correlation for unpromoted and CeO2-promoted MnO2/SiO2 catalysts”, Catal. Lett. 55 (1998) 25.
[103] F.C. Buciuman, F. Patcas, T. Hahn, “A spillover approach to oxidation catalysis over copper and manganese mixed oxides”, Chem. Eng. Pro. 38 (1999) 563.
[104] B. Sukriti. Kanungo, “Physicochemical properties of MnO2 and MnO2-CuO and their relationship with the catalytic activity for H2O2 decomposition and CO oxidation”, J. Catal. 58 (1979) 419.
[105] G.M. Schwab, S.B. Kanungo, “Die katalytische Verstarkung im
Hopcalit”, Z. Physik. Chem. N. Folge 107 (1977) 109.
[106] S. Veprek, D.L. Cocke, S. Kehl, H.R. Oswald, “Mechanism of the deactivation of Hopcalite catalysts Studied by XPS, ISS, and other techniques”, J. Catal. 100 (1986) 250.
[107] G.J. Hutchings, A.A. Mirzaei, R.W. Joynerb, M.R.H. Siddiqui, S.H. Taylor, “Effect of preparation conditions on the catalytic performance of copper manganese oxide catalysts for CO oxidation”, App. Catal. A: Gen. 166 (1998) 143.
[108] H. Chen, A. Sayari, A. Adnot, F. Larachi, “Composition–activity effects of Mn–Ce–O composites on phenol catalytic wet oxidation”, Appl. Catal. B: Environ. 32 (2001) 195.
[109] F. Arena, G. Trunfio, J. Negro, B. Fazio, and L. Spadaro, “Basic evidence of the molecular dispersion of MnCeOx catalysts synthesized via a novel “redox-precipitation” route”, Chem. Mater. 19 (2007) 2269.
[110] F. Arena, G. Trunfio, J. Negro, L. Spadaro, “Synthesis of highly dispersed MnCeOx catalysts via a novel redox-precipitation route”, Mater. Res. Bulletin 43 (2008) 539.
[111] S. Imamura, M. Shono, N. Okamoto, A. Hamada, S. Ishida, “Effect of cerium on the mobility of oxygen on manganese oxides ”, Applied Catal. A: Gen.142 (1996) 279.
[112] X. Tang, Y. Li, X. Huang, Y. Xu, H. Zhu, J. Wang, W. Shen, “MnOx–CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: Effect of preparation method and calcination temperature”, Appl. Catal. B: Environ. 62 (2006) 265.
[113] X. Tang, Y. Xu, W. Shen, “Promoting effect of copper on the catalytic activity of MnOx–CeO2 mixed oxide for complete oxidation of benzene”, Chem. Eng. J. 144 (2008) 175.
[114] J. Papavasiliou, G. Avgouropoulos, T. Ioannides, “In situ combustion synthesis of structured Cu-Ce-O and Cu-Mn-O catalysts for the production and purification of hydrogen”, Appl. Catal. B: Environ. 66 (2006) 168.
[115] Y.B. Tu, J.Y. Luo, M. Meng, G. Wang, J.J. He, “Ultrasonic-assisted synthesis of highly active catalyst Au/MnOx-CeO2 used for the preferential oxidation of CO in H2-rich stream”, Int. J. Hydrogen energy xxx(2009)xxx.
[116] M. Machida, M. Uto, D. Kurogi, T. Kijima, Chem. Mater. 12 (2000) 3158.
[117] K. Ramesh, L. Chen, F. Chen, Y. Liu, Z. Wang, Y.F. Han “Re-investigating the CO oxidation mechanism over unsupported MnO, Mn2O3 and MnO2 catalysts”, Catal. Today 131 (2008) 477.
[118] W. Xingyi, K. Qian, L. Dao “Catalytic combustion of chlorobenzene over MnOx–CeO2 mixed oxide catalysts”, Appl. Catal. B: Environ. 86 (2009) 166.
指導教授 陳吟足(Yin-Zu Chen) 審核日期 2009-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明