博碩士論文 963204018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:35.172.217.40
姓名 陳正國(Jheng-Guo Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣
(Biomimetic Gallstone Formation: Calcium Carbonate Crystallization in the Evolving Taurocholate-Lecithin-Cholesterol Complex Lipid System)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究
★ 生命的起源與天門冬氨酸在水中的結晶★ 微調具光學活性聯二萘酚和其二甲亞碸包合物的光激發光性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 人體中的膽結石是非常常見的生物礦化例子。現今在世界上,幾乎就有數以千萬計的患者。人體中的膽結石總共有三種類型:膽固醇膽結石、黑色膽色素結石以及棕色膽色素結石,但又以膽固醇膽結石最常發生在人體中。而膽固醇結石幾乎由膽固醇結晶和碳酸鈣結晶所組成。經過廣泛文獻閱覽後,我們發現並沒有太多明確的研究以及文獻記載關於膽固醇(cholesterol)和碳酸鈣之間的相互作用。所以在本文中主要有三個重要的目標用來研究出膽固醇在於人體中的功能性。 首先,利用初步溶劑篩選程序來篩選膽固醇,包含溶解度(solubility)、多型晶體(polymorph)、晶體外貌(crystal habit)、以及結晶度(crystallinity)的資料會被建立成工程資料庫。而一種簡略但快速且只需要少量樣品的篩選方法也會在本文中加以介紹。第二,人工膽汁的組成將會描述的更詳盡以及利用大量的儀器分析來建立複合脂質系統完整的結構分析。第三,結合碳酸鈣的結晶學和過飽和人工膽汁系統來模擬人體中膽結石的形成機制,以及利用晶體外貌(crystal habit)、多型晶體(polymorph)、結晶動力學(crystallization kinetic)和碳酸鈣晶體的組成的分析來探討脂質和鈣離子之間的交互作用。藉著利用這些資料可以更明確的加以瞭解膽固醇膽結石在人體中的起因。除此之外,我們還發現
(1)卵磷脂本身具有誘發vaterite的形成或延緩vaterite轉換成calcite。
(2)複雜脂質系統中的微觀結構能夠控制碳酸鈣的結晶過程
(3)膽固醇的結晶能夠藉由誘發複雜脂質系統的不穩定所形成,且整個膽結石形成過程會變成自動催化的系統
(4)人體中膽汁內的成份,例如:鈣離子、膽鹽、碳酸根離子、溶菌酶以及膽固醇,都具有能力使複雜脂質系統不穩定化。
摘要(英) Gallstone in humans is a very commonly seen example of biomineralization. There are almost tens of millions of patients in the world. Three types of gallstones occur in humans: cholesterol gallstones and two kinds of pigments stones (brown and black pigment stones), but cholesterol gallstones are the most common in humans. Cholesterol gallstones are almost composed of cholesterol anhydrous or monohydrate crystals and calcium carbonate. After studying an extensive of references, there are no specific researches on the link between cholesterol crystallization and calcium carbonate crystallization. So, three important goals in this thesis are performed to find out the cholesterol functions in humans. Firstly, an engineering data bank of solubility, polymorphism, crystal habits and crystallinity by solvent screening for cholesterol monohydrate was established and a robust, miniature solvent screening method was introduced. Secondly, composition of model bile was described in detailed and a wide selection of instruments was used to analyze the structure of complex lipid system. Thirdly, crystallization of calcium carbonate and a supersaturated model bile system was utilized and to study the interactions among lipids and calcium ions by analyzing the crystal habits, polymorphism, crystallization kinetic and composition of cholesterol anhydrous and monohydrate crystals and calcium carbonate crystals from different conditions. By answering these questions, we will more specific understand biomineration in humans. Besides, we also found:
(1) Lecithin was capable of inducing the formation of vaterite or slowing down the vaterite to calcite transformation.
(2) Microstructure of complex lipid system could control the crystallization of calcium carbonate.
(3) Crystallization of cholesterol could be induced by the destabilization of complex lipid system and became an auto-catalytic process in gallstone formation.
(4) Biliary components in human, such as calcium ions, bile salts, bicarbonate ions, lysozyme and cholesterol were capable of destabilizing the complex lipid system
關鍵字(中) ★ 膽固醇
★ 膽結石
★ 複雜脂質系統
★ 生物礦化
關鍵字(英) ★ complex lipid system
★ biomimetic
★ gallstone
★ cholesterol
論文目次 Table of Contents
摘要 I
Abstract iii
Acknowledgments v
Table of Contents vi
List of Tables x
List of Figures xii
Chapter 1 Executive Summary 1
1.1 Introduction 1
1.2 Brief Introduction of Cholesterol 4
1.3 Brief Introduction of Calcium Carbonate in Gallstones 5
1.4 Conceptual Framework 6
1.5 References 8
Chapter 2 Analytical Instruments 15
2.1 Introduction 15
2.2 Microscopic Methods 19
2.2.1 Hot Stage & Optical Microscopy (HSOM) 19
2.2.2 Low Vacuum Scanning Electron Microscopy (LVSEM) 20
2.2.3 Transmission Electron Microscopy (TEM) 24
2.3 Thermal Analysis Methods 26
2.3.1 Low Temperature Differential Scanning Calorimetry (LTDSC) 26
2.3.2 Thermogravimetric Analysis (TGA) 28
2.4 Spectroscopy Analysis Methods 30
2.4.1 Fourier Transform Infrared (FT-IR) Spectroscopy 30
2.4.2 Dynamic light scattering (DLS) 32
2.5 Crystallographic Analysis Methods 35
2.5.1 Powder X-ray Diffractometry (PXRD) 35
2.6 Calcium Ion-Selective Electrode 38
2.7 Conclusions 40
2.8 References 41
Chapter 3 Solubility, Crystal Habit, Crystallinity, and Polymorphism of Cholesterol Monohydrate by Initial Solvent Screening 45
3.1 Introduction 45
3.1.1 Solubility 48
3.1.2 Crystal Habit 49
3.1.3 Crystallinity 50
3.1.4 Polymorphism 50
3.1.5 Hansen Parameters 52
3.2 Materials 54
3.2.1 Cholesterol monohydrate 54
3.2.2 Solvents 59
3.3 Experimental Section 63
3.3.1 Initial solvent screening 63
3.3.2 Analytical measurements 64
3.4 Results and Discussion 67
3.4.1 Solubility 67
3.4.2 Crystal habits 74
3.4.3 Crystallinity 79
3.4.4 Polymorphism 80
3.4.5 Hansen parameters 82
3.5 Conclusions 88
3.6 References 90
Chapter 4 Crystallization of Calcium Carbonate in Taurocholate-Lecithin-Cholesterol (Model Bile) Complex Fluid System 95
4.1 Introduction 95
4.2 Materials 100
4.2.1 Chemical Component 100
4.2.2 Organic Solvents 103
4.3 Experimental Procedures 104
4.3.1 Model Bile Preparation 104
4.3.2 Calcium Carbonate Crystallization 107
4.3.3 Experimental Conditions 109
4.4 Analytical Instruments 114
4.5 Results and Discussions 118
4.5.1 Spectroscopic analysis 118
4.5.2 Microscopic analysis 125
4.5.3 Thermal analysis 136
4.5.4 Crystallographic analysis 138
4.5.5 Calcium ion-selective electrode analysis 143
4.6 Conclusions 152
4.7 References 154
Chapter 5 Conclusions and Future Work 164
5.1 Initial Solvent Screening 164
5.2 Calcium Carbonate Crystallization in Model bile 164
5.3 Future Work 165
Appendixes 166
參考文獻 Chapter 1
E. W. Toor, D. F. Evans, and E. L. Cussler, “Cholesterol monohydrate growth in model bile solutions,” Proc. Natl. Acad. Sci., 75(12), 6230-6234 (1978).
D. L. Gantz, D. Q.-H. Wang, M. C. Carey, and D. M. Small, “Cryoelectron microscopy of a nucleating model bile in vitreous ice: formation of primordial vesicles,” Biophys. J., 76(3), 1436-1451 (1999).
N. R. Pattinson, “Solubilisation of cholesterol in human bile,” FEBS., 181(2), 339-342 (1985).
G. J. Somjen, and T. Gilat, “Contribution of vesicular and micellar carriers to cholesterol transport in human bile,” J. Lipid Res., 26(6), 699-704 (1985).
M. C. Carey, and D. M. Small, “The physical chemistry of cholesterol solubility in bile,” J. Clin. Invest., 61(4), 998-1026 (1978).
W. H. Admirand, and D. M. Small, “The physicochemical basis of cholesterol gallstone formation in man,” J. Clin. Invest., 47(5), 1043-1052 (1968).
N. Ulloa, J. Garrido, and F. Nervi, “Ultracentrifugal isolation of vesicular carriers of biliary cholesterol in native human and rat bile,” Hepatology, 7(2), 235-244 (1987).
P. Portincasa, A. Moschetta, K. J. van Erpecum, G. Calamita, A. Margari, G. P. van Berge-Henegouwen, and G. Palasciano, “Pathways of cholesterol crystallization in model bile and native bile,” Digestive and Liver Disease, 35(2), 118-126 (2003).
M. C. Carey, “Pathogenesis of gallstones,” Am. J. Surg., 165(4), 410-419 (1993).
H. Igimi, M. C. Carey, “Cholesterol gallstone dissolution in bile: dissolution kinetics of crystalline (anhydrate and monohydrate) cholesterol with chenodeoxycholate, ursodeoxycholate, and their glycine and taurine conjugates,” J. Lipid Res., 22(2) 254-270 (1981).
F. M. Konikoff, D. S. Chung, J. M. Donovan, D. M. Small, and M. C. Carey, “Filamentous, helical, and tubular microstructures during cholesterol crystallization from bile – evidence that cholesterol does not nucleate classic monohydrate plates,” J. Clin. Invest., 90(3), 1155-1160 (1992).
D. E. Cohen, M. Angelico, and M. C. Carey,” Structural alterations in lecithin-cholesterol vesicles following interactions with monomeric and micellar bile salts: physical-chemical basis for subselection of biliary lecithin species and aggregative states of biliary lipids during bile formation,” J. Lipid Res., 31(1), 55-70 (1990).
J. M. Donovan, N. Timofeyeva, and M. C. Carey, “Influence of total lipid concentration, bile salt:lecithin ratio, and cholesterol content on inter-mixed micellar/vesicular (non-lecithin- associated) bile salt concentrations in model bile,” J. Lipid Res., 32(9), 1501-1512 (1991).
D. Q. Wang, and M. C. Carey, “Complete mapping of crystallization pathways during cholesterol precipitation from model bile: influence of physical-chemical variables of pathophysiologic relevance and identification of a stable liquid crystalline state in cold, dilute and hydrophilic bile salt-containing systems,” J. Lipid Res., 37(3), 606-630 (1996).
R. D. Stauffer, and F. Bischoff, “Solubility determination of cholesterol polymorphs in organic solvents,” Clin. Chem., 12(4), 206-210 (1966).
H. S. Shieh, L. G. Hoard, and C. E. Nordman, “Crystal structure of anhydrous cholesterol,” Nature, 267(5608), 287-289 (1977).
B. M. Craven, “Crystal structure of cholesterol monohydrate,” Nature, 260(5553), 727-729 (1976).
C. R. Loomis, G. G. Shipley, and D. M. Small, “The phase behavior of hydrated cholesterol,” J. Lipid Res., 20(4), 525-535 (1979).
H. Y. Saad, and W .I. Higuchi, “Water solubility of cholesterol,” J. Pharm. Sci., 54(8), 1205-1206 (1965).
G. L. Flynn, Y. Shah, S. Prakongpan, K. H. Kwan, W. I. Higuchi, and A. F. Hofmann, “Cholesterol solubility in organic solvents,” J. Pharm. Sci., 68(9), 1090-1097 (1979).
N. Garti, L. Karpuj, and S. Sarig, “Correlation between crystal habit and the composition of solvated and nonsolvated cholesterol crystals,” J. Lipid Res., 22(5), 785-791 (1981).
N. R. Pattinson, “Solubilisation of cholesterol in human bile,” Feder. Eur. Biochem. Soc., 181(2), 339-342 (1985).
R. T. Holzbach, and N. Busch, “Nucleation and growth of cholesterol crystals – kinetic determinants in supersaturated native bile,” Gastroenterology Clinics of North America, 20(1), 67-84 (1991).
D. Jungst, R. Del Pozo, M. H. Dolu, S. G. Schneeweiss, and E. Frimberger, “Rapid formation of cholesterol crystals in gallbladder bile is associated with stone recurrence after laparoscopic cholecystotomy,” Hepatology, 25(3), 509-513 (1997).
C. L. Liu, and C. F. Hsu, “Cholesterol monohydrates dissolution in bile salt-lecithin solutions,” J. Chin. Chem. Soc., 47(3), 461-467 (2000).
T. Nishioka, S. Tazuma, G. Yamashita, and G. Kajiyama, “Partial replacement of bile salts causes marked changes of cholesterol crystallization in supersaturated model bile systems,” Biochem. J., 340(2), 445-451 (1999).
H. Rapaport, I. Kuzmenko, S Lafont, K. Kjaer, P. B. Howes, J. Als-Nielsen, M. Lahav, and L. Leiserowitz, “Cholesterol monohydrate nucleation in ultrathin films on water,” Biophys. J., 81(5), 2729-2736 (2001).
R. S. Abendan, and J. A. Swift, “Surface characterization of cholesterol monohydrate single crystals by chemical force microscopy,” Langmuir, 18(12), 4847-4853 (2002).
R. C. Srivastava, and R. P. S. Jakhar, “Transport through liquid membranes generated by lecithin-cholesterol mixtures,” J. Phys. Chem., 86(5), 1441-1445 (1982).
R. M. Epand, R. F. Epand, D. W. Hughes, B. G. Sayer, N. Borochov, D. Bach, and E. Wachtel, “Phosphatidylcholine structure determines cholesterol solubility and lipid polymorphism,” Chem. Phys. Lipids., 135(1), 39-53 (2005).
D. E. Cohen, M. Angelico, and M. C. Carey, “Structural alterations in lecithin-cholesterol vesicles following interactions with monomeric and micellar bile salts: physical-chemical basis for subselection of biliary lecithin species and aggregative states of biliary lipids during bile formation,” J. Lipid Res., 31(1), 55-70 (1990).
H. Igimi, M. C. Carey, “Cholesterol gallstone dissolution in bile: dissolution kinetics of crystalline (anhydrate and monohydrate) cholesterol with chenodeoxycholate, ursodeoxycholate, and their glycine and taurine conjugates,” J. Lipid Res., 22(2) 254-270 (1981).
F. M. Konikoff, D. S. Chung, J. M. Donovan, D. M. Small, and M. C. Carey, “Filamentous, helical, and tubular microstructures during cholesterol crystallization from bile – evidence that cholesterol does not nucleate classic monohydrate plates,” J. Clin. Invest., 90(3), 1155-1160 (1992).
D. E. Cohen, M. Angelico, and M. C. Carey,” Structural alterations in lecithin-cholesterol vesicles following interactions with monomeric and micellar bile salts: physical-chemical basis for subselection of biliary lecithin species and aggregative states of biliary lipids during bile formation,” J. Lipid Res., 31(1), 55-70 (1990).
J. M. Donovan, N. Timofeyeva, and M. C. Carey, “Influence of total lipid concentration, bile salt:lecithin ratio, and cholesterol content on inter-mixed micellar/vesicular (non-lecithin- associated) bile salt concentrations in model bile,” J. Lipid Res., 32(9), 1501-1512 (1991).
D. Q. Wang, and M. C. Carey, “Complete mapping of crystallization pathways during cholesterol precipitation from model bile: influence of physical-chemical variables of pathophysiologic relevance and identification of a stable liquid crystalline state in cold, dilute and hydrophilic bile salt-containing systems,” J. Lipid Res., 37(3), 606-630 (1996).
W. J. Claffey, and R. T. Holzbach, “Dimorphism in bile salt/lecithin mixed micelles,” Biochemistry, 20(2), 415-418 (1981).
N. Rajagopalan, and S. Lindenbaum, “Kinetics and thermodynamics of the formation of mixed micelles of egg phosphatidylcholine and bile salts,” J. Lipid Res., 25(2), 135-147 (1984).
N. A. Mazer, G. B. Benedek, and M. C. Carey, “Quasielastic light-scattering studies of aqueous biliary lipid systems. mixed micelle formation in bile salt-lecithin solution,” Biochemistry, 19(4), 601-615 (1980).
D. Meyuhas, A. Bor, I. Pinchuk, A. Kaplun, Y. Talmon, M. M. Kozlov, and D. Lichtenberg, “Effect of ionic strength on the self-assembly in mixtures of phosphatidylcholine and sodium cholate,” J. Colloid Inter. Sci., 188(2), 351-362 (1997).
D. D. Lasic, “Kinetic and thermodynamic effects on the structure and formation of phosphatidylcholine vesicles,” Hepatology, 13(5), 1010-1012 (1991).
P. K. Vinson, Y. Talmon, and A. Walter, “Vesicle-micelle transition of phosphatidylcholine and octyl glucoside elucidated by cryo-transmission electron microscopy,” Biophys. J., 56(4), 669-681 (1989).
Y. Li, J. F. Holzwarth, and C. Bohne, “Aggregation dynamics of sodium taurodeoxycholate and sodium deoxycholate,” Langmuir, 16(4), 2038-2041 (2000).
E. Bottari, A. A. D’Archivio, M. R. Festa, L. Galantini, and E. Giglio, “Structure composition of sodium taurocholate micellar aggregates,” Langmuir, 15(8), 2996-2998 (1999).
R. Holzbach, “ Nucleation of cholesterol crystals in native bile,” Hepatology 12(3 Pt 2), 155-159 (1990).
D. R. Taylor, R. S. Crowther, J. C. Cozart, P. Sharrock, J. Wu, and R. D. Soloway, “Calcium carbonate in cholesterol gallstones: polymorphism, distribution, and hypotheses about pathogenesis,” Hapatology, 22(2), 488-496 (1995).
P. Portincasa, A. Moschetta, and G. Palasciano, “Cholesterol gallstone disease,” Seminar, 368(9531), 230-239 (2006).
...........................................................
Chapter 2
D. J. W. Grant, “Theory and origin of polymorphism,” Chapter 1 in “Polymorphism in pharmaceutical solids,” edited by H. G. Brittain, (Marcel Dekker, Inc., New York, 1999) pp. 1-21.
J. Haleblian, and W. McCrone, “Pharmaceutical applications of polymorphism,” J. Pharm. Sci., 58(8), 911-929 (2006).
A. K. Tiwary, “Modification of crystal habit and its role in dosage form performance,” Drug. Dev. Ind. Pharm. 27(7): 699-709 (2001).
T. L. Threlfall, “Analysis of organic polymorphs: a review,” Analyst, 120(10), 2435-2460 (1995).
V. Koradia, G. Chawla, and A. K. Bansal, “Qualitive and quantitative analysis of clopidogrel bisulphate polymorphs,” Acta Pharm. 54(3), 193-204 (2004).
G. Chawala, and A. K. Bansal, “Challenges in polymorphism of pharmaceuticals,” CRIPS 5(1), 9-12 (2004).
G. Nichols, and C. S. Frampton, “Physicochemical characterization of the orthorhombic polymorph of paracetamol crystallized from solution,” J. Pharm. Sci., 87(6), 684-693 (1998).
L. Yu, S. M. Reutzel, and G. A. Stephenson, “Physical characterization of polymorphic drugs: an integrated characterization strategy,” PSTT, 1(3), 118-127 (1998).
M. Cölle, J. Gmeiner, W. Milius, H. Hillebrecht, W. Brütting, “Preparation and Characterization of Blue-Luminescent Tris(8-hydroxyquinoline)-aluminum (Alq3),” Adv. Funct. Mater., 13(2), 108-112 (2003).
D. L. Pavia, G. M. Lampman, G. S. Kriz, “Introduction to spectroscopy,” Chapter 2 in “Infrared Spectroscopy,” 3nd Edition, (Brooks/COLE Thomson Learning, USA, 2001) pp.13-24.
K. Gotoh, H. Masuda, and K. Higashitani, “Optical Properties,” Chapter 2 in “Powder technology handbook,” 2nd Edition, (Marcel Dekker, Inc, New York, 1997) pp. 92.
J. E. Macur, J. Marti, and S. C. Lui, “Microscopy,” Chapter 8 in “Matericals characterization and chemical analysis,” 2nd Edition, (J. P. Sibilia, Wiley-Vch, New York, USA, 1996) pp. 167-177.
K. Gotoh, H. Masuda, and K. Higashitani, “Powder-handling operation,” Chapter 5 in “Powder technology handbook,” 2nd Edition, (Marcel Dekker, Inc, New York, 1997) pp. 413-730.
D. A. Skoog, F. J. Holler and T. A. Nieman, “Surface Characterization by Spectroscopy and Microscopy,” Chapter 21 in “Principles of instrumental analysis,” 5nd Edition, (Thomson Learning, USA, 2001), pp. 549-553.
R. E. Reed-hill, “Analytical Methods,” Chapter 2 in “Physical Metallurgy Principles,” 3nd Edition, edited by J. Plant, (PWS Publishing Company, Boston, USA, 1994), pp.53-60.
S. D. Russell and C. P. Daghlian, “Scanning electron microscopic observations on deembedded biological tissue sections: Comparison of different fixatives and embedding materials,” J. Electron. Microsc. Tech., 2(5), 489-495 (1985).
W. E. Lee, and K. P. D. Lagrelof, “Structural and electron diffraction data for sapphire (α-Al2O3),” J. Electron Microsc., 2(3), 247-258 (1985).
E. V. Boldyerva, V. A. Drebushchak, I. E. Paukov, Y. A. Kovalevskaya, and T. N. Drebushchak, “DSC and adiabatic calorimetry study of the polymorphs of paracetamol,” J. of Them. Anal. Calor., 77(2), 607-623 (2004).
S. D. Clas, C. R. Dalton and B. C. Hancock, “Differential scanning calorimetry: applications in drug development,” PSTT 2(8), 311-320 (1999).
D. A. Skoog, F. J. Holler and T. A. Nieman, “Thermal Methods,” Chapter 31 in “Principles of instrumental analysis,” 5th Edition, (Thomson Learning, USA, 2001), pp. 798-801.
F. Rouessac, and A. Rouessac, “Chemical Analysis-modern Instrumentation Methods and Techniques,” Chapter 10 in “Infrared spectroscopy,” 1st Edition, (John Willy & Sons, chichester, England, 2001), pp.170-173.
D. A. Skoog, F. J. Holler, and T. A. Nieman, “Components of Optical Instrument,” Chapter 7 in “Principles of Instrumental Analysis,” 5th Edition, (Thomson Learning, Mississippi, USA, 2001), pp. 182-183.
A. Bauer-Brandl, “Polymorphic Transitions of Cimetidine during Manufacture of Solid Dosage Forms,” Int. J. Pharm., 140(2), 195-206 (1996).
N. S. Murthy, and F. Reidinger, “X-ray analysis,” Chapter 7 in “Matericals characterization and chemical analysis,” J. P. Sibilia, (Wiley-Vch , New York, USA, 1996) pp. 143-149.
M. Davidovich, J. Dimarco, J. Z. Gougoutas, R. P. Scaringe, I. Vitez, S. Yin, “Detection of polymorphic artifacts in powder x-ray diffraction determination,” Am. Pharm. Rev., 138 (1), 1-2 (1996).
..........................................................
Chapter 3
T. Togkalidou, R. D. Braatz, B. K. Johnson, O. Davidson, and A. Andrews, “Experimental Design and Inferential Modeling in Pharmaceutical Crystallization,” AIChE Journal, 47(1), 160-168 (2001).
T. Lee, C. S. Kuo, and Y. H. Chen, “Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening,” Pharm. Tech., 30(10), 72-92 (2006).
R. Holzbach, “Nucleation of cholesterol crystals in native bile,” Hepatology 12(3 Pt 2), 155-159 (1990).
H. G. Brittain, and D. J. W. Grant, Chapter 7:“Effect of Polymorphism” “Polymorphism in Pharmaceutical Solids.” Edited by H. G. Brttain, (Marcel Dekker, New York, 1999) pp. 279-330.
C. Reichardt, Chapter 2: “Solute-Solvent Interactions” “Solvents and Solvent Effects in Organic Chemistry,” Edited by C. Reichardt, (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006) pp. 5-46.
T. Lee, and M. S. Lin, “Sublimation Point Depression of Tris(8-hydroxyquinoline)
aluminum(III) (Alq3) by Crystal Engineering,” J. Crys. Growth, 7(9), 1803-1810 (2007).
R. D. Stauffer and F. Bischoff, “Solubility determination of cholesterol polymorphs in organic solvents,” Clin. Chem., 12 (4), 206-210 (1966).
C. J. Price, “Take Some Solid Steps to Improve Crystallization,” Chem. Eng. Prog., 93(9), 34-43 (1997).
J. W. Mullin, “Crystal Habit Modification.”, Chapter 6.4 in “Crystallization,” 3rd edition, (Butterworth-Heinemann, Jordan Hill, UK, 1997) pp. 93, 248-250.
P. D. Martino, M. Beccerica, E. Joiris, G. F. Palmieri, A. Gayot, and S. Martelli, “Influence of crystal habit on the compression and densification mechanism of ibuprofen,” J. Crys. Growth, 243(2), 345-355 (2002).
D. Winn, and M. F. Doherty, “A New Technique for Predicting the Shape of Solution-Grown Organic Crystals”, AlChE J., 44(11), 2501-2514 (1998).
A. K. Tiwary, “Modification of crystal habit and its role in dosage form performance,” Drug Dev. Ind. Pharm., 27(7), 699–709 (2001).
D. Gao, and J. H. Rytting, “Use of Solution Calorimetry to Determine the Extent of Crystallinity of Drugs and Excipients,” Int. J. Pharm., 151(2), 183-192 (1997).
P. J. Haines, “Thermal Methods of Analysis – Principles, Applications and Problems,” (Blackie Academic & Professional, London, UK, 1995) p. 89.
R. Hilfiker, F. Blatter, M. V. Raumer, chapter 1: “Relevance of solid-state properties for pharmaceutical products.”, “polymorphism in pharmaceutical industry.” R. Hilfiker, (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006) pp. 1-19.
B. Rodriguez-Spong, C. P. Price, A. Jayasankar, A. J. Matzger, and N. Rodriguez-Hornedo, “General principles of pharmaceutical solid polymorphism: a supramolecular perspective,” Adv. Drug Del. Rev., 56(2), 241-271(2004).
T. Threlfall, “Crystallization of polymorphs: thermodynamic insight into the role of solvent,” Org. Process Res. Dev., 4(5) 384-390 (2000).
P. T. Cardew, and R. J. Davey, “The kinetics of solvent-mediated phase transformation,” Math. Phys. Sci., 398(1815), 415-428 (1985).
D. Giron, “Thermal analysis and calorimetric methods in the characterization of polymorphs and solvates,” Thermochim. Acta, 248(1), 1-59 (1995).
B. C. Hancock, P. York, and R. C. Rowe, “The use of solubility parameters in pharmaceutical dosage form design,” Int. J. Pharm., 148(1), 1-21 (1997).
A. F. M. Barton, “Handbook of solubility parameters and other cohesion parameter,” 2nd edition, (CRC Press, USA, 1991) pp. 69-149.
T. Lee, Y. H. Chen, and C. W. Zhang, “Solubility, polymorphism, crystallinity, crystal habit, and drying scheme of (R, S)-(±)-sodium ibuprofen dehydrate,” Pharm. Tech., 31(6), 72-87 (2007).
J. Kaloustian1, A. M. Pauli, P. Lechene de la Porte, H. Lafont and H. Portugal, “Thermal analysis of anhydrous and hydrate cholesterol: Application to gallstones,” J. Therm. Anal. Calorim. 71(2), 341-351 (2003).
R. M. Epand, A. D. Bain, B. G. Sayer, D. Bach, and E. Wachtel, “Properties of mixtures of cholesterol with phosphatidylcholine or with phosphatidylserine studied by 13C magic angle spinning nuclear magnetic resonance,” Bio. J., 83(4), 2053-2063 (2002).
C. R. Loomis, G. G. Shipley, and D. M. Small, “The phase behavior of hydrated cholesterol,” J. Lip. Res. 20(4) 525-535 (1979).
R. D. Stauffer and F. Biscoff, “ Observation on the interconversions of cholesterol crystal forms,” A. C. S. 148th Meeting p. 29 (1964).
N. Garti, L. Karpuj, and S. Sarig, “Correlation between crystal habit and the composition of solvated and nonsolvated cholesterol crystals,” J. Lip. Res., 22(5), 785-791 (1981).
N. G. Anderson, Practical Process Research & Development (Academic Press, New York, NY, 2000), pp. 81–111.
S. L. Morissette, O. Almarsson, M. L. Peterson, J. F. Remenar, M. J. Read, A. V. Lemmo, S. Ellis, M. J. Cima, and C. R. Gardner, “High-throughput Crystallization: Polymorphs, Salts Co-Crystals and Solvates of Pharmaceutical Solids,” Adv. Drug Del. Rev., 56(3), 275-300 (2004).
G. L. Flynn, Y. Shah, S. Parakongpan, K. H. Kwan, W. I. Higuchi, and A. F. Hofmann, “ Cholesterol solubility in organic solvents,” J. Pharm. Sci., 68(9), 1090-1097 (1979).
Z. Berkovitch-Yellin, J. Van Mil, L. Addadi, M. Idelson, M. Lahav, and L. Leiserowitz, “Crystal morphology engineering by" tailor-made" inhibitors; a new probe to fine intermolecular interactions,” J. Am. Chem. Soc., 107(11), 3111-3122 (1985).
I. Ludlam-Brown, and P. York, “The crystalline modification of succinic and by variations in crystallization conditions,” J. Phys. D Appl. Phys., 26(8B), B60-B65 (1993).
K. V. Putte, W. Skoda, and M. Petroni, “Phase transition and CH3-rotation in solid cholesterol,” Chem. Phys. Lipids, 2(4), 361-371 (1968).
R. M. Epand, D. Bach, N. Borochov, and E. Wachtel, “Cholesterol crystalline polymorphism and the solubility of cholesterol in phosphatidylserine,” Bio. J., 78(2), 866-873 (2000).
...........................................................
Chapter 4
P. J. J. A. Buijnsters, J. J. J. M. Donners, S. J. Hill, B. R. Heywood, R. J. M. Nolte, B. Zwanenburg, and N. A. J. M. Sommerdijk, “Oriented crystallization of calcium carbonate under self-organized monolayers of amide-containing phospholipids,” Langmuir, 17(12), 3623-3628 (2001).
S. Mann, B. R. Heywood, S. Rajam, and J. D. Birchall, “Controlled crystallization of CaCO3 under stearic acid monolayers,” Nature, 334(6184), 692-695 (1988).
S. Rajam, B. R. Heywood, J. B. A. Walker, and S. Mann, “Oriented crystallization of CaCO3 under compressed monolayers. Part 1. – Morphological studies of mature crystals,” J. Chem. Soc. Faraday Trans., 87(5), 727-734 (1991).
B. R. Heywood, S. Rajam, and S. Mann, “Oriented crystallization of CaCO3 under compressed Monolayers. Part 2. – Morphology, structure and growth of immature crystals,” J. Chem. Soc. Faraday Trans., 87(5), 735-743 (1991).
B. R. Heywood, and S. Mann. “Molecular construction of oriented Inorganic materials: Controlled nucleation of calcite and aragonite under compressed langmuir monolayers,” Chem. Mater., 6(3), 311-318 (1994).
A. W. Xu, M. Antonietti, S. H. Yu, and H. Colfen, “Polymer-mediated minerlization and self-similar mesoscale-organized calcium carbonate with unusual superstructures,” Adv. Mater., 20(7), 1333-1338 (2008).
C. Marteau, G. Blanc, M. A. Devaux, H. Portugal, and A. Gerolami, “Infulence of pancreatic ducts on saturation of juice with calcium carbonate in dogs,” Digestive Diseases and Sciences, 38(11), 2090-2097 (1993).
D. R. Taylor, R. S. Crowther, J. C. Cozart, P. Sharrock, J. Wu, and R. D. Soloway, “Calcium carbonate in cholesterol gallstones: polymorphism, distribution, and hypotheses about pathogenesis,” Hapatology, 22(2), 488-496 (1995).
A. W. Xu, W. F. Dong, M. Antonietti, and H. Colfen, “Polymorph switching of calcium carbonate crystals by polymer-controlled crystallization,” Adv. Funct. Mater., 18(8), 1307–1313 (2008).
M. C. Carey, “Pathogenesis of gallstones,” Am. J. Surg., 165(4), 410-419 (1993).
H. Igimi, M. C. Carey, “Cholesterol gallstone dissolution in bile: dissolution kinetics of crystalline (anhydrate and monohydrate) cholesterol with chenodeoxycholate, ursodeoxycholate, and their glycine and taurine conjugates,” J. Lipid Res., 22(2), 254-270 (1981).
F. M. Konikoff, D. S. Chung, J. M. Donovan, D. M. Small, and M. C. Carey, “Filamentous, helical, and tubular microstructures during cholesterol crystallization from bile – evidence that cholesterol does not nucleate classic monohydrate plates,” J. Clin. Invest., 90(3), 1155-1160 (1992).
D. E Cohen, M. Angelico, and M. C. Carey,” Structural alterations in lecithin-cholesterol vesicles following interactions with monomeric and micellar bile salts: physical-chemical basis for subselection of biliary lecithin species and aggregative states of biliary lipids during bile formation,” J. Lipid Res., 31(1), 55-70 (1990).
J. M. Donovan, N. Timofeyeva, and M. C. Carey, “Influence of total lipid concentration, bile salt:lecithin ratio, and cholesterol content on inter-mixed micellar/vesicular (non-lecithin- associated) bile salt concentrations in model bile,” J. Lipid Res., 32(9), 1501-1512 (1991).
D. Q. Wang, and M. C. Carey, “Complete mapping of crystallization pathways during cholesterol precipitation from model bile: influence of physical-chemical variables of pathophysiologic relevance and identification of a stable liquid crystalline state in cold, dilute and hydrophilic bile salt-containing systems,” J. Lipid Res., 37(3), 606-630 (1996).
R. D. Stauffer, and F. Bischoff, “Solubility determination of cholesterol polymorphs in organic solvents,” Clin. Chem., 12(4), 206-210 (1966).
H. S. Shieh, L. G. Hoard, and C. E. Nordman, “Crystal structure of anhydrous cholesterol,” Nature, 267(5608), 287-289 (1977).
B. M. Craven, “Crystal structure of cholesterol monohydrate,” Nature, 260(5553), 727-729 (1976).
C. R. Loomis, G. G. Shipley, and D. M. Small, “The phase behavior of hydrated cholesterol,” J. Lipid Res., 20(4), 525-535 (1979).
H. Y. Saad, and W. I. Higuchi, “Water solubility of cholesterol,” J. Pharm. Sci., 54(8), 1205-1206 (1965).
G. L. Flynn, Y. Shah, S. Prakongpan, K. H. Kwan, W. I. Higuchi, and A. F. Hofmann, “Cholesterol solubility in organic solvents,” J. Pharm. Sci., 68(9), 1090-1097 (1979).
N. Garti, L. Karpuj, and S. Sarig, “Correlation between crystal habit and the composition of solvated and nonsolvated cholesterol crystals,” J. Lipid Res., 22(5), 785-791 (1981).
N. R. Pattinson, “Solubilisation of cholesterol in human bile,” Feder. Eur. Biochem. Soc., 181(2), 339-342 (1985).
R. T. Holzbach, and N. Busch, “Nucleation and growth of cholesterol crystals – kinetic determinants in supersaturated native bile,” Gastroenterology Clinics of North America, 20(1), 67-84 (1991).
D. Jungst, R. Del Pozo, M. H. Dolu, S. G. Schneeweiss, and E. Frimberger, “Rapid formation of cholesterol crystals in gallbladder bile is associated with stone recurrence after laparoscopic cholecystotomy,” Hepatology, 25(3), 509-513 (1997).
C. L. Liu, and C. F. Hsu, “Cholesterol monohydrates dissolution in bile salt-lecithin solutions,” J. Chin. Chem. Soc., 47(3), 461-467 (2000).
T. Nishioka, S. Tazuma, G. Yamashita, and G. Kajiyama, “Partial replacement of bile salts causes marked changes of cholesterol crystallization in supersaturated model bile systems,” Biochem. J., 340(2), 445-451 (1999).
H. Rapaport, I. Kuzmenko, S Lafont, K. Kjaer, P. B. Howes, J. Als-Nielsen, M. Lahav, and L. Leiserowitz, “Cholesterol monohydrate nucleation in ultrathin films on water,” Biophys. J., 81(5), 2729-2736 (2001).
R. S. Abendan, and J. A. Swift, “Surface characterization of cholesterol monohydrate single crystals by chemical force microscopy,” Langmuir, 18(12), 4847-4853 (2002).
R. C. Srivastava, and R. P. S. Jakhar, “Transport through liquid membranes generated by lecithin-cholesterol mixtures,” J. Phys. Chem., 86(5), 1441-1445 (1982).
R. M. Epand, R. F. Epand, D. W. Hughes, B. G. Sayer, N. Borochov, D. Bach, and E. Wachtel, “Phosphatidylcholine structure determines cholesterol solubility and lipid polymorphism,” Chem. Phys. Lipids., 135(1), 39-53 (2005).
D. E. Cohen, M. Angelico, and M. C. Carey, “Structural alterations in lecithin-cholesterol vesicles following interactions with monomeric and micellar bile salts: physical-chemical basis for subselection of biliary lecithin species and aggregative states of biliary lipids during bile formation,” J. Lipid Res., 31(1), 55-70 (1990).
C. L. Liu, and W. I. Higuchi, “Cholesterol crystallite nucleation in supersaturated model biles from a thermodynamic standpoint,” Biochim. Biophys. Acta, Mol. Basis Dis., 1588(1), 15-25 (2002).
W. J. Claffey, and R. T. Holzbach, “Dimorphism in bile salt/lecithin mixed micelles,” Biochemistry, 20(2), 415-418 (1981).
C. L. Liu, and M. S. Weng,” Estimation of the taurocholate to lecithin molar ratio of mixed micelles in taurocholate-lecithin solutions by an interaction model and laser light-scattering measurements,” J. Chin. Chem. Soc., 50(3A), 353-360 (2003).
N. Rajagopalan, and S. Lindenbaum, “Kinetics and thermodynamics of the formation of mixed micelles of egg phosphatidylcholine and bile salts,” J. Lipid Res., 25(2), 135-147 (1984).
N. A. Mazer, G. B. Benedek, and M. C. Carey, “Quasielastic light-scattering studies of aqueous biliary lipid systems. mixed micelle formation in bile salt-lecithin solution,” Biochemistry, 19(4), 601-615 (1980).
D. Meyuhas, A. Bor, I. Pinchuk, A. Kaplun, Y. Talmon, M. M. Kozlov, and D. Lichtenberg, “Effect of ionic strength on the self-assembly in mixtures of phosphatidylcholine and sodium cholate,” J. Colloid Inter. Sci., 188(2), 351-362 (1997).
D. D. Lasic, “Kinetic and thermodynamic effects on the structure and formation of phosphatidylcholine vesicles,” Hepatology, 13(5), 1010-1012 (1991).
P. K. Vinson, Y. Talmon, and A. Walter, “Vesicle-micelle transition of phosphatidylcholine and octyl glucoside elucidated by cryo-transmission electron microscopy,” Biophys. J., 56(4), 669-681 (1989).
Y. Li, J. F. Holzwarth, and C. Bohne, “Aggregation dynamics of sodium taurodeoxycholate and sodium deoxycholate,” Langmuir, 16(4), 2038-2041 (2000).
E. Bottari, A. A. D’Archivio, M. R. Festa, L. Galantini, and E. Giglio, “Structure composition of sodium taurocholate micellar aggregates,” Langmuir, 15(8), 2996-2998 (1999).
R. H. Dowling, “Review: pathogenesis of gallstones,” Aliment. Pharmacol. Ther., 14(2), 39-47 (2002).
S. M. Meyerhoffer, and L. B. McGown, “Critical micelle concentration behavior of sodium taurocholate in water,” Langmuir, 6(1), 187-191 (1990).
S. Kuroki, B. I. Cohen, M. C. Carey, and E. H. Mosbach, “Rapid computation with the personal computer of the percent cholesterol saturation of bile samples,” J. Lipid Res., 27(4), 442-446 (1986).
R. C. Srivastava, and R. P. S. Jakhar, “Transport through liquid membranes generated by lecithin-cholesterol mixtures,” J. Phys. Chem., 86(8), 1441-1445 (1982).
D. L. Gantz, D. Q.-H. Wang, M. C. Carey, and D. M. Small, “Cryoelectron microscopy of a nucleating model bile in vitreous ice: formation of primordial vesicles,” Biophys. J., 76(3), 1436-1451 (1999).
M. C. Carey, “Critical tables for calculating the cholesterol saturation of native bile,” J. Lipid Res., 19(8), 945-955 (1978).
D. Q-H. Wang, and M. C. Carey, “Characterization of crystallization pathways during cholesterol precipitation from human gallbladder biles: identical pathways to corresponding model biles with three predominating sequences,” J. Lipid Res., 37(12), 2539-2549 (1996).
A. J. Xie, Y. F. Yang, C. L. Yao, Y. H. Shen, Y. M. Yang, X. R. Yu, C. Y. Zhang, and X. M. Zhu, “Influence of calcium binding proteins on the precipitation of calcium carbonate: A kinetic and morphologic study,” Cryst. Res. Technol., 41(12), 1214-1218 (2006).
P. Portincasa, A. Moschetta, K. J. van Erpecum, G. Calamita, A. Margari, G. P. van Berge-Henegouwen, and G. Palasciano, “Pathways of cholesterol crystallization in model bile and native bile,” Digestive and Liver Disease., 35(2), 118-126 (2003).
A. Bauer-Brandl, “Polymorphic transitions of cimetidine during manufacture of solid dosage forms,” Int. J. Pharm., 140(2), 195-206 (1996).
Z. Halpern, M. A. Dudley, M. P. Lynn, J. M. Nader, A. C. Breuer, and R. T. Holzbach, “Vesicle aggregation in model systems of supersaturated bile: relation to crystal nucleation and lipid composition of the vesicular phase,” J. Lipid Res., 27(3), 295-306 (1986)
D. Papahadjopoulos, W. J. Vail, C. Newton, S. Nir, K. Jacobson, G. Poste, and R. Lazo, “Studies on membrane fusion. III. The role of calcium-induced phase changes,” Biochim. Biophys. Acta., 465(3), 579-98 (1977).
D. Meyuhas, A. Bor, I. Pinchuk, A. Kaplun, Y. Talmon, M. M. Kozlov, and D. Lichtenberg, “Effect of ionic strength on the self-assembly in mixtures of phosphatidylcholine and sodium cholate,” J. Colloid Inter. Sci., 188(2), 351-362 (1997).
A. Vecht, and T. G. Ireland, “The role of vaterite and aragonite in the formation of pseudo-biogenic carbonate structures: Implications for martian exobiology,” Geochim. Cosmochim. Acta., 64(15), 2719-2725 (2000).
D. O. Shah, and J. H. Schulman, “Binding of metal ions to monolayers of lecithins, plasmalogen, cardiolipin, and dicetyl phosphate,” J. Lipid Res., 6(3), 341-349 (1965)
H. Tong, P. Wan, W. Ma, G. Zhong, L. Cao, and J. Hu, “Yolk spherocrystal: The structure, composition and liquid crystal template,” J. Struct. Biol., 163(1), 1-9 (2008).
H. Grasdalen, E. Göran, J. Westman, and A. Ehrenberg, “Surface potential effects on metal ion binding to phosphatidylcholine membranes 31P NMR study of lanthanide and calcium ion binding to egg-yolk lecithin vesicles,” Biochim. Biophys. Acta., 469(2), 151-156 (1977).
A. W. Xu, M. Antonietti, H. Colfen, and Y. P. Fang, “Uniform hexagonal plates of vaterite CaCO3 mesocrystals formed by biomimetic mineralization,” Adv. Funct. Mater., 16(7), 903-908 (2006).
S. Uematsu, T. Uchida, A. Kinoshita, F. Kimura, and Y. Akahori, “Relation between micellar structure of model bile and activity of esterase,” Biochim. Biophys. Acta., 1258(2), 122-134 (1995).
H. S. Kaufman, T. H. Magnuson, H. A. Pitt, P. Frasca, and K. D. Lillemoe, “The distribution of calcium slat precipitates in core, periphery and shell of cholesterol, black pigment and brown pigment gallstones,” Hepatology, 19(5), 1124-1132 (1994).
T. Ogino, T. Suzuki, and K. Sawada, “The formation and transformation mechanism of calcium carbonate in water,” Geochim. Cosmochim. Acta., 51(10), 2757-2767 (1987).
S. Gouin, and X. X. Zhu, “Fluorescence and NMR studies of the effect of a bile acid dimer on the micellization of bile salts,” Langmuir, 14(15), 4025-4029 (1998).
E. W. Moore, “The role of calcium in the pathogenesis of gallstones: Ca2+ electrode studies of model bile salt solutions and other biologic systems,” Hepatology, 4(5), 228S-243S (1984).
N. Ikeda, F. Marumo, M. Shirataka, and T. Sato, “A model of overall regulation of body fluids,” Ann. Biomed. Eng., 7(2), 135-166 (1979).
D. M. Henderson, “Effects of surfactants on Faraday-wave dynamics,” J. Fluid Mech., 365, 89-107 (1998).
T. G. Gabig, and B. M. Babior, “The killing of pathogens by phagocytes,” Annu. Rev. Med., 32(1), 313-326 (1981).
H. Hauser, M. C. Phillips, B. A. Levine, and R. J. P. Williams, “Ion-binding to phospholipids: Interaction of calcium and lanthanide ions with phosphatidylcholine (Lecithin),” Eur. J. Biochem., 58 (1), 133-144 (1975).
指導教授 李度(Tu Lee) 審核日期 2009-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明