博碩士論文 963204020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.12.162.179
姓名 李昆祐(Kun-You Li)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 醋酸丁酯之液-固相轉移催化合成及其水解研究
(The liquid-solid phase transfer catalyzed acetate substitution of 1-chlorobutane to synthesize n-butyl acetate and the liquid-liquid phase transfer catalyzed hydrolysis of n-butyl acetate to synthesizes 1-butanol.)
相關論文
★ 以溴化四丁基銨鹽電解-電透析合成醋酸四丁基銨鹽及該鹽之精製★ 溴化四丁基銨鹽之製備與其電解─電透析方法以合成氯化四丁基銨鹽之研究
★ 彩色濾光片再生製程強鹼染料廢水之電解-電透析處理以去除廢水中之KOH,並同時合成KOH與NaOCl★ 彩色濾光片玻璃基板再生製程強鹼染料廢液之催化濕式氧化處理
★ 甚高濃度有機廢水之催化溼式氧化處理★ 甚高有機污染強鹼廢水之電透析前處理
★ 甲醇鈉之製備與其與二氯甲烷之液-固相轉移催化甲氧基取代★ 醋酸丙烯酯之液-固相轉移催化合成及其水解研究
★ 鹵化四丁基銨之合成動力學、溶解、萃取及精製研究★ 醋酸戊酯之相轉移催化水解以合成正戊醇之研究
★ 四丁基銨鹽之溶解度、締合常數、活性係數及分佈係數★ 溶劑與陰離子(Y)之結構對一典型相轉移催化親核取代反應BzCl + Bu4NY→BzY + Bu4NCl之反應性之效應
★ 溶劑、親核劑(QBr)陽離子之結構及溫度對相轉移催化反應BzCl + QBr<--> BzBr + QCl 之反應 性之效應★ 溶劑、基質結構及溫度對相轉移催化親核取代反應ROH + Bu4NCl<-->RCl +Bu4NOH 之反應 性之效應
★ 2-胺基噻吖唑衍生物合成與其性質之探討★ 合成1,3-双[5-苯基-1,3,4-
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究探討氯丁烷之液-固相轉移催化醋酸根取代以合成醋酸丁酯並探討醋酸丁酯之液-液相轉移催化水解以合成丁醇。首先考慮氯丁烷、醋酸鈉、相轉移催化劑和溶劑之液-固相轉移催化系統之物理與化學程序,衍導得醋酸丁酯總生成速率方程式。該式中影響醋酸丁酯之生成速率因素包括相轉移催化劑結構(包含陽離子結構與陰離子結構影響)、相轉移催化劑劑量、溶劑(需考慮介電常數、偶極矩)、攪拌速率、溫度、水量等,實驗因素對總生成速率之影響可以用總生成速率方程式解釋。
醋酸丁酯之適當生產條件有兩組,其一為在常壓下生產,此需添加溶劑以提高反應溫度,溶劑方面直接採用醋酸丁酯(產物)為溶劑,此可免溶劑之分離。條件為氯丁烷0.5 mole,醋酸鈉0.6 mole,醋酸丁酯0.24 mole,溴化四丁基銨0.0183 mole,溫度設定為起始溫度90℃,每隔一小時升5℃,2小時後溫度達100℃後維持此溫度至反應結束,轉速300rpm。在此組條件下反應9小時之產率為99%以上。
其二為使用Parr高壓反應器,不需添加溶劑。條件為氯化丁烷0.35 mole,醋酸鈉0.42 mole,溴化四丁基銨0.0080 mole,溫度設定為100℃並維持此溫度至反應結束,轉速300rpm。在此組條件下反應8小時之產率為99%以上。
至於醋酸丁酯之液-液相轉移催化水解合成丁醇方面,因為該反應速度很快,所以考慮以較為溫和的條件來生產,以溫度約30℃與常壓下來進行反應。由於有機相與水相相容性很低,因此需提高轉速以利系統兩相混合,考慮上述因素後,適當生產條件為醋酸丁酯0.3 mole,氫氧化鈉0.3 mole,水0.9 mole,溴化四丁基銨0.0108 mole,溫度30℃,轉速500 rpm。在此組條件下反應2.5小時之產率為99%以上。
摘要(英) The liquid-solid phase transfer catalyzed acetate substitution of 1-chlorobutane to synthesize n-butyl acetate and the liquid-liquid phase transfer catalyzed hydrolysis of n-butyl acetate to synthesizes 1-butanol were studied. The physical and chemical processes were considered to derive the overall production rate equation for n-butyl acetate. The experiment results of the factors including amounts and structures of phase transfer catalyst, kinds and amounts of solvents, stirring speed and reaction temperature can be explained with the rate equation.
A set of suitable conditions for producing n-butyl acetate under atmospheric pressure is 1-chlorobutane 0.5 mole, sodium acetate 0.6 mole, n-butyl acetate 0.24 mole, tetra-n-butyl ammonium bromide 0.0183 mole, initial reaction temperature 90℃ raised 5℃ per hours and final temperature 100℃ and stirring speed 300 rpm. Under this set of condition, 99% yield can be achieved at the reaction time of 9 hours.
Another set of suitable conditions for producing n-butyl acetate using Parr high pressure reactor and without solvent is 1-chlorobutane 0.35 mole, sodium acetate 0.42 mole, tetra-n-butyl ammonium bromide 0.0080 mole, reaction temperature 100℃ and stirring speed 300 rpm. Under this set of condition, 99% yield can be achieved at the reaction time of 8 hours.
As for the liquid-liquid phase transfer catalyzed hydrolysis of n-butyl acetate to synthesizes 1-butanol. A set of suitable conditions is n-butyl acetate 0.3 mole, sodium hydroxide 0.3 mole, water 0.9 mole, tetra-n-butyl ammonium bromide 0.0108 mole, reaction temperature 30℃, stirring speed 500 rpm. Under this set of condition reaction 2.5 hours yield rate achieve 99%.
關鍵字(中) ★ 醋酸丁酯
★ 相轉移催化
關鍵字(英) ★ n-butyl acetate
★ phase transfer catalysis
論文目次 中文摘要...............................................i
英文摘要...............................................ii
誌謝...................................................iii
目錄...................................................iv
圖目錄.................................................viii
表目錄.................................................x
符號說明...............................................xi
第一章 緒論...........................................1
1-1 相轉移催化之起源與定義........................1
1-2 相轉移催化之原理..............................1
1-2-1 液-液相轉移催化..................................1
1-2-2 液-固相轉移催化..................................2
1-3 相轉移催化之系統形態..............................2
1-4 相轉移催化劑之種類................................4
1-5 酯類之來源、用途與合成............................6
1-5-1 酯類之來源與用途.................................6
1-5-2 酯類之非相轉移催化合成法.........................6
1-5-3 酯類之相轉移催化合成法...........................6
1-6 醋酸丁酯之合成....................................8
1-6-1 工業上醋酸丁酯之合成.............................8
1-6-2 其他醋酸丁酯之非相轉移催化合成...................8
1-6-3醋酸丁酯之相轉移催化合成..........................9
1-7 醇的來源、用途與合成..............................9
1-7-1 酯類之來源與用途.................................9
1-7-2 醇之非相轉移催化合成法...........................9
1-7-3 醇之相轉移催化合成法.............................10
1-8 丁醇之合成........................................11
1-8-1 工業上丁醇之合成.................................11
1-8-2 其他丁醇之非相轉移催化合成.......................12
1-8-3 丁醇之相轉移催化合成.............................12
1-9 本研究之動機與主旨................................13
第二章 理論...........................................15
2-1 親核取代反應......................................15
2-1-1 單分子親核取代反應...............................15
2-1-2 二分子親核取代反應...............................16
2-1-3 相轉移催化劑之親核取代反應.......................17
2-2 液-固相轉移催化系統之化學程序與質傳程序...........17
2-3 液-固相轉移催化系統中醋酸丁酯之總生成速率方程式...18
2-4 影響醋酸丁酯之總生成速率之因素....................22
2-4-1 溶劑效應.........................................23
2-4-2 相轉移催化劑結構之影響...........................23
2-4-3 相轉移催化劑劑量之影響...........................23
2-4-3 攪拌速率之影響...................................23
2-4-4 溫度之影響.......................................23
第三章 實驗部分.......................................26
3-1 藥品..............................................26
3-1-1 實驗及分析用藥品.................................26
3-1-2 相轉移催化劑 .....................................27
3-1-3相轉移催化劑之製備................................27
3-2 實驗裝置及分析儀器................................29
3-2-1 實驗裝置.........................................29
3-2-2 氣相層析儀.......................................32
3-2-3 導電度計.........................................32
3-3 氣相層析儀(GC)之校正曲線及樣品分析................32
3-3-1 GC之校正曲線 .....................................32
3-3-2 GC之分析條件.....................................33
3-3-3 樣品分析.........................................33
3-4 實驗之操作........................................33
3-5 實驗步驟..........................................33
3-5-1 不含催化劑及溶劑之實驗...........................34
3-5-2 相轉移催化劑結構影響之實驗.......................34
3-5-3 溶劑影響之實驗...................................34
3-5-4 相轉移催化劑劑量影響之實驗.......................35
3-5-5 轉速影響之實驗...................................35
3-5-6 溫度影響之實驗...................................35
3-5-7 水份用量影響之實驗...............................35
3-5-8 適當實驗條件.....................................36
3-5-9 水解實驗.........................................36
第四章 結果與討論.....................................38
4-1 不含催化劑及溶劑之實驗............................38
4-2 相轉移催化劑結構之影響............................38
4-3 溶劑之影響........................................41
4-4 相轉移催化劑劑量影響..............................45
4-5 攪拌速率之影響....................................49
4-6 溫度之影響........................................52
4-7 水份用量之影響....................................56
4-8 適當實驗條件......................................59
4-9 水解實驗..........................................66
第五章 結論...........................................69
參考文獻...............................................71
附錄一.................................................76
附錄二.................................................80
參考文獻 [1] Starks C. M., Liotta C., Phase Transfer Catalysis. Principles and Techniques., Academic Press, U S, 1978.
[2] Jarrouse J., “The Influence of Quaternary Ammonium Chlorides on the Reaction of Labile Hydrogen Compounds and Chloride-Substituted Chlorine Derivatives” , C. R. Hebd. Seances Acad. Sci. Ser., C 232, 1424 (1951).
[3] Starks C. M., “Phase-transfer Catalysis. I. Heterogeneous Reaction Involving Anion Transfer by Quaternary Ammonium and Phosphonium Salts”, J. Am. Chem. Soc., 93(1), 195 (1971).
[4] 朱紫瑛,「醋酸丙烯酯之相轉移催化水解以合成丙烯醇及該法應用於其它醋酸酯之水解之研究」,國立中央大學化工碩士論文(1995)。
[5] 張詠鈞,「氯化戊烷之相轉移催化醋酸根取代以合成醋酸戊酯之研究」,國立中央大學化工碩士論文(1998)。
[6] Angeletti E., Tundo P., Venturello P., “Gas-Liquid Phase-Transfer Catalysis: Catalytic and Continuous Transesterification Reaction”, J Org. Chem., 48, 4106-8 (1983).
[7] 吳和生,「液-固-液三相反應動力學之應用-醚酯類」,第十五屆台灣區觸媒及反應工程研討會論文集(1997)。
[8] 周子卿,「有機金屬催化氫化以合成環己烷之研究」,國立中央大學化工碩士論文(1999)。
[9] Tundo P. and Venturello P., “Silica Gel Supported Phosphonium Salts as Micellar and Phase-Transfer Catalysis”, Tetrahedron Lett. 21, 2581 (1984).
[10] Starks C. M., “Selecting a Phase Transfer Catalysis”, Chemtech, 110 (1980).
[11] Hodge P., Sherrington D. C., “Polymer-supported Reaction in Organic Synthesis”, John Wiley and Sons (1980).
[12] 徐金榮,「葡萄糖之有機金屬相轉移催化氫化研究」,國立中央大學化工碩士論文(1994)。
[13] KirK B. S., Othmer D. F., “Encyclopedia of chemical Technology”, 4th, 755 (1994).
[14] Wang T. T., Huang T. C., Yeh M. Y., “Benzyl Acetate from Phase Transfer Catalyzed Acetate Displacement of Benzyl Chloride”, Chem.Eng Comm. 100, 135 (1991).
[15] 湯朝洲,「丙烯基氯之相轉移催化醋酸根取代反應以合成醋酸丙烯酯之研究」,國立中央大學化工碩士論文(1994)。
[16] Barry J., Bram G., Decodts G., Loupy A., Pigeon et P., Sansoulet J., “Easy and Efficient Anion Alkylations in Solid-Liquid PTC Condition”, Tetrahedron Letters, 23(51), 5407 (1982).
[17] Barry J., Bram G., Decodts G., Loupy A., Pigeon et P., Sansoulet J., “Alkylations en absence de solvant organique”, Tetrahedron, vol. 39, No. 16,2673 (1983).
[18] Barry J., Bram G., Decodts G., Loupy A., Pigeon et P., Sansoulet J., “Solid-Liquid Phase-transfer Catalysis without Added Solvent. A Simple, Efficient, and Inexpensive Synthesis of Aromatic Carboxylic Ester by Alkylation of Potassium Carboxylates”, Synthesis Communications, 40 (1982).
[19] Onn Arrad and Yoel Sasson, “Thin-Layer Phase-Transfer Catalysis in the Reaction of Alkyl Chlorides and solid Formate Salt”, J. Am. Chem. Soc. 110, 185 (1988).
[20] Weihua Y. H., Cui W., Wang J., “Synthesis of Esters from Acryl Chlorides and Halides Uuder Solid-Liquid Phase Transfer Catalysis”, Synthetic Commun., 22(19), 2763 (1992).
[21] Huang G., Dauerman L., “Base-Catalyzed Reaction of Organic Chlorides with Sodium Acetate”, I & EC Prod. Res. Dev., 8, 227 (1969).
[22] Henry E. Hennis, Leonard R. Thompson, Joe P. Long, “Esters from the reactions of alkyl halides and salts of carboxylic acids”, I & EC Product Research and Development, vol. 7, No. 2, 96 (1968).
[23] Ganapatl D. Yadav , Man Mohan Sharma, “Kinetics of Reaction of Benzyl Chloride with Sodium Acetate/Benzoate: Phase Transfer Catalysis in Solid-Liquid System”, Ind. Eng. Chem. Process Des. Dev. 20, 385 (1981).
[24] Shi Hongxin, Xiang Juping, Wu Hongke,“Fluorous biphase system of C9F18 and its use in esterification.”, Chinese Journal of Chemical Engineering, 15(6), 906-908 (2007).
[25] Xu Jian-hua, Li Xian-cai, Li Ping, Cao Xiao-hua, “Synthesis of sulfated zirconia solid acid catalyst and its application in the synthesis of butyl acetate.”, Nanchang Daxue Xuebao, Gongkeban, 29(2), 106-109 (2007).
[26] Du Yingchun, “Preparation of silicotungstic and phosphotungstic heteropoly acid-loaded catalyst for esterification.”, Faming Zhuanli Shenqing Gongkai Shuomingshu, 23 (2008).
[27] Moghadam Majid, Tangestaninejad Shahram, Mirkhani Valiollah, Mohammadpoor-Baltork Iraj, Taghavi S. Abdolmanaf, “Highly efficient and selective acetylation of alcohols and phenols with acetic anhydride catalyzed by a high-valent tin(IV) porphyrin, Sn(TPP)(BF4)2.”, Journal of Molecular Catalysis A: Chemical, 274(1-2), 217-223 (2007).
[28] Crochemore Michel, “Esterification of salts of carboxylic acids.”, Eur. Pat. Appl., 27 (1993).
[29] Morrison R. T., Boyd. R. N., “Organic Chemistry”, Allyn and Bacon, Inc., Boston, Fifth Edition (1987).
[30] Wang T. T., Huang T. C., Yeh M. Y., “Benzyl Alcohol from Phase Transfer Catalyzed Weakly Alkaline Hydrolysis of Benzyl Chloride”, Chem. Eng. Comm., Vol. 92, pp.139-151 (1990).
[31] Filippo J. S., Valentine J. S., Romano J., Chern C., J. Org. Chem., Vol. 41, p. 586 (1976).
[32] Corey E. J., Nicolaou K. C., Shibaski M., Machida Y., Shiner C. S., Tetrahedron Lett., Vol. 37, p. 3183 (1975).
[33] Herriott A. W., Picker D., Tetrahedron Lett., p. 4521 (1976).
[34] Asghari Jila, Ghiaci Mehran, “Dealkylation of alkyl and aryl ethers with AlCl3-Nal in the free solvent condition.”, Diffusion and Defect Data--Solid State Data, Pt. B: Solid State Phenomena, 90-91, 3-6 (2003).
[35] Asai S.,Nakamura H., “Alkaline Hydrolysis of N-Butyl Acetate with Phase Transfer Catalyst Aliquat 336”, Aiche J., Vol. 38, No. 3, 397-404 (1992).
[36] Herman A. Yee, Harvey J. Palmer, S. H. Chem, “Solid-Liquid Phase Transfer Catalysis”, Chemical Engineering Progress, 33 (1987).
[37] McMurry, “Organic Chemistry”, Cole Publishing Company, Montery, California, 307 (1984).
[38] 張其晃,「有機鹵化物與季銨鹼之親核雙取代反應研究」,國立中央大學化工碩士論文(1991)。
[39] Forster D., J. Chem. Soc., Chem. Commun., 918 (1975).
[40] Landini D., Maia A., Montanari F., J. Chem. Soc., Chem. Comm., 112 (1977).
[41] Feldman D., Lew D. S., Rabinovitz M., “Nucleophilic Aromatic Substitution by
Hydroxide Ion under Phase-Transfer Catalysis Conditions Fluorine Displacement in Polyflurobenzene”, J. Org. Chem. 56, 7350 (1991).
[42] Wang T. T., Huang T. C., Yeh M. Y., “Benzyl Ether from Phase Transfer Catalyzed Strongly Alkaline Hydrolysis of Benzyl Chloride”, J. Mol. Cat. 57, 271 (1990).
[43] Dehmlow E. V., and Schmidt J., Tetrahedron Lett., 95 (1976).
指導教授 王天財(Ten-Tsai Wang) 審核日期 2009-6-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明