博碩士論文 963204017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.145.32.233
姓名 詹承彥(Cheng-yan Zhan)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 在矽鍺基材上製備二維有序排列之低電阻鎳矽化物奈米點陣列之研究
(Fabricateion of 2-D periodic arrays of low-resistivity nickel silicide nanodots on (001)SiGe substrate)
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究成功地利用聚苯乙烯(Polystyene, PS)奈米球微影術在矽鍺基材上製備出大面積、規則排列的PS奈米球陣列作為模板(Template),並以此模板先後鍍製適當厚度比例之非晶矽中間層(a-Si)與鎳金屬(Ni)薄膜,形成Ni/a-Si雙層結構之奈米點陣列。隨後再將Ni/a-Si奈米點進行退火熱處理,探討其結構在退火過程中的相變化,以及奈米點與矽鍺基材的界面反應。
在研究中發現,Ni/a-Si奈米點在經過350 ℃退火後即可形成低電阻相之NiSi,並在退火溫度持續增加到800 ℃仍可以維持穩定的低電阻相NiSi。由穿透式電子顯微鏡(TEM)可發現Ni/a-Si雙層結構奈米點在退火過程中,其形貌可維持原本三角形奈米點,不受高溫退火影響下而造成形貌改變。其奈米點在經過高溫800 ℃退火下,與矽鍺基材界面仍十分平整並無觀察到任何的鍺偏析現象,顯示增加恰當比例的中間矽層對於熱穩定性的改善上有顯著的效應。
Ni/a-Si奈米點試片在經過900 ℃退火後則發現在奈米點周圍開始出現大量奈米線生成。經TEM及EDS之分析,顯示其為非晶質之二氧化矽奈米線。推測其生成機制應為固-液-固(Solid-Liquid-Solid, SLS)之成長機制。
摘要(英) In this study, we demonstrated that large-area, 2-D well-ordered arrays of Ni/amorphous-Si bilayer nandods were successfully fabricated on (001)Si0.7Ge0.3 substrate by nanosphere lithography. The phase transformated and structureal evolution of the Ni silicide nanocontacts after different heat treatments were investigated.
Based on the TEM and SAED analyses, it is found that low-resistivity NiSi nanodots were successfully grown on Si0.7Ge0.3 substrate at an annealing temperature as low as 350 ℃, and the crystal structure of the grown NiSi was polycrystalline. NiSi nanodots exhibit excellent thermal stability after annealing at 800 ℃. The TEM images revealed that the shape of nanodots was not significantly changed and no Ge segregation were found after annealing. With an interposing a-Si film as the sacrificial layer, the thermal stability of NiSi nanodot was significantly improved.
Many fine nanowires of 15-40 nm in diameter were observed from the regions of nanodots after annealing at 900 ℃. Selected-area electron diffraction and TEM/EDS analysis indicated that the nanowires were composed of Si and O and their structure was amorphous SiOx(a-SiOx) nanowires could be explained by the solid-liquid-solid (SLS) mechanism.
關鍵字(中) ★ 鎳矽化物
★ 奈米點
關鍵字(英) ★ nickel silicide
★ nanodot
論文目次 第一章 簡介........................................1
1-1 前言...........................................1
1-2 奈米球自組裝...................................2
1-2-1 自組裝簡介...................................3
1-2-2 各種為奈米球自組裝技術.......................3
1-2-2-1 自然滴製法...............................3
1-2-2-2 旋轉塗佈法...............................3
1-2-2-3 LB-like 自組裝技術......................4
1-2-2-4 電泳自組裝技術...........................4
1-3 微奈米球微影術的發展...........................5
1-3-1 微影術的發展.................................5
1-3-2 奈米球微影術製備奈米結構.....................6
1-3-2-1 金屬薄膜沉積製程技術.....................6
1-3-2-2 反應離子蝕刻技術.........................7
1-4 金屬矽化物.....................................8
1-4-1 金屬矽化物的應用及製程.......................8
1-4-2 鎳金屬矽化物.................................9
1-5 矽鍺元件......................................10
1-5-1 矽鍺元件中之金屬接觸........................10
1-6 研究動機與目標................................11
第二章 實驗步驟...................................13
2-1 奈米球微影術及金屬矽化物之製備................13
2-1-1 基材使用前處裡..............................13
2-1-2 奈米球膠體溶液配製..........................14
2-1-3 自組裝製備奈米球陣列........................15
2-1-4 金屬薄膜蒸鍍................................15
2-1-5 奈米球舉離..................................15
2-1-6 金屬矽化反應................................16
2-2 使用儀器及特性分析............................16
2-2-1 掃描式電子顯微鏡(SEM).......................16
2-2-2 原子力顯微鏡(AFM)...........................16
2-2-3 穿透式電子顯微鏡(TEM).......................17
第三章 結果與討論.................................18
3-1 微奈米球模板之製備............................18
3-2 鎳、矽雙膜結構與其矽化物之奈米點陣列..........20
3-2-1 Ni/a-Si奈米點與其矽化物之奈米點形貌觀察....20
3-2-2 Ni/a-Si奈米點與矽鍺基材之界面反應分析......22
3-2-3 奈米點陣列高度變化與相分析..................24
3-2-4 奈米點陣列生成氧化矽奈米線..................25
第四章 結論.......................................28
參考文獻..........................................30
表目錄............................................40
圖目錄............................................43
參考文獻 [1]S. Ciraci and I. P. Batra, “Theory of The Quantum Size Effect in Simple Metals,” Phys. Rev. B 33 4294-4297.
[2]M. V. Fischetti and S. E. Laux, “Band Structure , Deformation Potentials, and Carrier Mobility in Strained Si, Ge and SiGe Alloys,” J. Appl. Phys. 80 (1996) 1567-1577.
[3]M. H. Liao, T. C. Chen, M. J. Chen, and C. W. Liu, “Electroluminescence from Metal/Oxide/Strained-Si Tunneling Diodes,” Appl. Phys. Lett. 86 (2005).
[4]M. H. Liao, C. Y. Yu, T. H. Guo, C. H. Lin, and C. W. Liu, “Electroluminescence from the Ge Quantum dot Metal-Oxide-Semiconductor Tunneling Diodes,” IEEE Electron Device Lett. 27 (2006) 252-242.
[5]J. A. Kittl, K. Opsomer, C. Torregiani, C. Demeurisse, S. Mertens, D. P. Burnco, M. J. H. Van Dal, and A. Lauwers, “Silicides and Germanides for Nano-CMOS Applications,” Mater. Sci. Eng.,B (2008) 144-155.
[6]K. Buchholz, A. Tinazli, A. Kleefen, D. Dorfner, D Pedone, U. Rant, R. Tampe, G. Abstreiter, and M Tornow , “Silicon-on-Insulator Based Nanopore Cavity Arrays for Lipid Membrane Investigation,” Nanotechnology 19 (2008) 445305
[7]Y. J. Zhang, W. Li, and K. J. Chen, “Application of Two-Dimensional Polystyrene Arrays in the Fabrication of Ordered Silicon Pillars,” J. Alloys Compd. 450 (2008) 512-516.
[8]T. Yasuda, S. Yamasaki, and S. Gwo, “Nanoscale Selective-Area Epitaxl Growth of Si Using an Ultrathin SiO2/Si3Ni4 Mask Patterned by an Atomic Force Microscope,” Appl. Phys. Lett. 77 (2000) 3917-3919.
[9]J. I. Martin, J. Nogues, K. Liu, J. L. Vicent, and I. K. Schuller, “Ordered Magnetic Nanostructures: Fabrication and Properties,” J. Magn. Magn. Mater. 256 (2003) 449-501.
[10]S. Bollant, P. Di. Lazzaro, F. Flora, L. Mezi, D. Murra, and A. Torre, “First Results of High-Resolution Patterning by the ENEA Laboratory-Scale Extreme Ultraviolet Projection Lithography System,” Europhys. Lett. 84 (2008) 58003.
[11]Q. Yan, F. L, L. Wang, J. Y. Lee, and X. S. Zhao, “Drilling Nanoholes in Colloidal Spheres by Selective Etching,” J. Mater. Chem. 16 (2006) 2132–2134.
[12]A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides, “Directed Self-Assembly of Spherical Particles on Patterned Electrodes by an Applied Electric Field,” Adv. Mater. 17 (2005) 1507-1511.
[13]W. Ma, D. Hesse, and U. Gcsele, “Formation of Ferroelectric Perovskite Nanostructure Patterns Using Latex Sphere Monolayers as Masks: An Ambient Gas Pressure Effect during Pulsed Laser Deposition,” Small 1 (2005) 837 –841.
[14]N. Li and M. Z. Allmang. “Size-tunable Ge Nano-Particle Arrays Patterned on Si Substrates with Nanosphere Lithography and Thermal Annealing,” J. Appl. Phys. 41 (2002) 4626–4629.
[15]E. Ge´raud, V. Pre´vot, J. Ghanbaja, and F. Leroux, “Macroscopically Ordered Hydrotalcite-Type Materials Using Self-Assembled Colloidal Crystal Template,” Chem. Mater. 18 (2006) 238-240.
[16]A. Mathur, S. S. Roy, K. S. Hazra, D. S. Misra, and J. A. McLaughlin, “Growth of Carbon Nanotube Arrays using Nanosphere Lithography and Their Application in Field Emission Devices,” Diamond Relat. Mater. 19 (2010) 914-917.
[17]Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed Colloidal Spheres : Old Materials with New Applications,” Adv. Mater. 12 (2000) 693-713.
[18]P. A. Kralchevsky and N. D. Denkov, “Capillary Forces and Structuring in Layers of Colloid Particles,” Curr. Opinion. Coll. Interf. Sci. 6 (2001) 383-401.
[19]M. X. Yang, D. H. Gracias, P. W. Jacobs, and G. A. Somorjai, “Lithographic Fabrication of Model Systems in Heterogeneous Catalysis and Surface Science Studies,” Langmuir 14 (1998) 1458-1464.
[20]M. A. Wood, “Colloidal Lithography and Current Fabrication Techniques Producing in-Plane Nanotopography for Biological Applications,” J. R. Soc. Interface 4 (2007) 1–17.
[21]C. C. Kao, Y. K. Su, C. L. Lin, and J. J. Chan, “Localized Surface Plasmon-Enhanced Nitride-Based Light-Emitting Diode with Ag Nanotriangle Array by Nanosphere Lithography,” IEEE Photonics Technol. Lett. 22 (2010) 984-986.
[22]C. J. Chang and E. H. Kuo, “Light-Trapping Effects and Dye Adsorption of ZnO Hemisphere-Array Surface Containing Growth Hindered Nanorods,” Colloids Surf., A 363 (2010) 22-29.
[23]G. Horneck and B. K. Christa, “Astrobiology: The Quest for the Conditions of Life: Complexity and Life, Molecular Self-Assembly and the Origin of Life,” Part V 2001, Spriger.
[24]G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales,” Science 295 (2002) 2418-2421.
[25]S. M. Yang, N. Coombs, and G. A. Ozin, “Micromolding in Inverted Polymer Opals (MIPO) : Synthesis of Hexagonal Mesoporous Silica Opals,” Adv. Mater. 12 (2000) 1940-1944.
[26]H. J. Nam, D. Y. Jung, G. Y, and H. Choi, “Close-Packed Hemispherical Microlens Array from Two-Dimensional Ordered Polymeric Microspheres,” Langmuir 22 (2006) 7358-7363.
[27]F. Fleischhaker, A. C. Arsenault, Z. Wang, V. Kitaev, F. C. Peiris, G. V. Freymann, I. Manners, R. Zentel, and G. A. Ozin, “Redox-Tunable Defects in Colloidal Photonic Crystals,” Adv. Mater. 17 (2005) 2455–2458.
[28]J. Dutta and H. Hofmann, “Self-Organization of Colloidal Nanoparticles,” Encyclopedia of Nanosci. and Nanotech. X (2003) 1–23.
[29]F. Jarai-Szabo, S. Astilean, and Z. Neda, “Understanding Self-Assembled Nanosphere Patterns,” Chem. Phys. Lett. 408 (2005) 241–246.
[30]N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates,” Langmuir 8 (1992) 3183-3190.
[31]P. A. Kralchevsky, V. N. Paunov, I. B. Ivanov, and K. Nagayama, “Capillary Meniscus Interactions between Colloidal Particles Attached to a Liquid-Fluid Interface,” J. Colloid Interface Sci. 151 (1992) 79-94.
[32]P. A. Kralchevsky, V. N. Paunov, N. D. Denkov, I. B. Ivanov, K. Nagayama, “Energetical, and Force Approaches to the Capillary Interactions between Particles Attached to a Liquid-Fluid Interface,” J. Colloid Interface Sci. 155 (1993) 420-437.
[33]P. A. Kralchevsky and K. Nagayama, “Capillary Forces between Colloidal Particles,” Langmuir 10 (1994) 23-36.
[34]K. Nagayama, “Two-dimensional Self-Assembly of Colloids in Thin Liquid Films,” Colloids Surf. A 109 (1996) 363-374.
[35]Y. Li, W. Cai, G. Duan, F. Sun. B. Cao, and F. Lu, “ 2D Nanoparticle Arrays by Partial Dissolution of Ordered Pore Films,” Materials Letters 59 (2005) 276-279
[36]J. Rybczynski, U. Ebels, and M. Giersig, “Large-Scale, 2D Arrays of Magnetic Nanoparticles,” Colloids Surf. Physicochem. Eng. Aspects 219 (2003) 1-6.
[37]V. Ng, Y. V. Lee, B. T. Chen, and A. O. Adeyeye, “Nanostructure Array Fabrication with Temperature-Controlled Self-Assembly Techniques,” Nanotechnology 13 (2002) 554–558.
[38]R. P. V. Duyne, J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, and T. R. Jensen, “Nanosphere Lithography: Size-Tunable Silver Nanoparticle and Surface Cluster Arrays,” J. Phys. Chem. B 103 (1999) 3854-3863.
[39]J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D Arrays of Magnetic Nanoparticles,” Colloids Surf. A. 219 (2003) 1-6.
[40]E. Sirotkin, J. D. Apweiler, and F. Y. Ogrin, “Macroscopic Ordering of Polystyrene Carboxylate-Modified Nanospheres Self-Assembled at the Water-Air Interface,” Langmuir 2010 (13) 10677-10683.
[41]M. Retsch, K. H. Dostert, S. K. Nett, N. Vogel, J. S. Gutmann, and U. Jonas, “Template-Free structureing of Colloidal Hetero-Monolayers by Inkjet Printing and Particle Floating,” Soft Mater. 6 (2010) 2403-2412.
[42]M. Retsch, Z. Zhou, S. Rivera, M. Kappl, X. S. Zhao, U. Jonas, and Q. Li, “Fabrication of Large-Area, Transferable Colloidal Monolayers Utilizing Self-Assembly at the Air/Water Interface,” Macromol. Chem. Phys. 210 (2009) 230–241.
[43]Y. J. Huang, C. H. Lai, and P. W. Wu, “Fabrication of Large-Area Colloidal Crystals by Electrophoretic Deposition in Vertical Arrangement,” Electrochem. Solid-State Lett. 11 (2008) 20-22.
[44]R. Xie and X. Y. Liua, “Epitaxial Assembly and Ordering of Two-Dimensional Colloidal Crystals,” Appl. Phys. Lett. 92 (2008) 083106-1~3.
[45]M. Ratner and D. Ratner, “Nanotechnology : A Gentle Introduction to the Next Big Idea,” Chapter 4, 2003, Prentice Hall.
[46]E. Miyauchi, H. Arimoto, and H. Kitada, “Ion Species and Energy Control of Finely Focused RBs for Maskless in Situ Microfabrication Processes, “ Nucl. Instrum. Methods. B39 (1989) 515-520.
[47]H. W. Deckman and J. H. Dunsmuir, “Natural Lithography,” Appl. Phys. Lett. 41 (1982) 377-379.
[48]S. Zhu and Y. Fu, “Fabrication and Characterization of Nanostructured Metallic Arrays with Multi-Shapes in Monolayer and Bilayer,” J. Nanopart.. Res. 12 (2010) 1829-1835.
[49]J. C. Hulteen, and R. P. Van Duyne, ”Nanosphere Lithpography: A Materials General Fabrication Process for Periodic Particle Array Surface,” J. Vac. Sci. Technol. A13 (1995) 1553-1558.
[50]C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. Van Duyne, “Angle-Resolved Nanosphere Lithography : Manipulation of Nanoparticle Size, Shape, and Interparticle Spacing,” J. Phys. Chem. B 106 (2002) 1898-1902.
[51]G. Zhang and D. Wang, “Fabrication of Heterogeneous Binary Arrays of Nanoparticles via Colloidal Lithography,” J. Am. Chem. Soc. 130 (2008) 5616-5617.
[52]Z. Wang, J. Liu, H. Dong, Y. Li, P. Zhan, and M. Zhu, “A Facile Route to Synthesis of Ordered Arrays of Metal Nanoshells with a Controllable Morphology,” Jpn. J. Appl. Phys. 45 (2006) 582-584.
[53]F. Q. Zhu, D. Fan, X. Zhu, J. G. Zhu, R. C. Cammarata, and C. L. Chien, “Ultrahigh-Density Arrays of Ferromagnetic Nanorings on Macroscopic Areas,” Adv. Mater. 16 (2004) 2155-2159.
[54]Y. Li, T. Sasaki, Y. Shimzu, and N. Koshizaki, “Hexagonal-Close-Packed, Hierarchical Amorphous TiO2 Nanocolumn Arrays: Transferability, Enhanced Photocatalytic Activity, and Superamphiphilicity without UV Irradiation,” J. Am. Chem. Soc. 130 (2008) 14755-14762.
[55]C. Haginoya, M. Ishibashi, and K. Koike, “Nanostructure Array Fabrication With a Size-Controllable Natural Lithography,” Appl. Phys. Lett. 71 (1997) 2934-2936.
[56]S. M. Weekes, F. Y. Ogrin, and W. A. Murray, “Fabrication of Large Area Ferromagnetic Arrays Using Etched Nanosphere Lithography,” Langmuir 20 (2004) 11208-11212.
[57]P. Wu, L. Q. Peng; X. L. Tuo, X. G. Wang, and J. Yuan, ”Control of Deposition Channels in Nanosphere Templates for High-Density Nanodot Array Production,” Nanotechnology 16 (2005) 1693- 1696.
[58]C. Corbella, S. Portal, M. Rubio-Roy, M. A. Vallve, J. Ignés-Mullol, E. Bertran, and J. L. Andújar, “Surface Structuring of Diamond-Like Carbon Films by Colloidal Lithography with Silica Sub-Micro Particles,” Diamond Relat. Mater. 19 (2010) 1124-1130.
[59]G. Zhang, D. Wang, and H. Möhwald , “Ordered Binary Arrays of Au Nanoparticles Derived from Colloidal Lithography,” Nano Lett. 7 (2007) 127-132.
[60]A. V. Whitney, B. D. Myers, and R. P. Van Duyne, “Sub-100 nm Trianglar Nanopores Fabricated with the Reactive Ion Etching Variant of Nanosphere Lithography and Angle-Resolved Nanosphere Lithography,” Nano Lett. 71 (2004) 1507-1511.
[61]K. Seeger and R. E. Palmer, “Fabrication of Ordered Arrays of Silicon Nanopillars,” J. Phys. D: Appl. Phys 32 (1999) L129-L132.
[62]A. Wellner, P. R. Preece, J. C. Fowler, and R. E. Palmer, “Fabrication of Ordered Arrays of Silicon Nanopillars in Silicon-On-Insulator Wafers,” Microelectron. Eng. 58 (2001) 919-924.
[63]M. Bale, A. J. Turner, and R. E. Palmer, “Fabrication of Ordered Arrays of Silicon Nanopillars at Selected Sites,” J. Phys. D: Appl. Phys. 35 (2002) L11-L14.
[64]C. W. Kuo, J. Y. Shiu, and P. Chan, “Size and Shape Controlled Fabrication of Large-Area Periodic Nanopillars Arrays,” Chem. Mater. 15 (2003) 2917-2920.
[65]K. L. Wang, T. C. Holloway, R. F. Pinizzotto, Z. P. Sobczak, W. R. Hunter and A. F. Tash, “Composite TiSi2/N+Poly-Si Low Resistivity Gate Electrode and Interconnect for VLSI Device Technology,” IEEE Trans. Electron. Device. 29 (1982) 547-553.
[66]J. B. Lasky, J. S. Nakos, O. J. Cain, and P. J. Geiss, “Comparison of Transformation to Low-Resistivity Phase and Agglomeration of TiSi2 and CoSi2,” IEEE Trans. Electron. Device. 38 (1991) 262.
[67]Li. Wan, X. Zhang, B. Tang, Y. Ren, X. Cheng, D. Xu, H. Luo, and Y. Huang, “Effects of Laser in situ Annealing on Crtstal Quality of NiSi film grown on Si(001) substrate,” Thin Solid Films. 58 (2010) 2646-3649.
[68]A. Lauwers, P. Besser, T. Gutt, A. Satta, M. De Potter, R. Lindsay, N. Roelandts, F. Loosen, S. Jin, H Bender, M. Stucchi, C. Vrancken, B. Deweerdt, and K Maex, “Comparative Study of Ni-Silicide and Co-Silicide for sub 0.25-μm Technologies,” Microelectronic Engineering. 50 (2000) 103-116.
[69]F. D. Heurle, C. S. Petrsson, L. Slot, and B. Strizker, “Diffusion in Intermetallic Compounds with the CaF2 Structure : A Marker Study of the Formation of NiSi2 Thin Film,” J. Appl. Phys. 53 (1982) 5678-5681.
[70]L. J. Chen, J. W. Mayer, and K. N. Tu, “Formation and Structure of Epitaxial Silicides on Silicon,” Thin Solid Films 93 (1982) 135-141.
[71]B. Y. Tsui, and C. M. Lee, ”Thermal Stability of Nickel Silicide and Shallow Junction Electrical Characteristics with Carbon Ion Implantation,” Jpn. J. Appl. Phys. 49 (2010) 04AD04.
[72]S. J. Whang, M. S Joo, and B. M. Seo et al, “Thermally Stable NiSi Gate Electrode with TiN Barrier Metal for High-Density NAND Flash Memory Devices,” Jpn. J. Appl. Phys. 49 (2010) 04DA17.
[73]J. Y. Yew and L. J. Chen, “Epitaxial Growth of NiSi2 on (111) Si Inside 0.1–0.6 mm Oxide Openings Prepared by Electron Beam Lithography,” Appl. Phys. Lett. 69 (1996) 999-1001.
[74]S. L. Cheng, S. W. Lu, and H. Chen, “Interfacial Reactions of 2-D Periodic Arrays of Ni Metal Dots on (001)Si,” J. Phys. Chem. Solids. 69 (2008) 620–624.
[75]D. Nguyen-Ngoc, D. A. Sunderland, D. C. Ahlgren, S. J. Jeng, M. M. Gilbert, J. C. Malinowski, K. T. Schonenberg, K. S. Stein, B. S. Meyerson, and D. L. Harame “A Manufacturable Poly-Emitter Graded-SiGe HBT Technology for Wireless and Mixed-Signal Applications,” Appl. Surf. Sci. 102 (1996) 194-201.
[76]D. B. Aldrich, Y. L. Chen, D. E. Sayers, R. J. Nemanich, S. P. Ashburn, and M. C. Öztürk, “Stability of C54 Titanium Germanosilicide on a Silicon-Germanium Alloy Substrate,” J. Appl. Phys. 77 (1995) 5107-5114.
[77]P. T. Goeller, B. I. Boyanov, D. E. Sayers, R. J. Nemanich, A. F. Mayers, and E. B. Steel, “Germanium Segregation in the Co/Si/Ge/Si(001) Thin Film System,” J. Matter. Res. 14 (1999) 4372- 4384.
[78]L. J. Chen, J. B. Lai, and C. S. Lee, “High-Resolution Transmission Electron Microscopy of Phase Formation and Growth in Metal-Si-Ge Systems,” Micron 33 (2002) 535-541.
[79]Z. Wang et al, “Silicide Formation and Stability of Ti/SiGe and Co/SiGe,” Thin Solid Films. 270 (1995) 555-560.
[80]A. Lauwers, M. J. H . van Dal, P. Verheyen, O. Chamirian, C. Demeurisse, S. Mertens, C. Vrancken, K. Verheyden, K. Funk, and J. A. Kittl, “Study of Silicide Contacts to SiGe Source/Drain,” Microelectron. Eng. 83 (2006) 2268–2271.
[81]J. C. Bean, T. T. Sheng, L. C. Feldman, A. T. Fiory, and R. T. Lynch. “Pseudomorphic Growth of GexSi1-x on Silicon by Molecular Beam Epitaxy,” Appl. Phys. Lett. 44 (1984) 102-104.
[82]B. S. Meyerson, IBM T. J. Watson Research Center, P. O. Box, and Y. Heights, “Low-Temperature Silicon Epitaxy by Ultrahigh Vauum/Chemical Vapor Deposition,” Appl. Phys Lett. 48 (1986) 797-799.
[83]J. F. Gibbons, C. M. Gronet, and K. E Wiliams, “Limited Reaction Processing: Silicon Epitaxy,” Appl. Phys. Lett 47 (1985) 721-723.
[84]Y. V. Ponomarev, C. Salm , J. Schmitz, P. H. Woerlee, and D. J. Gravesteijn, “Gate-Work-Function-Engineering Using Poly-(Si,Ge) for High-Performance 0.18μm CMOS Technology,” Proc. VLSI-TSA (1997) 311-315.
[85]L. J. Chan, W. W. Wu, S. L. Cheng, and S. W. Lee, “Enhanced Growth of Low-Resistivity NiSi on epitaxial Si0.7Ge0.3 on (001)Si with a Sacrificial Amorphous Si Interlayer,” J. Vac. Sci. Technol. 21 (2003) 2147-2150.
[86]C. D Dushkin, G. S. Lazarov, S. N. Kotsev, H. Yoshimura, and K. Nagayama, “Effect of Grownth Condition on the Structure of Two-Dimensional Latex Crystals: Experiment,” Colloid Polm. Sci. 277 (1999) 914-930.
[87]C. Cong and W. Cao, “Colloidal Crystallization Induced by Capillary Force,” Langmuir 19 (2003) 8177-8181.
[88]M. Marquez and B. P. Grady, “The Use of Surface Tension to Predict the Formation of 2D Arrays of Latex Spheres Formed via the Lamgmuir-Blodgett-Like Technique,” Langmuir. 20 (2004) 10998-11004.
[89]S. L. Cheng, S. W. Lu, and H. Chen, “Interfacial Reaction of 2-D periodic Arrays of Ni metal dots on (001)Si,” J. Phys. Chem. Solids 69 (2008) 620-624.
[90]S. L. Cheng, C. H. Wang, and H. Chen, “Formation and Characterization of Periodic Arrays og Nickel Silcide Nanodots on Si(111) Substrates,” Jpn. J. Appl. Phys. 48 (2009)
[91]F. D. Heurle, C. S. Petresson, L. Slot, and B. Strizker, “Diffusion in Intermetallic Compounds with the CaF2 Structure: A Marker Study of the Formation of NiSi2 Thin Film,” J. Appl. Phys. 53 (1982) 5678-5681.
[92]V. Schmidt, S. Senz, and U. Gösele, “Diameter-Dependent Growth Direction of Epitaxial Silicon Nanowire,” Nano Lett. 5 (2005) 931-935.
[93]S. T. Lee, N. Wang, and C. S. Lee, “Semiconductor Nanowires: Synthesis,Structure and Properties,” Mater. Sci. Eng., A A286 (2000) 16-23.
指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2010-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明